-
1
-
-
77955280004
-
Caenorhabditis elegans as a model system for mtDNA replication defects
-
Bratic I, Hench J, Trifunovic A, (2010) Caenorhabditis elegans as a model system for mtDNA replication defects. Methods 51: 437–443. doi: 10.1016/j.ymeth.2010.03.003 20230897
-
(2010)
Methods
, vol.51
, pp. 437-443
-
-
Bratic, I.1
Hench, J.2
Trifunovic, A.3
-
2
-
-
77953733762
-
Mitochondrial energy metabolism and ageing
-
Bratic I, Trifunovic A, (2010) Mitochondrial energy metabolism and ageing. Biochim Biophys Acta 1797: 961–967. doi: 10.1016/j.bbabio.2010.01.004 20064485
-
(2010)
Biochim Biophys Acta
, vol.1797
, pp. 961-967
-
-
Bratic, I.1
Trifunovic, A.2
-
3
-
-
34548627532
-
DNA Replication and Transcription in Mammalian Mitochondria
-
Falkenberg M, Larsson N-G, Gustafsson CM, (2007) DNA Replication and Transcription in Mammalian Mitochondria. Annu Rev Biochem 76: 679–699. doi: 10.1146/annurev.biochem.76.060305.152028 17408359
-
(2007)
Annu Rev Biochem
, vol.76
, pp. 679-699
-
-
Falkenberg, M.1
Larsson, N.-G.2
Gustafsson, C.M.3
-
5
-
-
0034598918
-
Coupled Leading- and Lagging-Strand Synthesis of Mammalian Mitochondrial DNA
-
Holt IJ, Lorimer HE, Jacobs HT, (2000) Coupled Leading- and Lagging-Strand Synthesis of Mammalian Mitochondrial DNA. Cell 100: 515–524. doi: 10.1016/S0092-8674(00)80688-1 10721989
-
(2000)
Cell
, vol.100
, pp. 515-524
-
-
Holt, I.J.1
Lorimer, H.E.2
Jacobs, H.T.3
-
6
-
-
84878835055
-
Mitochondrial DNA replication proceeds via a “bootlace” mechanism involving the incorporation of processed transcripts
-
Reyes A, Kazak L, Wood SR, Yasukawa T, Jacobs HT, et al. (2013) Mitochondrial DNA replication proceeds via a “bootlace” mechanism involving the incorporation of processed transcripts. Nucleic Acids Research 41: 5837–5850. doi: 10.1093/nar/gkt196 23595151
-
(2013)
Nucleic Acids Research
, vol.41
, pp. 5837-5850
-
-
Reyes, A.1
Kazak, L.2
Wood, S.R.3
Yasukawa, T.4
Jacobs, H.T.5
-
7
-
-
38549093242
-
-
Lemire B (2005) Mitochondrial genetics. WormBook: 1–10. doi: 10.1895/wormbook.1.25.1.
-
-
-
-
8
-
-
64549151315
-
Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development
-
Bratic I, Hench J, Henriksson J, Antebi A, Burglin TR, et al. (2009) Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development. Nucleic Acids Research 37: 1817–1828. doi: 10.1093/nar/gkp018 19181702
-
(2009)
Nucleic Acids Research
, vol.37
, pp. 1817-1828
-
-
Bratic, I.1
Hench, J.2
Henriksson, J.3
Antebi, A.4
Burglin, T.R.5
-
9
-
-
77954952963
-
Caenorhabditis elegans, a pluricellular model organism to screen new genes involved in mitochondrial genome maintenance
-
Addo MG, Cossard R, Pichard D, Obiri-Danso K, Rötig A, et al. (2010) Caenorhabditis elegans, a pluricellular model organism to screen new genes involved in mitochondrial genome maintenance. Biochim Biophys Acta 1802: 765–773. doi: 10.1016/j.bbadis.2010.05.007 20580819
-
(2010)
Biochim Biophys Acta
, vol.1802
, pp. 765-773
-
-
Addo, M.G.1
Cossard, R.2
Pichard, D.3
Obiri-Danso, K.4
Rötig, A.5
-
12
-
-
41149138003
-
From GC skews to wavelets: a gentle guide to the analysis of compositional asymmetries in genomic data
-
Touchon M, Rocha EPC, (2008) From GC skews to wavelets: a gentle guide to the analysis of compositional asymmetries in genomic data. Biochimie 90: 648–659. doi: 10.1016/j.biochi.2007.09.015 17988781
-
(2008)
Biochimie
, vol.90
, pp. 648-659
-
-
Touchon, M.1
Rocha, E.P.C.2
-
13
-
-
0347695996
-
Mammalian Mitochondrial DNA Replicates Bidirectionally from an Initiation Zone
-
Bowmaker M, (2003) Mammalian Mitochondrial DNA Replicates Bidirectionally from an Initiation Zone. Journal of Biological Chemistry 278: 50961–50969. doi: 10.1074/jbc.M308028200 14506235
-
(2003)
Journal of Biological Chemistry
, vol.278
, pp. 50961-50969
-
-
Bowmaker, M.1
-
14
-
-
33751088000
-
Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand
-
Yasukawa T, Reyes A, Cluett TJ, Yang MY, Bowmaker M, et al. (2006) Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. The EMBO Journal 25: 5358–5371. doi: 10.1038/sj.emboj.7601392 17066082
-
(2006)
The EMBO Journal
, vol.25
, pp. 5358-5371
-
-
Yasukawa, T.1
Reyes, A.2
Cluett, T.J.3
Yang, M.Y.4
Bowmaker, M.5
-
15
-
-
0026468354
-
Characterization of a germ-line proliferation mutation in C. elegans
-
Beanan MJ, Strome S, (1992) Characterization of a germ-line proliferation mutation in C. elegans. Development, 116: 755–766. 1289064
-
(1992)
Development
, vol.116
, pp. 755-766
-
-
Beanan, M.J.1
Strome, S.2
-
16
-
-
0038491235
-
Mitochondrial DNA replication: what we know
-
Claytn DA, (2003) Mitochondrial DNA replication: what we know. IUBMB Life 55(4–5):213–7. 14711006
-
(2003)
IUBMB Life
, vol.55
, Issue.4-5
, pp. 213-217
-
-
Claytn, D.A.1
-
17
-
-
77950473394
-
Mammalian Mitochondrial DNA Replication Intermediates Are Essentially Duplex but Contain Extensive Tracts of RNA/DNA Hybrid
-
Pohjoismäki JLO, Holmes JB, Wood SR, Yang MY, Yasukawa T, et al. (2010) Mammalian Mitochondrial DNA Replication Intermediates Are Essentially Duplex but Contain Extensive Tracts of RNA/DNA Hybrid. Journal of Molecular Biology 397: 1144–1155. doi: 10.1016/j.jmb.2010.02.029 20184890
-
(2010)
Journal of Molecular Biology
, vol.397
, pp. 1144-1155
-
-
Pohjoismäki, J.L.O.1
Holmes, J.B.2
Wood, S.R.3
Yang, M.Y.4
Yasukawa, T.5
-
18
-
-
20444428352
-
A Bidirectional Origin of Replication Maps to the Major Noncoding Region of Human Mitochondrial DNA
-
Yasukawa T, Yang MY, Jacobs HT, Holt IJ, (2005) A Bidirectional Origin of Replication Maps to the Major Noncoding Region of Human Mitochondrial DNA. Mol Cell 18: 651–662. doi: 10.1016/j.molcel.2005.05.002 15949440
-
(2005)
Mol Cell
, vol.18
, pp. 651-662
-
-
Yasukawa, T.1
Yang, M.Y.2
Jacobs, H.T.3
Holt, I.J.4
-
19
-
-
0029883307
-
Two-dimensional gel analysis of rolling circle replication in the presence and absence of bacteriophage T4 primase
-
Belanger KG, Mirzayan C, Kreuzer HE, Alberts BM, Kreuzer KN, (1996) Two-dimensional gel analysis of rolling circle replication in the presence and absence of bacteriophage T4 primase. Nucleic Acids Research 24: 2166–2175. 8668550
-
(1996)
Nucleic Acids Research
, vol.24
, pp. 2166-2175
-
-
Belanger, K.G.1
Mirzayan, C.2
Kreuzer, H.E.3
Alberts, B.M.4
Kreuzer, K.N.5
-
20
-
-
0028319194
-
Analysis of Schizosaccharomyces pombe mitochondrial DNA replication by two dimensional gel electrophoresis
-
Han Z, Stachow C, (1994) Analysis of Schizosaccharomyces pombe mitochondrial DNA replication by two dimensional gel electrophoresis. Chromosoma 103: 162–170. 7924618
-
(1994)
Chromosoma
, vol.103
, pp. 162-170
-
-
Han, Z.1
Stachow, C.2
-
22
-
-
0034176951
-
Recombination-dependent DNA replication in phage T4
-
Kreuzer KN, (2000) Recombination-dependent DNA replication in phage T4. Trends in Biochemical Sciences 25: 165–173. doi: 10.1016/S0968-0004(00)01559–0 10754548
-
(2000)
Trends in Biochemical Sciences
, vol.25
, pp. 165-173
-
-
Kreuzer, K.N.1
-
23
-
-
77956925991
-
Strand invasion structures in the inverted repeat of Candida albicans mitochondrial DNA reveal a role for homologous recombination in replication
-
Gerhold JM, Aun A, Sedman T, Jõers P, Sedman J, (2010) Strand invasion structures in the inverted repeat of Candida albicans mitochondrial DNA reveal a role for homologous recombination in replication. Mol Cell 39: 851–861. doi: 10.1016/j.molcel.2010.09.002 20864033
-
(2010)
Mol Cell
, vol.39
, pp. 851-861
-
-
Gerhold, J.M.1
Aun, A.2
Sedman, T.3
Jõers, P.4
Sedman, J.5
-
25
-
-
84871875581
-
Analysis of replication intermediates indicates that Drosophila melanogaster mitochondrial DNA replicates by a strand-coupled theta mechanism
-
Jõers P, Jacobs HT, (2013) Analysis of replication intermediates indicates that Drosophila melanogaster mitochondrial DNA replicates by a strand-coupled theta mechanism. PLoS ONE 8: e53249. doi: 10.1371/journal.pone.0053249 23308172
-
(2013)
PLoS ONE
, vol.8
, pp. 53249
-
-
Jõers, P.1
Jacobs, H.T.2
-
26
-
-
0037124351
-
R-loop-dependent rolling-circle replication and a new model for DNA concatemer resolution by mitochondrial plasmid mp1
-
Backert S, (2002) R-loop-dependent rolling-circle replication and a new model for DNA concatemer resolution by mitochondrial plasmid mp1. The EMBO Journal 21: 3128–3136. doi: 10.1093/emboj/cdf311 12065425
-
(2002)
The EMBO Journal
, vol.21
, pp. 3128-3136
-
-
Backert, S.1
-
27
-
-
0030940299
-
Sequence specificity and biochemical characterization of the RusA Holliday junction resolvase of Escherichia coli
-
Chan SN, Harris L, Bolt EL, Whitby MC, Lloyd RG, (1997) Sequence specificity and biochemical characterization of the RusA Holliday junction resolvase of Escherichia coli. J Biol Chem 272: 14873–14882. 9169457
-
(1997)
J Biol Chem
, vol.272
, pp. 14873-14882
-
-
Chan, S.N.1
Harris, L.2
Bolt, E.L.3
Whitby, M.C.4
Lloyd, R.G.5
-
28
-
-
0036348154
-
Substrate specificity of RusA resolvase reveals the DNA structures targeted by RuvAB and RecG in vivo
-
Bolt EL, Lloyd RG, (2002) Substrate specificity of RusA resolvase reveals the DNA structures targeted by RuvAB and RecG in vivo. Mol Cell 10: 187–198. 12150918
-
(2002)
Mol Cell
, vol.10
, pp. 187-198
-
-
Bolt, E.L.1
Lloyd, R.G.2
-
29
-
-
0347416973
-
Branch Migrating Sister Chromatid Junctions Form at Replication Origins through Rad51/Rad52-Independent Mechanisms
-
Lopes M, Cotta-Ramusino C, Liberi G, Foiani M, (2003) Branch Migrating Sister Chromatid Junctions Form at Replication Origins through Rad51/Rad52-Independent Mechanisms. Mol Cell 12: 1499–1510. doi: 10.1016/S1097-2765(03)00473-8 14690603
-
(2003)
Mol Cell
, vol.12
, pp. 1499-1510
-
-
Lopes, M.1
Cotta-Ramusino, C.2
Liberi, G.3
Foiani, M.4
-
30
-
-
0042666852
-
Animal mitochondrial DNA recombination revisited
-
Rokas A, Ladoukakis E, Zouros E, (2003) Animal mitochondrial DNA recombination revisited. Trends in Ecology & Evolution 18:8 411–417. doi: 10.1126/science.1255641 25593191
-
(2003)
Trends in Ecology & Evolution
, vol.18
, Issue.8
, pp. 411-417
-
-
Rokas, A.1
Ladoukakis, E.2
Zouros, E.3
-
31
-
-
84908313144
-
Keeping mtDNA in shape between generations
-
Stewart JB, Larsson N-G, (2014) Keeping mtDNA in shape between generations. PLoS Genet 10: e1004670. doi: 10.1371/journal.pgen.1004670 25299061
-
(2014)
PLoS Genet
, vol.10
, pp. 1004670
-
-
Stewart, J.B.1
Larsson, N.-G.2
-
32
-
-
84893255536
-
No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline
-
Hagström E, Freyer C, Battersby BJ, Stewart JB, Larsson N-G, (2014) No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline. Nucleic Acids Research 42: 1111–1116. doi: 10.1093/nar/gkt969 24163253
-
(2014)
Nucleic Acids Research
, vol.42
, pp. 1111-1116
-
-
Hagström, E.1
Freyer, C.2
Battersby, B.J.3
Stewart, J.B.4
Larsson, N.-G.5
-
33
-
-
17844411205
-
Rare creation of recombinant mtDNA haplotypes in mammalian tissues
-
Sato A, Nakada K, Akimoto M, Ishikawa K, Ono T, et al. (2005) Rare creation of recombinant mtDNA haplotypes in mammalian tissues. Proc Natl Acad Sci USA 102: 6057–6062. doi: 10.1073/pnas.0408666102 15829586
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 6057-6062
-
-
Sato, A.1
Nakada, K.2
Akimoto, M.3
Ishikawa, K.4
Ono, T.5
-
34
-
-
84876384703
-
-
Kolesar JE, Wang CY, Taguchi YV, Chou S-H, Kaufman BA (2012) Two-dimensional intact mitochondrial DNA agarose electrophoresis reveals the structural complexity of the mammalian mitochondrial genome. Nucleic Acids Research. doi: 10.1093/nar/gks1324.
-
-
-
-
35
-
-
77956280341
-
Developmental and pathological changes in the human cardiac muscle mitochondrial DNA organization, replication and copy number
-
Pohjoismäki JLO, Goffart S, Taylor RW, Turnbull DM, Suomalainen A, et al. (2010) Developmental and pathological changes in the human cardiac muscle mitochondrial DNA organization, replication and copy number. PLoS ONE 5: e10426. doi: 10.1371/journal.pone.0010426 20454654
-
(2010)
PLoS ONE
, vol.5
, pp. 10426
-
-
Pohjoismäki, J.L.O.1
Goffart, S.2
Taylor, R.W.3
Turnbull, D.M.4
Suomalainen, A.5
-
36
-
-
69249158083
-
Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks
-
Pohjoismäki JLO, Goffart S, Tyynismaa H, Willcox S, Ide T, et al. (2009) Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks. J Biol Chem 284: 21446–21457. doi: 10.1074/jbc.M109.016600 19525233
-
(2009)
J Biol Chem
, vol.284
, pp. 21446-21457
-
-
Pohjoismäki, J.L.O.1
Goffart, S.2
Tyynismaa, H.3
Willcox, S.4
Ide, T.5
-
37
-
-
79957452012
-
Homologous recombination between highly diverged mitochondrial sequences: examples from maternally and paternally transmitted genomes
-
Ladoukakis ED, Theologidis I, Rodakis GC, Zouros E, (2011) Homologous recombination between highly diverged mitochondrial sequences: examples from maternally and paternally transmitted genomes. Mol Biol Evol 28: 1847–1859. doi: 10.1093/molbev/msr007 21220759
-
(2011)
Mol Biol Evol
, vol.28
, pp. 1847-1859
-
-
Ladoukakis, E.D.1
Theologidis, I.2
Rodakis, G.C.3
Zouros, E.4
-
38
-
-
0030953174
-
Animal mitochondrial DNA recombination
-
Lunt DH, Hyman BC, (1997) Animal mitochondrial DNA recombination. Nature 387: 247–247. doi: 10.1038/387247a0 9153388
-
(1997)
Nature
, vol.387
, pp. 247
-
-
Lunt, D.H.1
Hyman, B.C.2
-
39
-
-
56549131066
-
Revealing the hidden complexities of mtDNA inheritance
-
White DJ, Wolff JN, Pierson M, Gemmell NJ, (2008) Revealing the hidden complexities of mtDNA inheritance. Molecular Ecology 17: 4925–4942. doi: 10.1111/j.1365-294X.2008.03982.x 19120984
-
(2008)
Molecular Ecology
, vol.17
, pp. 4925-4942
-
-
White, D.J.1
Wolff, J.N.2
Pierson, M.3
Gemmell, N.J.4
-
40
-
-
0026577362
-
The C. elegans genome sequencing project: a beginning
-
Sulston J, Du Z, Thomas K, Wilson R, Hillier L, (1992) The C. elegans genome sequencing project: a beginning. Nature 356:37–41. 1538779
-
(1992)
Nature
, vol.356
, pp. 37-41
-
-
Sulston, J.1
Du, Z.2
Thomas, K.3
Wilson, R.4
Hillier, L.5
-
41
-
-
36549071188
-
Caenorhabditis elegans par2.1/mtssb-1 is essential for mitochondrial DNA replication and its defect causes comprehensive transcriptional alterations including a hypoxia response
-
Sugimoto T, Mori C, Takanami T, Sasagawa Y, Saito R, et al. (2008) Caenorhabditis elegans par2.1/mtssb-1 is essential for mitochondrial DNA replication and its defect causes comprehensive transcriptional alterations including a hypoxia response. Experimental Cell Research 314: 103–114. doi: 10.1016/j.yexcr.2007.08.015 17900564
-
(2008)
Experimental Cell Research
, vol.314
, pp. 103-114
-
-
Sugimoto, T.1
Mori, C.2
Takanami, T.3
Sasagawa, Y.4
Saito, R.5
-
42
-
-
70350132871
-
Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance
-
Oberto J, Breuil N, Hecker A, Farina F, Brochier-Armanet C, et al. (2009) Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance. Nucleic Acids Research 37: 5343–5352. doi: 10.1093/nar/gkp557 19578062
-
(2009)
Nucleic Acids Research
, vol.37
, pp. 5343-5352
-
-
Oberto, J.1
Breuil, N.2
Hecker, A.3
Farina, F.4
Brochier-Armanet, C.5
-
43
-
-
84887016160
-
Caenorhabditis elegans ATR checkpoint kinase ATL-1 influences life span through mitochondrial maintenance
-
Suetomi K, Mereiter S, Mori C, Takanami T, Higashitani A, (2013) Caenorhabditis elegans ATR checkpoint kinase ATL-1 influences life span through mitochondrial maintenance. Mitochondrion 13: 729–735. doi: 10.1016/j.mito.2013.02.004 23434802
-
(2013)
Mitochondrion
, vol.13
, pp. 729-735
-
-
Suetomi, K.1
Mereiter, S.2
Mori, C.3
Takanami, T.4
Higashitani, A.5
-
44
-
-
41349103857
-
An RNAi Screen for Mitochondrial Proteins Required to Maintain the Morphology of the Organelle in Caenorhabditis elegans
-
Ichishita R, Tanaka K, Sugiura Y, Sayano T, Mihara K, et al. (2007) An RNAi Screen for Mitochondrial Proteins Required to Maintain the Morphology of the Organelle in Caenorhabditis elegans. Journal of Biochemistry 143: 449–454. doi: 10.1093/jb/mvm245.
-
(2007)
Journal of Biochemistry
, vol.143
, pp. 449-454
-
-
Ichishita, R.1
Tanaka, K.2
Sugiura, Y.3
Sayano, T.4
Mihara, K.5
-
45
-
-
0026052254
-
Rolling circle replication of DNA in yeast mitochondria
-
Maleszka R, Skelly PJ, Clark-Walker GD, (1991) Rolling circle replication of DNA in yeast mitochondria. EMBO J 10: 3923–3929. 1935911
-
(1991)
EMBO J
, vol.10
, pp. 3923-3929
-
-
Maleszka, R.1
Skelly, P.J.2
Clark-Walker, G.D.3
-
46
-
-
0027490348
-
Reaching for the ring: the study of mitochondrial genome structure
-
Bendich AJ, (1993) Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24: 279–290. doi: 10.1007/BF00336777 8252636
-
(1993)
Curr Genet
, vol.24
, pp. 279-290
-
-
Bendich, A.J.1
-
47
-
-
0346099330
-
Mhr1p-dependent Concatemeric Mitochondrial DNA Formation for Generating Yeast Mitochondrial Homoplasmic Cells
-
Ling F, Shibata T, (2004) Mhr1p-dependent Concatemeric Mitochondrial DNA Formation for Generating Yeast Mitochondrial Homoplasmic Cells. Mol Biol Cell 15: 310–322. 14565971
-
(2004)
Mol Biol Cell
, vol.15
, pp. 310-322
-
-
Ling, F.1
Shibata, T.2
-
48
-
-
79961197590
-
Evolution of linear chromosomes and multipartite genomes in yeast mitochondria
-
Valach M, Farkas Z, Fricova D, Kovac J, Brejova B, et al. (2011) Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Research 39: 4202–4219. doi: 10.1093/nar/gkq1345 21266473
-
(2011)
Nucleic Acids Research
, vol.39
, pp. 4202-4219
-
-
Valach, M.1
Farkas, Z.2
Fricova, D.3
Kovac, J.4
Brejova, B.5
-
49
-
-
33644674439
-
The organization and inheritance of the mitochondrial genome
-
Chen XJ, Butow RA, (2005) The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6: 815–825. doi: 10.1038/nrg1708 16304597
-
(2005)
Nat Rev Genet
, vol.6
, pp. 815-825
-
-
Chen, X.J.1
Butow, R.A.2
-
50
-
-
0037009365
-
Recombination-dependent mtDNA partitioning: in vivo role of Mhr1p to promote pairing of homologous DNA
-
Ling F, Shibata T, (2002) Recombination-dependent mtDNA partitioning: in vivo role of Mhr1p to promote pairing of homologous DNA. EMBO J 21: 4730–4740. 12198175
-
(2002)
EMBO J
, vol.21
, pp. 4730-4740
-
-
Ling, F.1
Shibata, T.2
-
51
-
-
50249117097
-
The spectrum of mitochondrial mutation differs across species
-
Montooth KL, Rand DM, (2008) The spectrum of mitochondrial mutation differs across species. PLoS Biol 6: e213. doi: 10.1371/journal.pbio.0060213 18752353
-
(2008)
PLoS Biol
, vol.6
, pp. 213
-
-
Montooth, K.L.1
Rand, D.M.2
-
52
-
-
0032570821
-
Formation of a DNA loop at the replication fork generated by bacteriophage T7 replication proteins
-
Park K, Debyser Z, Tabor S, Richardson CC, Griffith JD, (1998) Formation of a DNA loop at the replication fork generated by bacteriophage T7 replication proteins. J Biol Chem 273: 5260–5270. 9478983
-
(1998)
J Biol Chem
, vol.273
, pp. 5260-5270
-
-
Park, K.1
Debyser, Z.2
Tabor, S.3
Richardson, C.C.4
Griffith, J.D.5
-
53
-
-
84919608411
-
In vivo occupancy of mitochondrial single-stranded DNA binding protein supports the strand displacement mode of DNA replication
-
Miralles Fusté J, Shi Y, Wanrooij S, Zhu X, Jemt E, et al. (2014) In vivo occupancy of mitochondrial single-stranded DNA binding protein supports the strand displacement mode of DNA replication. PLoS Genet 10: e1004832. doi: 10.1371/journal.pgen.1004832 25474639
-
(2014)
PLoS Genet
, vol.10
, pp. 1004832
-
-
Miralles, F.J.1
Shi, Y.2
Wanrooij, S.3
Zhu, X.4
Jemt, E.5
-
54
-
-
84884346162
-
Synthesis and dissolution of hemicatenanes by type IA DNA topoisomerases
-
Lee S-H, Siaw GE-L, Willcox S, Griffith JD, Hsieh T-S, (2013) Synthesis and dissolution of hemicatenanes by type IA DNA topoisomerases. Proceedings of the National Academy of Sciences 110: E3587–E3594. doi: 10.1073/pnas.1304103110 24003117
-
(2013)
Proceedings of the National Academy of Sciences
, vol.110
, pp. 3587-3594
-
-
Lee, S.-H.1
Siaw, G.E.-L.2
Willcox, S.3
Griffith, J.D.4
Hsieh, T.-S.5
-
55
-
-
0034656994
-
Hemicatenanes form upon inhibition of DNA replication
-
Lucas I, Hyrien O, (2000) Hemicatenanes form upon inhibition of DNA replication. Nucleic Acids Research 28: 2187–2193. doi: 10.1093/nar/28.10.2187 10773090
-
(2000)
Nucleic Acids Research
, vol.28
, pp. 2187-2193
-
-
Lucas, I.1
Hyrien, O.2
-
56
-
-
77954382263
-
Human topoisomerase IIIalpha is a single-stranded DNA decatenase that is stimulated by BLM and RMI1
-
Yang J, Bachrati CZ, Ou J, Hickson ID, Brown GW, (2010) Human topoisomerase IIIalpha is a single-stranded DNA decatenase that is stimulated by BLM and RMI1. J Biol Chem 285: 21426–21436. doi: 10.1074/jbc.M110.123216 20445207
-
(2010)
J Biol Chem
, vol.285
, pp. 21426-21436
-
-
Yang, J.1
Bachrati, C.Z.2
Ou, J.3
Hickson, I.D.4
Brown, G.W.5
-
57
-
-
84884526150
-
Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA
-
Chen XJ, (2013) Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev 77: 476–496. doi: 10.1128/MMBR.00007-13 24006472
-
(2013)
Microbiol Mol Biol Rev
, vol.77
, pp. 476-496
-
-
Chen, X.J.1
-
58
-
-
66149150186
-
Heteroduplex joint formation free of net topological change by Mhr1, a mitochondrial recombinase
-
Ling F, Yoshida M, Shibata T, (2009) Heteroduplex joint formation free of net topological change by Mhr1, a mitochondrial recombinase. J Biol Chem 284: 9341–9353. doi: 10.1074/jbc.M900023200 19193646
-
(2009)
J Biol Chem
, vol.284
, pp. 9341-9353
-
-
Ling, F.1
Yoshida, M.2
Shibata, T.3
-
59
-
-
84877918786
-
Human Rad51 promotes mitochondrial DNA synthesis under conditions of increased replication stress
-
Sage JM, Knight KL, (2013) Human Rad51 promotes mitochondrial DNA synthesis under conditions of increased replication stress. Mitochondrion 13: 350–356. doi: 10.1016/j.mito.2013.04.004 23591384
-
(2013)
Mitochondrion
, vol.13
, pp. 350-356
-
-
Sage, J.M.1
Knight, K.L.2
-
60
-
-
52549130466
-
Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species
-
Gissi C, Iannelli F, Pesole G, (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101: 301–320. doi: 10.1038/hdy.2008.62 18612321
-
(2008)
Heredity
, vol.101
, pp. 301-320
-
-
Gissi, C.1
Iannelli, F.2
Pesole, G.3
-
62
-
-
84874786429
-
-
Stiernagle T (2005) Stain Maintenance. In: Wormbook, The C. elegans Research Community. doi: 10.1895/wormbook.1.7.1, http://www.wormbook.org. Accessed 29 October 2014.
-
-
-
-
63
-
-
84884691240
-
Mitochondrial Transcription Terminator Family Members mTTF and mTerf5 Have Opposing Roles in Coordination of mtDNA Synthesis
-
Jõers P, Lewis SC, Fukuoh A, Parhiala M, Ellilä S, et al. (2013) Mitochondrial Transcription Terminator Family Members mTTF and mTerf5 Have Opposing Roles in Coordination of mtDNA Synthesis. PLoS Genet 9: e1003800. doi: 10.1371/journal.pgen.1003800 24068965
-
(2013)
PLoS Genet
, vol.9
, pp. 1003800
-
-
Jõers, P.1
Lewis, S.C.2
Fukuoh, A.3
Parhiala, M.4
Ellilä, S.5
-
64
-
-
79957940113
-
Replication stalling by catalytically impaired Twinkle induces mitochondrial DNA rearrangements in cultured cells
-
Pohjoismäki JLO, Goffart S, Spelbrink JN, (2011) Replication stalling by catalytically impaired Twinkle induces mitochondrial DNA rearrangements in cultured cells. Mitochondrion 11: 630–634. doi: 10.1016/j.mito.2011.04.002 21540127
-
(2011)
Mitochondrion
, vol.11
, pp. 630-634
-
-
Pohjoismäki, J.L.O.1
Goffart, S.2
Spelbrink, J.N.3
-
65
-
-
0029060751
-
A role for recombination junctions in the segregation of mitochondrial DNA in yeast
-
Lockshon D, Zweifel SG, Freeman-Cook LL, Lorimer HE, Brewer BJ, et al. (1995) A role for recombination junctions in the segregation of mitochondrial DNA in yeast. Cell 81: 947–955. 7781070
-
(1995)
Cell
, vol.81
, pp. 947-955
-
-
Lockshon, D.1
Zweifel, S.G.2
Freeman-Cook, L.L.3
Lorimer, H.E.4
Brewer, B.J.5
-
66
-
-
0026666265
-
Electron microscopic visualization of DNA and DNA-protein complexes as adjunct to biochemical studies
-
Thresher R, Griffith J, (1992) Electron microscopic visualization of DNA and DNA-protein complexes as adjunct to biochemical studies. Meth Enzymol 211: 481–490. 1406322
-
(1992)
Meth Enzymol
, vol.211
, pp. 481-490
-
-
Thresher, R.1
Griffith, J.2
|