-
1
-
-
4544241860
-
Adiponectin, the missing link in insulin resistance and obesity
-
Gil-Campos M, Cañete RR and Gil A: Adiponectin, the missing link in insulin resistance and obesity. Clin Nutr 23: 963-974, 2004.
-
(2004)
Clin Nutr
, vol.23
, pp. 963-974
-
-
Gil-Campos, M.1
Cañete, R.R.2
Gil, A.3
-
2
-
-
0036432925
-
Adiponectin: A link between excess adiposity and associated comorbidities
-
Ukkola O and Santaniemi M: Adiponectin: a link between excess adiposity and associated comorbidities? J Mol Med (Berl) 80: 696-702, 2002.
-
(2002)
J Mol Med (Berl)
, vol.80
, pp. 696-702
-
-
Ukkola, O.1
Santaniemi, M.2
-
3
-
-
17944365228
-
The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
-
Yamauchi T, Kamon J, Waki H, et al: The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7: 941-946, 2001.
-
(2001)
Nat Med
, vol.7
, pp. 941-946
-
-
Yamauchi, T.1
Kamon, J.2
Waki, H.3
-
4
-
-
33745834319
-
Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome
-
Kadowaki T, Yamauchi T, Kubota N, et al: Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116: 1784-1792, 2006.
-
(2006)
J Clin Invest
, vol.116
, pp. 1784-1792
-
-
Kadowaki, T.1
Yamauchi, T.2
Kubota, N.3
-
5
-
-
0036063777
-
Diet-induced insulin resistance in mice lacking adiponectin/ACRP30
-
Maeda N, Shimomura I, Kishida K, et al: Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8: 731-737, 2002.
-
(2002)
Nat Med
, vol.8
, pp. 731-737
-
-
Maeda, N.1
Shimomura, I.2
Kishida, K.3
-
6
-
-
67650169799
-
Adiponectin levels and risk of type 2 diabetes: A systematic review and meta-analysis
-
Li S, Shin HJ, Ding EL, et al: Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 302: 179-188, 2009.
-
(2009)
JAMA
, vol.302
, pp. 179-188
-
-
Li, S.1
Shin, H.J.2
Ding, E.L.3
-
7
-
-
84873404989
-
Adiponectin receptor as a key player in healthy longevity and obesity-related diseases
-
Yamauchi T and Kadowaki T: Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab 17: 185-196, 2013.
-
(2013)
Cell Metab
, vol.17
, pp. 185-196
-
-
Yamauchi, T.1
Kadowaki, T.2
-
8
-
-
0347444723
-
MicroRNAs: Genomics, biogenesis, mechanism, and function
-
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297, 2004.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
10
-
-
9144270691
-
A pancreatic islet-specific microRNA regulates insulin secretion
-
Poy MN, Eliasson L, Krutzfeldt J, et al: A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432: 226-230, 2004.
-
(2004)
Nature
, vol.432
, pp. 226-230
-
-
Poy, M.N.1
Eliasson, L.2
Krutzfeldt, J.3
-
11
-
-
84855518254
-
Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs
-
Frost RJ and Olson EN: Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci USA 108: 21075-21080, 2011.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 21075-21080
-
-
Frost, R.J.1
Olson, E.N.2
-
12
-
-
80053481600
-
The Lin28/let-7 axis regulates glucose metabolism
-
Zhu H, Shyh-Chang N, Segrè AV, et al: The Lin28/let-7 axis regulates glucose metabolism. Cell 147: 81-94, 2011.
-
(2011)
Cell
, vol.147
, pp. 81-94
-
-
Zhu, H.1
Shyh-Chang, N.2
Segrè, A.V.3
-
13
-
-
79959845414
-
MicroRNAs 103 and 107 regulate insulin sensitivity
-
Trajkovski M, Hausser J, Soutschek J, et al: MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474: 649-653, 2011.
-
(2011)
Nature
, vol.474
, pp. 649-653
-
-
Trajkovski, M.1
Hausser, J.2
Soutschek, J.3
-
14
-
-
79960322580
-
MiR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1)
-
Pullen TJ, da Silva Xavier G, Kelsey G and Rutter GA: miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 31: 3182-3194, 2011.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 3182-3194
-
-
Pullen, T.J.1
Da Silva Xavier, G.2
Kelsey, G.3
Rutter, G.A.4
-
15
-
-
84919603271
-
Reduction of AUF1-mediated follistatin mRNA decay during glucose starvation protects cells from apoptosis
-
Gao X, Dong H, Lin C, et al: Reduction of AUF1-mediated follistatin mRNA decay during glucose starvation protects cells from apoptosis. Nucleic Acids Res 42: 10720-10730, 2014.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 10720-10730
-
-
Gao, X.1
Dong, H.2
Lin, C.3
-
16
-
-
2942622680
-
Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients
-
Debard C, Laville M, Berbe V, et al: Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients. Diabetologia 47: 917-925, 2004.
-
(2004)
Diabetologia
, vol.47
, pp. 917-925
-
-
Debard, C.1
Laville, M.2
Berbe, V.3
-
17
-
-
3142701401
-
Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity
-
Tsuchida A, Yamauchi T, Ito Y, et al: Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem 279: 30817-30822, 2004.
-
(2004)
J Biol Chem
, vol.279
, pp. 30817-30822
-
-
Tsuchida, A.1
Yamauchi, T.2
Ito, Y.3
-
18
-
-
84555186814
-
Insulin decreases myocardial adiponectin receptor 1 expression via PI3K/Akt and FoxO1 pathway
-
Cui XB, Wang C, Li L, et al: Insulin decreases myocardial adiponectin receptor 1 expression via PI3K/Akt and FoxO1 pathway. Cardiovasc Res 93: 69-78, 2012.
-
(2012)
Cardiovasc Res
, vol.93
, pp. 69-78
-
-
Cui, X.B.1
Wang, C.2
Li, L.3
-
19
-
-
29744437890
-
Hyperglycemia-and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts
-
Fang X, Palanivel R, Zhou X, et al: Hyperglycemia-and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts. J Mol Endocrinol 35: 465-476, 2005.
-
(2005)
J Mol Endocrinol
, vol.35
, pp. 465-476
-
-
Fang, X.1
Palanivel, R.2
Zhou, X.3
-
20
-
-
80052218238
-
The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer
-
Uesugi A, Kozaki K, Tsuruta T, et al: The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res 71: 5765-5778, 2011.
-
(2011)
Cancer Res
, vol.71
, pp. 5765-5778
-
-
Uesugi, A.1
Kozaki, K.2
Tsuruta, T.3
-
21
-
-
84891930533
-
Mir-218 opposes a critical RTK-HIF pathway in mesenchymal glioblastoma
-
Mathew LK, Skuli N, Mucaj V, et al: mir-218 opposes a critical RTK-HIF pathway in mesenchymal glioblastoma. Proc Natl Acad Sci USA 111: 291-296, 2014.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 291-296
-
-
Mathew, L.K.1
Skuli, N.2
Mucaj, V.3
-
22
-
-
84872726735
-
MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma
-
Venkataraman S, Birks DK, Balakrishnan I, et al: MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma. J Biol Chem 288: 1918-1928, 2013.
-
(2013)
J Biol Chem
, vol.288
, pp. 1918-1928
-
-
Venkataraman, S.1
Birks, D.K.2
Balakrishnan, I.3
-
23
-
-
84871345038
-
Mir-218 directs a wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells
-
Hassan MQ, Maeda Y, Taipaleenmaki H, et al: mir-218 directs a wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 287: 42084-42092, 2012.
-
(2012)
J Biol Chem
, vol.287
, pp. 42084-42092
-
-
Hassan, M.Q.1
Maeda, Y.2
Taipaleenmaki, H.3
-
24
-
-
84886774405
-
A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation
-
Zhang WB, Zhong WJ and Wang L: A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone 58: 59-66, 2014.
-
(2014)
Bone
, vol.58
, pp. 59-66
-
-
Zhang, W.B.1
Zhong, W.J.2
Wang, L.3
|