메뉴 건너뛰기




Volumn 9, Issue 9, 2013, Pages

Mitochondrial Transcription Terminator Family Members mTTF and mTerf5 Have Opposing Roles in Coordination of mtDNA Synthesis

Author keywords

[No Author keywords available]

Indexed keywords

DOUBLE STRANDED DNA; MITOCHONDRIAL DNA; MITOCHONDRIAL PROTEIN; MITOCHONDRIAL TRANSCRIPTION FACTOR 2; MITOCHONDRIAL TRANSCRIPTION TERMINATION FACTOR FAMILY MEMBER MTERF5; MITOCHONDRIAL TRANSCRIPTION TERMINATION FACTOR FAMILY MEMBER MTTF; RIBONUCLEASE H; UNCLASSIFIED DRUG;

EID: 84884691240     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1003800     Document Type: Article
Times cited : (17)

References (89)
  • 1
    • 0032728444 scopus 로고    scopus 로고
    • The tamas gene, identified as a mutation that disrupts larval behavior in Drosophila melanogaster, codes for the mitochondrial DNA polymerase catalytic subunit (DNApol-gamma125)
    • Iyengar B, Roote J, Campos AR, (1999) The tamas gene, identified as a mutation that disrupts larval behavior in Drosophila melanogaster, codes for the mitochondrial DNA polymerase catalytic subunit (DNApol-gamma125). Genetics 153: 1809-1824.
    • (1999) Genetics , vol.153 , pp. 1809-1824
    • Iyengar, B.1    Roote, J.2    Campos, A.R.3
  • 2
    • 0034857191 scopus 로고    scopus 로고
    • The cyclope gene of Drosophila encodes a cytochrome c oxidase subunit VIc homolog
    • Szuplewski S, Terracol R, (2001) The cyclope gene of Drosophila encodes a cytochrome c oxidase subunit VIc homolog. Genetics 158: 1629-1643.
    • (2001) Genetics , vol.158 , pp. 1629-1643
    • Szuplewski, S.1    Terracol, R.2
  • 3
    • 0031930319 scopus 로고    scopus 로고
    • Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice
    • Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, et al. (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18: 231-236.
    • (1998) Nat Genet , vol.18 , pp. 231-236
    • Larsson, N.G.1    Wang, J.2    Wilhelmsson, H.3    Oldfors, A.4    Rustin, P.5
  • 4
    • 34447539564 scopus 로고    scopus 로고
    • MTERF3 is a negative regulator of mammalian mtDNA transcription
    • Park CB, Asin-Cayuela J, Camara Y, Shi Y, Pellegrini M, et al. (2007) MTERF3 is a negative regulator of mammalian mtDNA transcription. Cell 130: 273-285.
    • (2007) Cell , vol.130 , pp. 273-285
    • Park, C.B.1    Asin-Cayuela, J.2    Camara, Y.3    Shi, Y.4    Pellegrini, M.5
  • 5
    • 0345354684 scopus 로고    scopus 로고
    • Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice
    • Cerritelli SM, Frolova EG, Feng C, Grinberg A, Love PE, et al. (2003) Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol Cell 11: 807-815.
    • (2003) Mol Cell , vol.11 , pp. 807-815
    • Cerritelli, S.M.1    Frolova, E.G.2    Feng, C.3    Grinberg, A.4    Love, P.E.5
  • 6
    • 84856284594 scopus 로고    scopus 로고
    • Mechanisms of mitochondrial diseases
    • Ylikallio E, Suomalainen A, (2012) Mechanisms of mitochondrial diseases. Ann Med 44: 41-59.
    • (2012) Ann Med , vol.44 , pp. 41-59
    • Ylikallio, E.1    Suomalainen, A.2
  • 7
    • 0019978703 scopus 로고
    • Replication of animal mitochondrial DNA
    • Clayton DA, (1982) Replication of animal mitochondrial DNA. Cell 28: 693-705.
    • (1982) Cell , vol.28 , pp. 693-705
    • Clayton, D.A.1
  • 8
    • 26944500840 scopus 로고    scopus 로고
    • Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism
    • Brown TA, Cecconi C, Tkachuk AN, Bustamante C, Clayton DA, (2005) Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes Dev 19: 2466-2476.
    • (2005) Genes Dev , vol.19 , pp. 2466-2476
    • Brown, T.A.1    Cecconi, C.2    Tkachuk, A.N.3    Bustamante, C.4    Clayton, D.A.5
  • 9
    • 74049123624 scopus 로고    scopus 로고
    • Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication
    • Fusté JM, Wanrooij S, Jemt E, Granycombe CE, Cluett TJ, et al. (2010) Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol Cell 37: 67-78.
    • (2010) Mol Cell , vol.37 , pp. 67-78
    • Fusté, J.M.1    Wanrooij, S.2    Jemt, E.3    Granycombe, C.E.4    Cluett, T.J.5
  • 10
    • 84870579042 scopus 로고    scopus 로고
    • In vivo mutagenesis reveals that OriL is essential for mitochondrial DNA replication
    • Wanrooij S, Miralles Fusté J, Stewart JB, Wanrooij PH, Samuelsson T, et al. (2012) In vivo mutagenesis reveals that OriL is essential for mitochondrial DNA replication. EMBO Rep 13: 1130-1137.
    • (2012) EMBO Rep , vol.13 , pp. 1130-1137
    • Wanrooij, S.1    Miralles Fusté, J.2    Stewart, J.B.3    Wanrooij, P.H.4    Samuelsson, T.5
  • 11
    • 0034598918 scopus 로고    scopus 로고
    • Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA
    • Holt IJ, Lorimer HE, Jacobs HT, (2000) Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 100: 515-524.
    • (2000) Cell , vol.100 , pp. 515-524
    • Holt, I.J.1    Lorimer, H.E.2    Jacobs, H.T.3
  • 12
    • 0037112343 scopus 로고    scopus 로고
    • Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication
    • Yang MY, Bowmaker M, Reyes A, Vergani L, Angeli P, et al. (2002) Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 111: 495-505.
    • (2002) Cell , vol.111 , pp. 495-505
    • Yang, M.Y.1    Bowmaker, M.2    Reyes, A.3    Vergani, L.4    Angeli, P.5
  • 13
    • 33751088000 scopus 로고    scopus 로고
    • Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand
    • Yasukawa T, Reyes A, Cluett TJ, Yang MY, Bowmaker M, et al. (2006) Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J 25: 5358-5371.
    • (2006) EMBO J , vol.25 , pp. 5358-5371
    • Yasukawa, T.1    Reyes, A.2    Cluett, T.J.3    Yang, M.Y.4    Bowmaker, M.5
  • 14
    • 84878835055 scopus 로고    scopus 로고
    • Mitochondrial DNA replication proceeds by a 'Bootlace' mechanism involving the incorporation of processed transcripts
    • Reyes A, Kazak L, Wood SR, Yasukawa T, Jacobs HT, et al. (2013) Mitochondrial DNA replication proceeds by a 'Bootlace' mechanism involving the incorporation of processed transcripts. Nucleic Acids Res 41: 5837-5850.
    • (2013) Nucleic Acids Res , vol.41 , pp. 5837-5850
    • Reyes, A.1    Kazak, L.2    Wood, S.R.3    Yasukawa, T.4    Jacobs, H.T.5
  • 15
    • 77950473394 scopus 로고    scopus 로고
    • Mammalian mitochondrial DNA replication intermediates are essentially duplex but contain extensive tracts of RNA/DNA hybrid
    • Pohjoismaki JL, Holmes JB, Wood SR, Yang MY, Yasukawa T, et al. (2010) Mammalian mitochondrial DNA replication intermediates are essentially duplex but contain extensive tracts of RNA/DNA hybrid. J Mol Biol 397: 1144-1155.
    • (2010) J Mol Biol , vol.397 , pp. 1144-1155
    • Pohjoismaki, J.L.1    Holmes, J.B.2    Wood, S.R.3    Yang, M.Y.4    Yasukawa, T.5
  • 16
    • 0347695996 scopus 로고    scopus 로고
    • Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone
    • Bowmaker M, Yang MY, Yasukawa T, Reyes A, Jacobs HT, et al. (2003) Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone. J Biol Chem 278: 50961-50969.
    • (2003) J Biol Chem , vol.278 , pp. 50961-50969
    • Bowmaker, M.1    Yang, M.Y.2    Yasukawa, T.3    Reyes, A.4    Jacobs, H.T.5
  • 17
    • 0021103928 scopus 로고
    • Separation of branched from linear DNA by two-dimensional gel electrophoresis
    • Bell L, Byers B, (1983) Separation of branched from linear DNA by two-dimensional gel electrophoresis. Anal Biochem 130: 527-535.
    • (1983) Anal Biochem , vol.130 , pp. 527-535
    • Bell, L.1    Byers, B.2
  • 18
    • 0023646792 scopus 로고
    • The localization of replication origins on ARS plasmids in S. cerevisiae
    • Brewer BJ, Fangman WA, (1987) The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51: 463-471.
    • (1987) Cell , vol.51 , pp. 463-471
    • Brewer, B.J.1    Fangman, W.A.2
  • 19
    • 0028851598 scopus 로고
    • Analysis of replication intermediates by two-dimensional agarose gel electrophoresis
    • Friedman KL, Brewer BJ, (1995) Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Methods Enzymol 262: 613-627.
    • (1995) Methods Enzymol , vol.262 , pp. 613-627
    • Friedman, K.L.1    Brewer, B.J.2
  • 20
    • 0031279845 scopus 로고    scopus 로고
    • Mapping replication origins by neutral/neutral two-dimensional gel electrophoresis
    • Dijkwel PA, Hamlin JL, (1997) Mapping replication origins by neutral/neutral two-dimensional gel electrophoresis. Methods 13: 235-245.
    • (1997) Methods , vol.13 , pp. 235-245
    • Dijkwel, P.A.1    Hamlin, J.L.2
  • 21
    • 33745184666 scopus 로고    scopus 로고
    • Formation and processing of stalled replication forks-utility of two-dimensional agarose gels
    • Pohlhaus JR, Kreuzer KN, (2006) Formation and processing of stalled replication forks-utility of two-dimensional agarose gels. Methods Enzymol 409: 477-493.
    • (2006) Methods Enzymol , vol.409 , pp. 477-493
    • Pohlhaus, J.R.1    Kreuzer, K.N.2
  • 22
    • 0031585996 scopus 로고    scopus 로고
    • Study of plasmid replication in Escherichia coli with a combination of 2D gel electrophoresis and electron microscopy
    • Kuzminov A, Schabtach E, Stahl FW, (1997) Study of plasmid replication in Escherichia coli with a combination of 2D gel electrophoresis and electron microscopy. J Mol Biol 268: 1-7.
    • (1997) J Mol Biol , vol.268 , pp. 1-7
    • Kuzminov, A.1    Schabtach, E.2    Stahl, F.W.3
  • 23
    • 72649095200 scopus 로고    scopus 로고
    • Plasmid DNA replication and topology as visualized by two-dimensional agarose gel electrophoresis
    • Schvartzman JB, Martínez-Robles ML, Hernández P, Krimer DB, (2010) Plasmid DNA replication and topology as visualized by two-dimensional agarose gel electrophoresis. Plasmid 63: 1-10.
    • (2010) Plasmid , vol.63 , pp. 1-10
    • Schvartzman, J.B.1    Martínez-Robles, M.L.2    Hernández, P.3    Krimer, D.B.4
  • 24
    • 0017665790 scopus 로고
    • The mitochondrial DNA of Drosophila melanogaster exists in two distinct and stable superhelical forms
    • Rubenstein JL, Brutlag D, Clayton DA, (1977) The mitochondrial DNA of Drosophila melanogaster exists in two distinct and stable superhelical forms. Cell 12: 471-482.
    • (1977) Cell , vol.12 , pp. 471-482
    • Rubenstein, J.L.1    Brutlag, D.2    Clayton, D.A.3
  • 25
    • 3242835302 scopus 로고
    • Origin and direction of replication in mitochondrial DNA molecules from Drosophila melanogaster
    • Goddard JM, Wolstenholme DR, (1978) Origin and direction of replication in mitochondrial DNA molecules from Drosophila melanogaster. Proc Natl Acad Sci USA 75: 3886-3890.
    • (1978) Proc Natl Acad Sci USA , vol.75 , pp. 3886-3890
    • Goddard, J.M.1    Wolstenholme, D.R.2
  • 26
    • 84871875581 scopus 로고    scopus 로고
    • Analysis of replication intermediates indicates that Drosophila melanogaster mitochondrial DNA replicates by a strand-coupled theta mechanism
    • Jõers P, Jacobs HT, (2013) Analysis of replication intermediates indicates that Drosophila melanogaster mitochondrial DNA replicates by a strand-coupled theta mechanism. PloS ONE 8: e53249.
    • (2013) PloS ONE , vol.8
    • Jõers, P.1    Jacobs, H.T.2
  • 27
    • 33645116402 scopus 로고    scopus 로고
    • Replication origin of mitochondrial DNA in insects
    • Saito S, Tamura K, Aotsuka T, (2005) Replication origin of mitochondrial DNA in insects. Genetics 171: 1695-1705.
    • (2005) Genetics , vol.171 , pp. 1695-1705
    • Saito, S.1    Tamura, K.2    Aotsuka, T.3
  • 28
    • 79952257414 scopus 로고    scopus 로고
    • Transcription and replication: breaking the rules of the road causes genomic instability
    • Poveda AM, Le Clech M, Pasero P, (2010) Transcription and replication: breaking the rules of the road causes genomic instability. Transcription 1: 99-102.
    • (2010) Transcription , vol.1 , pp. 99-102
    • Poveda, A.M.1    Le Clech, M.2    Pasero, P.3
  • 29
    • 33947432388 scopus 로고    scopus 로고
    • Replication fork stalling at natural impediments
    • Mirkin EV, Mirkin SM, (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71: 13-35.
    • (2007) Microbiol Mol Biol Rev , vol.71 , pp. 13-35
    • Mirkin, E.V.1    Mirkin, S.M.2
  • 30
    • 12844265439 scopus 로고    scopus 로고
    • Mechanisms of transcription-replication collisions in bacteria
    • Mirkin EV, Mirkin SM, (2005) Mechanisms of transcription-replication collisions in bacteria. Mol Cell Biol 25: 888-895.
    • (2005) Mol Cell Biol , vol.25 , pp. 888-895
    • Mirkin, E.V.1    Mirkin, S.M.2
  • 31
    • 76749094639 scopus 로고    scopus 로고
    • Co-orientation of replication and transcription preserves genome integrity
    • Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD, (2010) Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 6: e1000810.
    • (2010) PLoS Genet , vol.6
    • Srivatsan, A.1    Tehranchi, A.2    MacAlpine, D.M.3    Wang, J.D.4
  • 32
    • 73449135479 scopus 로고    scopus 로고
    • To promote and protect: coordinating DNA replication and transcription for genome stability
    • Knott SR, Viggiani CJ, Aparicio OM, (2009) To promote and protect: coordinating DNA replication and transcription for genome stability. Epigenetics 4: 362-365.
    • (2009) Epigenetics , vol.4 , pp. 362-365
    • Knott, S.R.1    Viggiani, C.J.2    Aparicio, O.M.3
  • 33
    • 77955448694 scopus 로고    scopus 로고
    • What happens when replication and transcription complexes collide?
    • Pomerantz RT, O'Donnell M, (2010) What happens when replication and transcription complexes collide? Cell Cycle 9: 2537-2543.
    • (2010) Cell Cycle , vol.9 , pp. 2537-2543
    • Pomerantz, R.T.1    O'Donnell, M.2
  • 34
    • 79551674938 scopus 로고    scopus 로고
    • Transcription termination maintains chromosome integrity
    • Washburn RS, Gottesman ME, (2011) Transcription termination maintains chromosome integrity. Proc Natl Acad Sci USA 108: 792-797.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 792-797
    • Washburn, R.S.1    Gottesman, M.E.2
  • 35
    • 84876891791 scopus 로고    scopus 로고
    • Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli
    • Gupta MK, Guy CP, Yeeles JT, Atkinson J, Bell H, et al. (2013) Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli. Proc Natl Acad Sci USA 110: 7252-7257.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 7252-7257
    • Gupta, M.K.1    Guy, C.P.2    Yeeles, J.T.3    Atkinson, J.4    Bell, H.5
  • 36
    • 28044471185 scopus 로고    scopus 로고
    • A family of putative transcription termination factors shared amongst metazoans and plants
    • Linder T, Park CB, Asin-Cayuela J, Pellegrini M, Larsson NG, et al. (2005) A family of putative transcription termination factors shared amongst metazoans and plants. Curr Genet 48: 265-269.
    • (2005) Curr Genet , vol.48 , pp. 265-269
    • Linder, T.1    Park, C.B.2    Asin-Cayuela, J.3    Pellegrini, M.4    Larsson, N.G.5
  • 37
    • 65449130464 scopus 로고    scopus 로고
    • The MTERF family proteins: mitochondrial transcription regulators and beyond
    • Roberti M, Polosa PL, Bruni F, Manzari C, Deceglie S, et al. (2009) The MTERF family proteins: mitochondrial transcription regulators and beyond. Biochim Biophys Acta 1787: 303-311.
    • (2009) Biochim Biophys Acta , vol.1787 , pp. 303-311
    • Roberti, M.1    Polosa, P.L.2    Bruni, F.3    Manzari, C.4    Deceglie, S.5
  • 38
    • 77953699733 scopus 로고    scopus 로고
    • Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial transcription
    • Yakubovskaya E, Mejia E, Byrnes J, Hambardjieva E, Garcia-Diaz M, (2010) Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial transcription. Cell 141: 982-993.
    • (2010) Cell , vol.141 , pp. 982-993
    • Yakubovskaya, E.1    Mejia, E.2    Byrnes, J.3    Hambardjieva, E.4    Garcia-Diaz, M.5
  • 39
    • 77954218684 scopus 로고    scopus 로고
    • Structure of mitochondrial transcription termination factor 3 reveals a novel nucleic acid-binding domain
    • Spahr H, Samuelsson T, Hallberg BM, Gustafsson CM, (2010) Structure of mitochondrial transcription termination factor 3 reveals a novel nucleic acid-binding domain. Biochem Biophys Res Commun 397: 386-390.
    • (2010) Biochem Biophys Res Commun , vol.397 , pp. 386-390
    • Spahr, H.1    Samuelsson, T.2    Hallberg, B.M.3    Gustafsson, C.M.4
  • 40
    • 29244468548 scopus 로고    scopus 로고
    • Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis
    • Martin M, Cho J, Cesare AJ, Griffith JD, Attardi G, (2005) Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Cell 123: 1227-1240.
    • (2005) Cell , vol.123 , pp. 1227-1240
    • Martin, M.1    Cho, J.2    Cesare, A.J.3    Griffith, J.D.4    Attardi, G.5
  • 41
    • 66049104206 scopus 로고    scopus 로고
    • mTERF2 regulates oxidative phosphorylation by modulating mtDNA transcription
    • Wenz T, Luca C, Torraco A, Moraes CT, (2009) mTERF2 regulates oxidative phosphorylation by modulating mtDNA transcription. Cell Metab 9: 499-511.
    • (2009) Cell Metab , vol.9 , pp. 499-511
    • Wenz, T.1    Luca, C.2    Torraco, A.3    Moraes, C.T.4
  • 42
    • 0037443974 scopus 로고    scopus 로고
    • DmTTF, a novel mitochondrial transcription termination factor that recognises two sequences of Drosophila melanogaster mitochondrial DNA
    • Roberti M, Polosa PL, Bruni F, Musicco C, Gadaleta MN, et al. (2003) DmTTF, a novel mitochondrial transcription termination factor that recognises two sequences of Drosophila melanogaster mitochondrial DNA. Nucleic Acids Res 31: 1597-1604.
    • (2003) Nucleic Acids Res , vol.31 , pp. 1597-1604
    • Roberti, M.1    Polosa, P.L.2    Bruni, F.3    Musicco, C.4    Gadaleta, M.N.5
  • 43
    • 77956587470 scopus 로고    scopus 로고
    • Effects on mitochondrial transcription of manipulating mTERF protein levels in cultured human HEK293 cells
    • Hyvarinen AK, Kumanto MK, Marjavaara SK, Jacobs HT, (2010) Effects on mitochondrial transcription of manipulating mTERF protein levels in cultured human HEK293 cells. BMC Mol Biol 11: 72.
    • (2010) BMC Mol Biol , vol.11 , pp. 72
    • Hyvarinen, A.K.1    Kumanto, M.K.2    Marjavaara, S.K.3    Jacobs, H.T.4
  • 44
    • 33748962565 scopus 로고    scopus 로고
    • MTERF3, the most conserved member of the mTERF-family, is a modular factor involved in mitochondrial protein synthesis
    • Roberti M, Bruni F, Loguercio Polosa P, Manzari C, Gadaleta MN, et al. (2006) MTERF3, the most conserved member of the mTERF-family, is a modular factor involved in mitochondrial protein synthesis. Biochim Biophys Acta 1757: 1199-1206.
    • (2006) Biochim Biophys Acta , vol.1757 , pp. 1199-1206
    • Roberti, M.1    Bruni, F.2    Loguercio Polosa, P.3    Manzari, C.4    Gadaleta, M.N.5
  • 45
    • 79955633747 scopus 로고    scopus 로고
    • MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome
    • Camara Y, Asin-Cayuela J, Park CB, Metodiev MD, Shi Y, et al. (2011) MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab 13: 527-539.
    • (2011) Cell Metab , vol.13 , pp. 527-539
    • Camara, Y.1    Asin-Cayuela, J.2    Park, C.B.3    Metodiev, M.D.4    Shi, Y.5
  • 46
    • 84873489199 scopus 로고    scopus 로고
    • MTERF3 Regulates Mitochondrial Ribosome Biogenesis in Invertebrates and Mammals
    • Wredenberg A, et al. (2013) MTERF3 Regulates Mitochondrial Ribosome Biogenesis in Invertebrates and Mammals. PLoS Genet 9: e1003178.
    • (2013) PLoS Genet , vol.9
    • Wredenberg, A.1
  • 47
    • 84873489199 scopus 로고    scopus 로고
    • MTERF3 regulates mitochondrial ribosome biogenesis in invertebrates and mammals
    • Wredenberg A, Lagouge M, Bratic A, Metodiev MD, Spåhr H, et al. (2013) MTERF3 regulates mitochondrial ribosome biogenesis in invertebrates and mammals. PLoS Genet 9: e1003178.
    • (2013) PLoS Genet , vol.9
    • Wredenberg, A.1    Lagouge, M.2    Bratic, A.3    Metodiev, M.D.4    Spåhr, H.5
  • 48
    • 0011891374 scopus 로고
    • In vitro transcription of human mitochondrial DNA: accurate termination requires a region of DNA sequence that can function bidirectionally
    • Christianson TW, Clayton DA, (1986) In vitro transcription of human mitochondrial DNA: accurate termination requires a region of DNA sequence that can function bidirectionally. Proc Natl Acad Sci U S A 83: 6277-6281.
    • (1986) Proc Natl Acad Sci U S A , vol.83 , pp. 6277-6281
    • Christianson, T.W.1    Clayton, D.A.2
  • 49
    • 0024365289 scopus 로고
    • Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination
    • Kruse B, Narasimhan N, Attardi G, (1989) Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell 58: 391-397.
    • (1989) Cell , vol.58 , pp. 391-397
    • Kruse, B.1    Narasimhan, N.2    Attardi, G.3
  • 50
    • 0028099327 scopus 로고
    • Human mitochondrial transcription termination exhibits RNA polymerase independence and biased bipolarity in vitro
    • Shang J, Clayton DA, (1994) Human mitochondrial transcription termination exhibits RNA polymerase independence and biased bipolarity in vitro. J Biol Chem 269: 29112-29120.
    • (1994) J Biol Chem , vol.269 , pp. 29112-29120
    • Shang, J.1    Clayton, D.A.2
  • 51
    • 84875887074 scopus 로고    scopus 로고
    • MTERF1 binds mtDNA to prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA gene transcription regulation
    • Terzioglu M, Ruzzenente B, Harmel J, Mourier A, Jemt E, et al. (2013) MTERF1 binds mtDNA to prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA gene transcription regulation. Cell Metab 17: 618-626.
    • (2013) Cell Metab , vol.17 , pp. 618-626
    • Terzioglu, M.1    Ruzzenente, B.2    Harmel, J.3    Mourier, A.4    Jemt, E.5
  • 52
    • 33646363370 scopus 로고    scopus 로고
    • The Drosophila termination factor DmTTF regulates in vivo mitochondrial transcription
    • Roberti M, Bruni F, Polosa PL, Gadaleta MN, Cantatore P, (2006) The Drosophila termination factor DmTTF regulates in vivo mitochondrial transcription. Nucleic Acids Res 34: 2109-2116.
    • (2006) Nucleic Acids Res , vol.34 , pp. 2109-2116
    • Roberti, M.1    Bruni, F.2    Polosa, P.L.3    Gadaleta, M.N.4    Cantatore, P.5
  • 54
    • 84864761057 scopus 로고    scopus 로고
    • D-MTERF5 is a novel factor modulating transcription in Drosophila mitochondria
    • Bruni F, et al. (2012) D-MTERF5 is a novel factor modulating transcription in Drosophila mitochondria. Mitochondrion 12: 492-499.
    • (2012) Mitochondrion , vol.12 , pp. 492-499
    • Bruni, F.1
  • 55
    • 36148945648 scopus 로고    scopus 로고
    • The mitochondrial transcription termination factor mTERF modulates replication pausing in human mitochondrial DNA
    • Hyvarinen AK, Pohjoismaki JL, Reyes A, Wanrooij S, Yasukawa T, et al. (2007) The mitochondrial transcription termination factor mTERF modulates replication pausing in human mitochondrial DNA. Nucleic Acids Res 35: 6458-6474.
    • (2007) Nucleic Acids Res , vol.35 , pp. 6458-6474
    • Hyvarinen, A.K.1    Pohjoismaki, J.L.2    Reyes, A.3    Wanrooij, S.4    Yasukawa, T.5
  • 56
    • 79951581724 scopus 로고    scopus 로고
    • Overexpression of MTERFD1 or MTERFD3 impairs the completion of mitochondrial DNA replication
    • Hyvarinen AK, Pohjoismaki JL, Holt IJ, Jacobs HT, (2011) Overexpression of MTERFD1 or MTERFD3 impairs the completion of mitochondrial DNA replication. Mol Biol Rep 38: 1321-1328.
    • (2011) Mol Biol Rep , vol.38 , pp. 1321-1328
    • Hyvarinen, A.K.1    Pohjoismaki, J.L.2    Holt, I.J.3    Jacobs, H.T.4
  • 57
    • 22244479687 scopus 로고    scopus 로고
    • Contrahelicase activity of the mitochondrial transcription termination factor mtDBP
    • Polosa PL, Deceglie S, Roberti M, Gadaleta MN, Cantatore P, (2005) Contrahelicase activity of the mitochondrial transcription termination factor mtDBP. Nucleic Acids Res 33: 3812-3820.
    • (2005) Nucleic Acids Res , vol.33 , pp. 3812-3820
    • Polosa, P.L.1    Deceglie, S.2    Roberti, M.3    Gadaleta, M.N.4    Cantatore, P.5
  • 58
    • 0036197316 scopus 로고    scopus 로고
    • Transcription termination factor TTF-I exhibits contrahelicase activity during DNA replication
    • Putter V, Grummt F, (2002) Transcription termination factor TTF-I exhibits contrahelicase activity during DNA replication. EMBO Rep 3: 147-152.
    • (2002) EMBO Rep , vol.3 , pp. 147-152
    • Putter, V.1    Grummt, F.2
  • 59
    • 0024291357 scopus 로고
    • A replication fork barrier at the 3′ end of yeast ribosomal RNA genes
    • Brewer BJ, Fangman WL, (1988) A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55: 637-643.
    • (1988) Cell , vol.55 , pp. 637-643
    • Brewer, B.J.1    Fangman, W.L.2
  • 60
    • 70349776569 scopus 로고    scopus 로고
    • Analysis of mitochondrial DNA by two-dimensional agarose gel electrophoresis
    • Reyes A, Yasukawa T, Cluett TJ, Holt IJ, (2009) Analysis of mitochondrial DNA by two-dimensional agarose gel electrophoresis. Methods Mol Biol 554: 15-35.
    • (2009) Methods Mol Biol , vol.554 , pp. 15-35
    • Reyes, A.1    Yasukawa, T.2    Cluett, T.J.3    Holt, I.J.4
  • 61
    • 0032827944 scopus 로고    scopus 로고
    • Critical weight for the induction of pupariation in Drosophila melanogaster: genetic and environmental variation
    • De Moed GH, Kruitwagen CLJJ, De Jong G, Scharloo W, (1999) Critical weight for the induction of pupariation in Drosophila melanogaster: genetic and environmental variation. J Evolutionary Biol 12: 852-858.
    • (1999) J Evolutionary Biol , vol.12 , pp. 852-858
    • De Moed, G.H.1    Kruitwagen, C.L.J.J.2    De Jong, G.3    Scharloo, W.4
  • 64
    • 0035902573 scopus 로고    scopus 로고
    • Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled
    • McGlynn P, Lloyd RG, Marians KJ, (2001) Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc Natl Acad Sci USA 98: 8235-8240.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8235-8240
    • McGlynn, P.1    Lloyd, R.G.2    Marians, K.J.3
  • 65
    • 13544268333 scopus 로고    scopus 로고
    • Bidirectional replication initiates at sites throughout the mitochondrial genome of birds
    • Reyes A, Yang MY, Bowmaker M, Holt IJ, (2005) Bidirectional replication initiates at sites throughout the mitochondrial genome of birds. J Biol Chem 280: 3242-3250.
    • (2005) J Biol Chem , vol.280 , pp. 3242-3250
    • Reyes, A.1    Yang, M.Y.2    Bowmaker, M.3    Holt, I.J.4
  • 66
    • 0035172433 scopus 로고    scopus 로고
    • Mitochondrial single-stranded DNA-binding protein is required for mitochondrial DNA replication and development in Drosophila melanogaster
    • Maier D, Farr CL, Poeck B, Alahari A, Vogel M, et al. (2001) Mitochondrial single-stranded DNA-binding protein is required for mitochondrial DNA replication and development in Drosophila melanogaster. Mol Biol Cell 12: 821-830.
    • (2001) Mol Biol Cell , vol.12 , pp. 821-830
    • Maier, D.1    Farr, C.L.2    Poeck, B.3    Alahari, A.4    Vogel, M.5
  • 67
    • 45549095853 scopus 로고    scopus 로고
    • Mitochondrial transcription factor B2 is essential for metabolic function in Drosophila melanogaster development
    • Adan C, Matsushima Y, Hernandez-Sierra R, Marco-Ferreres R, Fernandez-Moreno MA, et al. (2008) Mitochondrial transcription factor B2 is essential for metabolic function in Drosophila melanogaster development. J Biol Chem 283: 12333-12342.
    • (2008) J Biol Chem , vol.283 , pp. 12333-12342
    • Adan, C.1    Matsushima, Y.2    Hernandez-Sierra, R.3    Marco-Ferreres, R.4    Fernandez-Moreno, M.A.5
  • 68
    • 84863799820 scopus 로고    scopus 로고
    • Coiled coil domain-containing protein 56 (CCDC56) is a novel mitochondrial protein essential for cytochrome c oxidase function
    • Peralta S, Clemente P, Sanchez-Martinez A, Calleja M, Hernandez-Sierra R, et al. (2012) Coiled coil domain-containing protein 56 (CCDC56) is a novel mitochondrial protein essential for cytochrome c oxidase function. J Biol Chem 287: 24174-24185.
    • (2012) J Biol Chem , vol.287 , pp. 24174-24185
    • Peralta, S.1    Clemente, P.2    Sanchez-Martinez, A.3    Calleja, M.4    Hernandez-Sierra, R.5
  • 69
    • 69249158083 scopus 로고    scopus 로고
    • Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks
    • Pohjoismäki JL, Goffart S, Tyynismaa H, Willcox S, Ide T, et al. (2009) Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks. J Biol Chem 284: 21446-21457.
    • (2009) J Biol Chem , vol.284 , pp. 21446-21457
    • Pohjoismäki, J.L.1    Goffart, S.2    Tyynismaa, H.3    Willcox, S.4    Ide, T.5
  • 70
    • 0017298802 scopus 로고
    • A model for replication repair in mammalian cells
    • Higgins NP, Kato K, Strauss B, (1976) A model for replication repair in mammalian cells. J Mol Biol 101: 417-425.
    • (1976) J Mol Biol , vol.101 , pp. 417-425
    • Higgins, N.P.1    Kato, K.2    Strauss, B.3
  • 71
  • 72
    • 0026645804 scopus 로고
    • The arrest of replication forks in the rDNA of yeast occurs independently of transcription
    • Brewer BJ, Lockshon D, Fangman WL, (1992) The arrest of replication forks in the rDNA of yeast occurs independently of transcription. Cell 71: 267-276.
    • (1992) Cell , vol.71 , pp. 267-276
    • Brewer, B.J.1    Lockshon, D.2    Fangman, W.L.3
  • 73
    • 0028343925 scopus 로고
    • The kinetics of spontaneous DNA branch migration
    • Panyutin IG, Hsieh P, (1994) The kinetics of spontaneous DNA branch migration. Proc Natl Acad Sci USA 91: 2021-2025.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 2021-2025
    • Panyutin, I.G.1    Hsieh, P.2
  • 74
    • 34547095273 scopus 로고    scopus 로고
    • Replication fork reversal occurs spontaneously after digestion but is constrained in supercoiled domains
    • Fierro-Fernández M, Hernández P, Krimer DB, Schvartzman JB, (2007) Replication fork reversal occurs spontaneously after digestion but is constrained in supercoiled domains. J Biol Chem 282: 18190-18196.
    • (2007) J Biol Chem , vol.282 , pp. 18190-18196
    • Fierro-Fernández, M.1    Hernández, P.2    Krimer, D.B.3    Schvartzman, J.B.4
  • 75
    • 34249941504 scopus 로고    scopus 로고
    • Avoiding and resolving conflicts between DNA replication and transcription
    • Rudolph CJ, Dhillon P, Moore T, Lloyd RG, (2007) Avoiding and resolving conflicts between DNA replication and transcription. DNA Repair (Amst) 6: 981-993.
    • (2007) DNA Repair (Amst) , vol.6 , pp. 981-993
    • Rudolph, C.J.1    Dhillon, P.2    Moore, T.3    Lloyd, R.G.4
  • 76
    • 0036965964 scopus 로고    scopus 로고
    • DNA knotting caused by head-on collision of transcription and replication
    • Olavarrieta L, Hernandez P, Krimer DB, Schvartzman JB, (2002) DNA knotting caused by head-on collision of transcription and replication. J Mol Biol 322: 1-6.
    • (2002) J Mol Biol , vol.322 , pp. 1-6
    • Olavarrieta, L.1    Hernandez, P.2    Krimer, D.B.3    Schvartzman, J.B.4
  • 77
    • 0038046165 scopus 로고    scopus 로고
    • Transcription-dependent recombination and the role of fork collision in yeast rDNA
    • Takeuchi Y, Horiuchi T, Kobayashi T, (2003) Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 17: 1497-1506.
    • (2003) Genes Dev , vol.17 , pp. 1497-1506
    • Takeuchi, Y.1    Horiuchi, T.2    Kobayashi, T.3
  • 78
    • 0030133624 scopus 로고    scopus 로고
    • A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities
    • Kobayashi T, Horiuchi T, (1996) A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities. Genes Cells 1: 465-474.
    • (1996) Genes Cells , vol.1 , pp. 465-474
    • Kobayashi, T.1    Horiuchi, T.2
  • 79
    • 17944401516 scopus 로고    scopus 로고
    • Transcription termination factor reb1p causes two replication fork barriers at its cognate sites in fission yeast ribosomal DNA in vivo
    • Sanchez-Gorostiaga A, Lopez-Estrano C, Krimer DB, Schvartzman JB, Hernandez P, (2004) Transcription termination factor reb1p causes two replication fork barriers at its cognate sites in fission yeast ribosomal DNA in vivo. Mol Cell Biol 24: 398-406.
    • (2004) Mol Cell Biol , vol.24 , pp. 398-406
    • Sanchez-Gorostiaga, A.1    Lopez-Estrano, C.2    Krimer, D.B.3    Schvartzman, J.B.4    Hernandez, P.5
  • 80
    • 0343488591 scopus 로고    scopus 로고
    • Termination of mammalian rDNA replication: polar arrest of replication fork movement by transcription termination factor TTF-I
    • Gerber JK, Gögel E, Berger C, Wallisch M, Müller F, Grummt I, Grummt F, (1997) Termination of mammalian rDNA replication: polar arrest of replication fork movement by transcription termination factor TTF-I. Cell 90: 559-567.
    • (1997) Cell , vol.90 , pp. 559-567
    • Gerber, J.K.1    Gögel, E.2    Berger, C.3    Wallisch, M.4    Müller, F.5    Grummt, I.6    Grummt, F.7
  • 81
    • 0029000674 scopus 로고
    • An enzyme in yeast mitochondria that catalyzes a step in branched-chain amino acid biosynthesis also functions in mitochondrial DNA stability
    • Zelenaya-Troitskaya O, Perlman PS, Butow RA, (1995) An enzyme in yeast mitochondria that catalyzes a step in branched-chain amino acid biosynthesis also functions in mitochondrial DNA stability. EMBO J 14: 3268-3276.
    • (1995) EMBO J , vol.14 , pp. 3268-3276
    • Zelenaya-Troitskaya, O.1    Perlman, P.S.2    Butow, R.A.3
  • 82
    • 13244277441 scopus 로고    scopus 로고
    • Aconitase couples metabolic regulation to mitochondrial DNA maintenance
    • Chen XJ, Wang X, Kaufman BA, Butow RA, (2005) Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science 307: 714-717.
    • (2005) Science , vol.307 , pp. 714-717
    • Chen, X.J.1    Wang, X.2    Kaufman, B.A.3    Butow, R.A.4
  • 83
    • 84871194226 scopus 로고    scopus 로고
    • A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase-extensive moonlighting in mitochondrial tRNA biogenesis
    • Vilardo E, et al. (2012) A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase-extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res 40: 11583-11593.
    • (2012) Nucleic Acids Res , vol.40 , pp. 11583-11593
    • Vilardo, E.1
  • 84
    • 0034681257 scopus 로고    scopus 로고
    • The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA
    • Ivessa AS, Zhou JQ, Zakian VA, (2000) The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100: 479-489.
    • (2000) Cell , vol.100 , pp. 479-489
    • Ivessa, A.S.1    Zhou, J.Q.2    Zakian, V.A.3
  • 85
    • 67149126812 scopus 로고    scopus 로고
    • The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex forming CEB1 sequences in vivo
    • Ribeyre C, Lopes J, Boulé J-B, Piazza A, Zakiam A, et al. (2009) The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex forming CEB1 sequences in vivo. PLoS Genet 5: e1000457.
    • (2009) PLoS Genet , vol.5
    • Ribeyre, C.1    Lopes, J.2    Boulé, J.-B.3    Piazza, A.4    Zakiam, A.5
  • 86
    • 0015328565 scopus 로고
    • Cell lines derived from late embryonic stages of Drosophila melanogaster
    • Schneider I, (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27: 353-365.
    • (1972) J Embryol Exp Morphol , vol.27 , pp. 353-365
    • Schneider, I.1
  • 87
    • 65349167880 scopus 로고    scopus 로고
    • Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation
    • Fernandez-Ayala DJ, et al. (2009) Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation. Cell Metab 9: 449-460.
    • (2009) Cell Metab , vol.9 , pp. 449-460
    • Fernandez-Ayala, D.J.1
  • 88
    • 0026761603 scopus 로고
    • Replication forks pause at yeast centromeres
    • Greenfeder SA, Newlon CS, (1992) Replication forks pause at yeast centromeres. Mol Cell Biol 12: 4056-4066.
    • (1992) Mol Cell Biol , vol.12 , pp. 4056-4066
    • Greenfeder, S.A.1    Newlon, C.S.2
  • 89
    • 0027280274 scopus 로고
    • DNA replication of histone gene repeats in Drosophila melanogaster tissue culture cells: multiple initiation sites and replication pause sites. Mol
    • Shinomiya T, Ina S, (1993) DNA replication of histone gene repeats in Drosophila melanogaster tissue culture cells: multiple initiation sites and replication pause sites. Mol. Cell Biol 13: 4098-4106.
    • (1993) Cell Biol , vol.13 , pp. 4098-4106
    • Shinomiya, T.1    Ina, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.