-
1
-
-
39149084409
-
Osteochondral defects: Present situation and tissue engineering approaches
-
Mano JF, Reis RL. Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regener Med 2007;1:261-73.
-
(2007)
J Tissue Eng Regener Med
, vol.1
, pp. 261-273
-
-
Mano, J.F.1
Reis, R.L.2
-
2
-
-
33847042303
-
Osteochondral tissue engineering
-
Martin I, Miot S, Barbero A, Jakob M, Wendt D. Osteochondral tissue engineering. J Biomech 2007;40:750-65.
-
(2007)
J Biomech
, vol.40
, pp. 750-765
-
-
Martin, I.1
Miot, S.2
Barbero, A.3
Jakob, M.4
Wendt, D.5
-
3
-
-
77951253755
-
The subchondral bone in articular cartilage repair: Current problems in the surgical management
-
Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, et al. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 2010;18:434-47.
-
(2010)
Knee Surg Sports Traumatol Arthrosc
, vol.18
, pp. 434-447
-
-
Gomoll, A.H.1
Madry, H.2
Knutsen, G.3
Van Dijk, N.4
Seil, R.5
Brittberg, M.6
-
4
-
-
84856133559
-
Biologics in foot and ankle surgery
-
Weil Jr L. Biologics in foot and ankle surgery. Foot Ankle Spec 2011;4:249-52.
-
(2011)
Foot Ankle Spec
, vol.4
, pp. 249-252
-
-
Weil, L.1
-
6
-
-
73449123799
-
The economic burden of osteoarthritis
-
Bitton R. The economic burden of osteoarthritis. Am J Manag Care 2009;15:S230-5.
-
(2009)
Am J Manag Care
, vol.15
, pp. S230-S235
-
-
Bitton, R.1
-
7
-
-
84861347157
-
Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration
-
Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, et al. Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc 2012;20:1182-91.
-
(2012)
Knee Surg Sports Traumatol Arthrosc
, vol.20
, pp. 1182-1191
-
-
Panseri, S.1
Russo, A.2
Cunha, C.3
Bondi, A.4
Di Martino, A.5
Patella, S.6
-
8
-
-
0027595948
-
Tissue engineering
-
Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920-6.
-
(1993)
Science
, vol.260
, pp. 920-926
-
-
Langer, R.1
Vacanti, J.P.2
-
9
-
-
60649093062
-
Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering
-
Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release 2009;134:81-90.
-
(2009)
J Control Release
, vol.134
, pp. 81-90
-
-
Wang, X.1
Wenk, E.2
Zhang, X.3
Meinel, L.4
Vunjak-Novakovic, G.5
Kaplan, D.L.6
-
10
-
-
27644501104
-
Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits
-
Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH. Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 2006;27:1071-80.
-
(2006)
Biomaterials
, vol.27
, pp. 1071-1080
-
-
Shao, X.X.1
Hutmacher, D.W.2
Ho, S.T.3
Goh, J.C.4
Lee, E.H.5
-
11
-
-
84878612658
-
The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold
-
Zhang W, Chen J, Tao J, Hu C, Chen L, Zhao H, et al. The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials 2013;34:6046-57.
-
(2013)
Biomaterials
, vol.34
, pp. 6046-6057
-
-
Zhang, W.1
Chen, J.2
Tao, J.3
Hu, C.4
Chen, L.5
Zhao, H.6
-
12
-
-
68149141319
-
Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques
-
Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 2009;37:902-8.
-
(2009)
Am J Sports Med
, vol.37
, pp. 902-908
-
-
Minas, T.1
Gomoll, A.H.2
Rosenberger, R.3
Royce, R.O.4
Bryant, T.5
-
13
-
-
56749179723
-
Bilayered scaffolds for osteochondral tissue engineering
-
O'Shea TM, Miao X. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng Part B Rev 2008;14:447-64.
-
(2008)
Tissue Eng Part B Rev
, vol.14
, pp. 447-464
-
-
O'Shea, T.M.1
Miao, X.2
-
14
-
-
33748929635
-
Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells
-
Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 2006;27:6123-37.
-
(2006)
Biomaterials
, vol.27
, pp. 6123-6137
-
-
Oliveira, J.M.1
Rodrigues, M.T.2
Silva, S.S.3
Malafaya, P.B.4
Gomes, M.E.5
Viegas, C.A.6
-
15
-
-
84903820472
-
Repair of an osteochondral defect by sustained delivery of BMP-2 or TGF-beta1 from a bilayered alginate-PLGA scaffold
-
Reyes R, Delgado A, Sanchez E, Fernandez A, Hernandez A, Evora C. Repair of an osteochondral defect by sustained delivery of BMP-2 or TGF-beta1 from a bilayered alginate-PLGA scaffold. J Tissue Eng Regener Med 2014;8:521-33.
-
(2014)
J Tissue Eng Regener Med
, vol.8
, pp. 521-533
-
-
Reyes, R.1
Delgado, A.2
Sanchez, E.3
Fernandez, A.4
Hernandez, A.5
Evora, C.6
-
16
-
-
61849142793
-
In vitro generation of an osteochondral construct using injectable hydrogel composites encapsulating rabbit marrow mesenchymal stem cells
-
Guo X, Park H, Liu G, Liu W, Cao Y, Tabata Y, et al. In vitro generation of an osteochondral construct using injectable hydrogel composites encapsulating rabbit marrow mesenchymal stem cells. Biomaterials 2009;30:2741-52.
-
(2009)
Biomaterials
, vol.30
, pp. 2741-2752
-
-
Guo, X.1
Park, H.2
Liu, G.3
Liu, W.4
Cao, Y.5
Tabata, Y.6
-
17
-
-
79955758751
-
Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds
-
Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, et al. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 2011;32:4793-805.
-
(2011)
Biomaterials
, vol.32
, pp. 4793-4805
-
-
Chen, J.1
Chen, H.2
Li, P.3
Diao, H.4
Zhu, S.5
Dong, L.6
-
18
-
-
84877964552
-
Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model
-
Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, et al. Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release 2013;168:166-78.
-
(2013)
J Control Release
, vol.168
, pp. 166-178
-
-
Kim, K.1
Lam, J.2
Lu, S.3
Spicer, P.P.4
Lueckgen, A.5
Tabata, Y.6
-
19
-
-
80155149820
-
Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface
-
Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS. Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng Part A 2011;17:2845-55.
-
(2011)
Tissue Eng Part A
, vol.17
, pp. 2845-2855
-
-
Mohan, N.1
Dormer, N.H.2
Caldwell, K.L.3
Key, V.H.4
Berkland, C.J.5
Detamore, M.S.6
-
20
-
-
77952689542
-
Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model
-
Xue D, Zheng Q, Zong C, Li Q, Li H, Qian S, et al. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. J Biomed Mater Res A 2010;94:259-70.
-
(2010)
J Biomed Mater Res A
, vol.94
, pp. 259-270
-
-
Xue, D.1
Zheng, Q.2
Zong, C.3
Li, Q.4
Li, H.5
Qian, S.6
-
21
-
-
79959458741
-
Novel nano-composite multilayered biomaterial for osteochondral regeneration: A pilot clinical trial
-
Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M. Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 2011;39:1180-90.
-
(2011)
Am J Sports Med
, vol.39
, pp. 1180-1190
-
-
Kon, E.1
Delcogliano, M.2
Filardo, G.3
Busacca, M.4
Di Martino, A.5
Marcacci, M.6
-
22
-
-
84861809567
-
Synthetic resorbable scaffolds for the treatment of isolated patellofemoral cartilage defects in young patients: Magnetic resonance imaging and clinical evaluation
-
Joshi N, Reverte-Vinaixa M, Diaz-Ferreiro EW, Dominguez-Oronoz R. Synthetic resorbable scaffolds for the treatment of isolated patellofemoral cartilage defects in young patients: magnetic resonance imaging and clinical evaluation. Am J Sports Med 2012;40:1289-95.
-
(2012)
Am J Sports Med
, vol.40
, pp. 1289-1295
-
-
Joshi, N.1
Reverte-Vinaixa, M.2
Diaz-Ferreiro, E.W.3
Dominguez-Oronoz, R.4
-
23
-
-
84863115255
-
The maturation of synthetic scaffolds for osteochondral donor sites of the knee: An MRI and T2-mapping analysis
-
Bedi A, Foo LF, Williams Iii RJ, Potter HG. The maturation of synthetic scaffolds for osteochondral donor sites of the knee: An MRI and T2-mapping analysis. Cartilage 2010;1:20-8.
-
(2010)
Cartilage
, vol.1
, pp. 20-28
-
-
Bedi, A.1
Foo, L.F.2
Williams, R.J.3
Potter, H.G.4
-
24
-
-
33846677220
-
A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage
-
Moutos FT, Freed LE, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater 2007;6:162-7.
-
(2007)
Nat Mater
, vol.6
, pp. 162-167
-
-
Moutos, F.T.1
Freed, L.E.2
Guilak, F.3
-
25
-
-
84855540771
-
How to treat osteochondritis dissecans of the knee: Surgical techniques and new trends AAOS exhibit selection
-
Kon E, Vannini F, Buda R, Filardo G, Cavallo M, Ruffilli A, et al. How to treat osteochondritis dissecans of the knee: surgical techniques and new trends AAOS exhibit selection. J Bone Joint Surg Am 2012;94, e1(1-8).
-
(2012)
J Bone Joint Surg Am
, vol.94
-
-
Kon, E.1
Vannini, F.2
Buda, R.3
Filardo, G.4
Cavallo, M.5
Ruffilli, A.6
-
27
-
-
40849137427
-
Engineering custom-designed osteochondral tissue grafts
-
Grayson WL, Chao PH, Marolt D, Kaplan DL, Vunjak-Novakovic G. Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 2008;26:181-9.
-
(2008)
Trends Biotechnol
, vol.26
, pp. 181-189
-
-
Grayson, W.L.1
Chao, P.H.2
Marolt, D.3
Kaplan, D.L.4
Vunjak-Novakovic, G.5
-
28
-
-
78649270937
-
Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications
-
Yan LP, Wang YJ, Ren L, Wu G, Caridade SG, Fan JB, et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res A 2010;95A:465-75.
-
(2010)
J Biomed Mater Res A
, vol.95 A
, pp. 465-475
-
-
Yan, L.P.1
Wang, Y.J.2
Ren, L.3
Wu, G.4
Caridade, S.G.5
Fan, J.B.6
-
30
-
-
10044274310
-
Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin
-
Kim UJ, Park J, Joo Kim H, Wada M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 2005;26:2775-85.
-
(2005)
Biomaterials
, vol.26
, pp. 2775-2785
-
-
Kim, U.J.1
Park, J.2
Joo Kim, H.3
Wada, M.4
Kaplan, D.L.5
-
31
-
-
84862813664
-
Aligned silk-based 3-D architectures for contact guidance in tissue engineering
-
Oliveira AL, Sun L, Kim HJ, Hu X, Rice W, Kluge J, et al. Aligned silk-based 3-D architectures for contact guidance in tissue engineering. Acta Biomater 2012;8:1530-42.
-
(2012)
Acta Biomater
, vol.8
, pp. 1530-1542
-
-
Oliveira, A.L.1
Sun, L.2
Kim, H.J.3
Hu, X.4
Rice, W.5
Kluge, J.6
-
32
-
-
84861622526
-
Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells
-
Correia C, Bhumiratana S, Yan LP, Oliveira AL, Gimble JM, Rockwood D, et al. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater 2012;8:2483-92.
-
(2012)
Acta Biomater
, vol.8
, pp. 2483-2492
-
-
Correia, C.1
Bhumiratana, S.2
Yan, L.P.3
Oliveira, A.L.4
Gimble, J.M.5
Rockwood, D.6
-
33
-
-
77956188263
-
Osteogenesis of human stem cells in silk biomaterial for regenerative therapy
-
Kundu B, Kundu SC. Osteogenesis of human stem cells in silk biomaterial for regenerative therapy. Prog Polym Sci 2010;35:1116-27.
-
(2010)
Prog Polym Sci
, vol.35
, pp. 1116-1127
-
-
Kundu, B.1
Kundu, S.C.2
-
34
-
-
58149280225
-
Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells
-
Fuchs S, Jiang X, Schmidt H, Dohle E, Ghanaati S, Orth C, et al. Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 2009;30:1329-38.
-
(2009)
Biomaterials
, vol.30
, pp. 1329-1338
-
-
Fuchs, S.1
Jiang, X.2
Schmidt, H.3
Dohle, E.4
Ghanaati, S.5
Orth, C.6
-
35
-
-
0037009080
-
Biological and medical significance of calcium phosphates
-
Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed 2002;41:3130-46.
-
(2002)
Angew Chem Int Ed
, vol.41
, pp. 3130-3146
-
-
Dorozhkin, S.V.1
Epple, M.2
-
36
-
-
4544273208
-
Bone tissue engineering: State of the art and future trends
-
Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004;4:743-65.
-
(2004)
Macromol Biosci
, vol.4
, pp. 743-765
-
-
Salgado, A.J.1
Coutinho, O.P.2
Reis, R.L.3
-
37
-
-
84855928769
-
Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications
-
Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater 2012;8:289-301.
-
(2012)
Acta Biomater
, vol.8
, pp. 289-301
-
-
Yan, L.P.1
Oliveira, J.M.2
Oliveira, A.L.3
Caridade, S.G.4
Mano, J.F.5
Reis, R.L.6
-
38
-
-
84874889929
-
Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications
-
Yan LP, Silva-Correia J, Correia C, Caridade SG, Fernandes EM, Sousa RA, et al. Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomed (London) 2013;8:359-78.
-
(2013)
Nanomed (London)
, vol.8
, pp. 359-378
-
-
Yan, L.P.1
Silva-Correia, J.2
Correia, C.3
Caridade, S.G.4
Fernandes, E.M.5
Sousa, R.A.6
-
39
-
-
84884180115
-
De novo bone formation on macro/microporous silk and silk/nano-sized calcium phosphate scaffolds
-
Yan LP, Salgado AJ, Oliveira JM, Oliveira AL, Reis RL. De novo bone formation on macro/microporous silk and silk/nano-sized calcium phosphate scaffolds. J Bioact Compat Polym 2013;28:439-52.
-
(2013)
J Bioact Compat Polym
, vol.28
, pp. 439-452
-
-
Yan, L.P.1
Salgado, A.J.2
Oliveira, J.M.3
Oliveira, A.L.4
Reis, R.L.5
-
40
-
-
84900559692
-
Silk fibroin/nano-CaP bilayered scaffolds for osteochondral tissue engineering
-
Yan LP, Oliveira JM, Oliveira AL, Reis RL. Silk fibroin/nano-CaP bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 2014;587:245-8.
-
(2014)
Key Eng Mater
, vol.587
, pp. 245-248
-
-
Yan, L.P.1
Oliveira, J.M.2
Oliveira, A.L.3
Reis, R.L.4
-
41
-
-
23744461411
-
Water-stable silk films with reduced b-sheet content
-
Jin HJ, Park J, Karageorgiou V, Kim UJ, Valluzzi R, Cebe P, et al. Water-stable silk films with reduced b-sheet content. Adv Funct Mater 2005;15:1241-7.
-
(2005)
Adv Funct Mater
, vol.15
, pp. 1241-1247
-
-
Jin, H.J.1
Park, J.2
Karageorgiou, V.3
Kim, U.J.4
Valluzzi, R.5
Cebe, P.6
-
42
-
-
70349145885
-
Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability
-
Oliveira JM, Silva SS, Malafaya PB, Rodrigues MT, Kotobuki N, Hirose M, et al. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. J Biomed Mater Res A 2009;91A:175-86.
-
(2009)
J Biomed Mater Res A
, vol.91 A
, pp. 175-186
-
-
Oliveira, J.M.1
Silva, S.S.2
Malafaya, P.B.3
Rodrigues, M.T.4
Kotobuki, N.5
Hirose, M.6
-
44
-
-
17844400927
-
Porosity of 3D biomaterial scaffolds and osteogenesis
-
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26:5474-91.
-
(2005)
Biomaterials
, vol.26
, pp. 5474-5491
-
-
Karageorgiou, V.1
Kaplan, D.2
-
45
-
-
84857809940
-
A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering
-
Khanarian NT, Jiang J, Wan LQ, Mow VC, Lu HH. A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng Part A 2012;18:533-45.
-
(2012)
Tissue Eng Part A
, vol.18
, pp. 533-545
-
-
Khanarian, N.T.1
Jiang, J.2
Wan, L.Q.3
Mow, V.C.4
Lu, H.H.5
-
46
-
-
2542588554
-
Porous 3-D scaffolds from regenerated silk fibroin
-
Nazarov R, Jin HJ, Kaplan DL. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 2004;5:718-26.
-
(2004)
Biomacromolecules
, vol.5
, pp. 718-726
-
-
Nazarov, R.1
Jin, H.J.2
Kaplan, D.L.3
-
47
-
-
33748973572
-
Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors
-
Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N, et al. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials 2006;27:6138-49.
-
(2006)
Biomaterials
, vol.27
, pp. 6138-6149
-
-
Marolt, D.1
Augst, A.2
Freed, L.E.3
Vepari, C.4
Fajardo, R.5
Patel, N.6
-
48
-
-
79954726757
-
Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications
-
Bhardwaj N, Kundu SC. Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym 2011;85:325-33.
-
(2011)
Carbohydr Polym
, vol.85
, pp. 325-333
-
-
Bhardwaj, N.1
Kundu, S.C.2
-
49
-
-
68949141586
-
Development of hyaluronic acid-based scaffolds for brain tissue engineering
-
Wang TW, Spector M. Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomater 2009;5:2371-84.
-
(2009)
Acta Biomater
, vol.5
, pp. 2371-2384
-
-
Wang, T.W.1
Spector, M.2
-
50
-
-
60549101494
-
Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering
-
Liu X, Smith LA, Hu J, Ma PX. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 2009;30:2252-8.
-
(2009)
Biomaterials
, vol.30
, pp. 2252-2258
-
-
Liu, X.1
Smith, L.A.2
Hu, J.3
Ma, P.X.4
-
51
-
-
0034672872
-
Scaffolds in tissue engineering bone and cartilage
-
Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21:2529-43.
-
(2000)
Biomaterials
, vol.21
, pp. 2529-2543
-
-
Hutmacher, D.W.1
-
52
-
-
84861203750
-
High-strength silk protein scaffolds for bone repair
-
Mandal BB, Grinberg A, Seok Gil E, Panilaitis B, Kaplan DL. High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci USA 2012;109:7699-704.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 7699-7704
-
-
Mandal, B.B.1
Grinberg, A.2
Seok Gil, E.3
Panilaitis, B.4
Kaplan, D.L.5
-
53
-
-
58449084444
-
Bone-like resorbable silk-based scaffolds for load-bearing osteoregenerative applications
-
Collins AM, Skaer NJV, Gheysens T, Knight D, Bertram C, Roach HI, et al. Bone-like resorbable silk-based scaffolds for load-bearing osteoregenerative applications. Adv Mater 2009;21:75-8.
-
(2009)
Adv Mater
, vol.21
, pp. 75-78
-
-
Collins, A.M.1
Skaer, N.J.V.2
Gheysens, T.3
Knight, D.4
Bertram, C.5
Roach, H.I.6
-
55
-
-
0037290140
-
Silk-based biomaterials
-
Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen JS, et al. Silk-based biomaterials. Biomaterials 2003;24:401-16.
-
(2003)
Biomaterials
, vol.24
, pp. 401-416
-
-
Altman, G.H.1
Diaz, F.2
Jakuba, C.3
Calabro, T.4
Horan, R.L.5
Chen, J.S.6
-
56
-
-
77951258512
-
Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation
-
Oliveira JM, Kotobuki N, Tadokoro M, Hirose M, Mano JF, Reis RL, et al. Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation. Bone 2010;46:1424-35.
-
(2010)
Bone
, vol.46
, pp. 1424-1435
-
-
Oliveira, J.M.1
Kotobuki, N.2
Tadokoro, M.3
Hirose, M.4
Mano, J.F.5
Reis, R.L.6
-
57
-
-
75149160418
-
The osteogenic properties of CaP/silk composite scaffolds
-
Zhang Y, Wu C, Friis T, Xiao Y. The osteogenic properties of CaP/silk composite scaffolds. Biomaterials 2010;31:2848-56.
-
(2010)
Biomaterials
, vol.31
, pp. 2848-2856
-
-
Zhang, Y.1
Wu, C.2
Friis, T.3
Xiao, Y.4
|