메뉴 건너뛰기




Volumn 33, Issue , 2015, Pages 130-141

Ethanol production by engineered thermophiles

Author keywords

[No Author keywords available]

Indexed keywords

ENZYMES; GENE EXPRESSION; MICROORGANISMS;

EID: 84924047011     PISSN: 09581669     EISSN: 18790429     Source Type: Journal    
DOI: 10.1016/j.copbio.2015.02.006     Document Type: Review
Times cited : (105)

References (77)
  • 7
    • 82455210960 scopus 로고    scopus 로고
    • Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives
    • Chang T., Yao S. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Appl Microbiol Biotechnol 2011, 92:13-27.
    • (2011) Appl Microbiol Biotechnol , vol.92 , pp. 13-27
    • Chang, T.1    Yao, S.2
  • 8
    • 84882695325 scopus 로고    scopus 로고
    • Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production
    • Lin L., Xu J. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. Biotechnol Adv 2013, 31:827-837.
    • (2013) Biotechnol Adv , vol.31 , pp. 827-837
    • Lin, L.1    Xu, J.2
  • 9
    • 67649111013 scopus 로고    scopus 로고
    • Thermophilic ethanologenesis: future prospects for second-generation bioethanol production
    • Taylor M.P., Eley K.L., Martin S., Tuffin M.I., Burton S.G., Cowan D.A. Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 2009, 27:398-405.
    • (2009) Trends Biotechnol , vol.27 , pp. 398-405
    • Taylor, M.P.1    Eley, K.L.2    Martin, S.3    Tuffin, M.I.4    Burton, S.G.5    Cowan, D.A.6
  • 10
    • 84871136301 scopus 로고    scopus 로고
    • Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria
    • Carere C.R., Rydzak T., Verbeke T.J., Cicek N., Levin D.B., Sparling R. Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol 2012, 12:295.
    • (2012) BMC Microbiol , vol.12 , pp. 295
    • Carere, C.R.1    Rydzak, T.2    Verbeke, T.J.3    Cicek, N.4    Levin, D.B.5    Sparling, R.6
  • 11
    • 77953109724 scopus 로고    scopus 로고
    • Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost
    • Izquierdo J.A., Sizova M.V., Lynd L.R. Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost. Appl Environ Microbiol 2010, 76:3545-3553.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 3545-3553
    • Izquierdo, J.A.1    Sizova, M.V.2    Lynd, L.R.3
  • 12
    • 0022878217 scopus 로고
    • Pyruvate decarboxylase from Zymomonas mobilis. Isolation and partial characterization
    • Sahm H., Bringer-Meyer S., Schimz K.-L. Pyruvate decarboxylase from Zymomonas mobilis. Isolation and partial characterization. Arch Microbiol 1986, 146:105-110.
    • (1986) Arch Microbiol , vol.146 , pp. 105-110
    • Sahm, H.1    Bringer-Meyer, S.2    Schimz, K.-L.3
  • 13
    • 0036268951 scopus 로고    scopus 로고
    • Cloning and characterization of the Zymobacter palmae pyruvate decarboxylase gene (PDC) and comparison to bacterial homologues
    • Raj K.C., Talarico L.A., Ingram L.O., Maupin-Furlow J.A. Cloning and characterization of the Zymobacter palmae pyruvate decarboxylase gene (PDC) and comparison to bacterial homologues. Appl Environ Microbiol 2002, 68:2869-2876.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 2869-2876
    • Raj, K.C.1    Talarico, L.A.2    Ingram, L.O.3    Maupin-Furlow, J.A.4
  • 14
    • 45849122840 scopus 로고    scopus 로고
    • Heterologous expression of pyruvate decarboxylase in Geobacillus thermoglucosidasius
    • Thompson A., Studholme D., Green E., Leak D. Heterologous expression of pyruvate decarboxylase in Geobacillus thermoglucosidasius. Biotechnol Lett 2008, 30:1359-1365.
    • (2008) Biotechnol Lett , vol.30 , pp. 1359-1365
    • Thompson, A.1    Studholme, D.2    Green, E.3    Leak, D.4
  • 15
    • 84898884130 scopus 로고    scopus 로고
    • Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius
    • Van Zyl L.J., Taylor M.P., Eley K., Tuffin M., Cowan D.A. Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius. Appl Microbiol Biotechnol 2013, 10.1007/s00253-013-5380-1.
    • (2013) Appl Microbiol Biotechnol
    • Van Zyl, L.J.1    Taylor, M.P.2    Eley, K.3    Tuffin, M.4    Cowan, D.A.5
  • 16
    • 0030932016 scopus 로고    scopus 로고
    • Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase
    • Ma K., Hutchins A., Sung S.J.S., Adams M.W.W. Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase. Proc Natl Acad Sci U S A 1997, 94:9608-9613.
    • (1997) Proc Natl Acad Sci U S A , vol.94 , pp. 9608-9613
    • Ma, K.1    Hutchins, A.2    Sung, S.J.S.3    Adams, M.W.W.4
  • 17
    • 84902194388 scopus 로고    scopus 로고
    • The bifunctional pyruvate decarboxylase/pyruvate ferredoxin oxidoreductase from Thermococcus guaymasensis
    • Eram M.S., Oduaran E., Ma K. The bifunctional pyruvate decarboxylase/pyruvate ferredoxin oxidoreductase from Thermococcus guaymasensis. Archaea 2014, 2014:349379.
    • (2014) Archaea , vol.2014 , pp. 349379
    • Eram, M.S.1    Oduaran, E.2    Ma, K.3
  • 18
    • 0036663710 scopus 로고    scopus 로고
    • +-dependent formate dehydrogenase
    • +-dependent formate dehydrogenase. Metab Eng 2002, 4:217-229.
    • (2002) Metab Eng , vol.4 , pp. 217-229
    • Berríos-Rivera, S.1
  • 19
    • 79953207701 scopus 로고    scopus 로고
    • +-translocating pyrophosphatase in the acetogenic bacterium Acetobacterium woodii
    • +-translocating pyrophosphatase in the acetogenic bacterium Acetobacterium woodii. J Biol Chem 2011, 286:6080-6084.
    • (2011) J Biol Chem , vol.286 , pp. 6080-6084
    • Biegel, E.1    Müller, V.2
  • 20
    • 34250336912 scopus 로고    scopus 로고
    • Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase
    • Schut G.J., Bridger S.L., Adams M.W.W. Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase. J Bacteriol 2007, 189:4431-4441.
    • (2007) J Bacteriol , vol.189 , pp. 4431-4441
    • Schut, G.J.1    Bridger, S.L.2    Adams, M.W.W.3
  • 21
    • 77957326597 scopus 로고    scopus 로고
    • NADP reduction with reduced ferredoxin and NADP reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri
    • Wang S., Huang H., Moll J., Thauer R.K. NADP reduction with reduced ferredoxin and NADP reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J Bacteriol 2010, 192:5115-5123.
    • (2010) J Bacteriol , vol.192 , pp. 5115-5123
    • Wang, S.1    Huang, H.2    Moll, J.3    Thauer, R.K.4
  • 22
    • 84907851997 scopus 로고    scopus 로고
    • Role of transcription and enzyme activities in redistribution of carbon and electron flux in response to N2 and H2 sparging of open-batch cultures of Clostridium thermocellum ATCC 27405
    • Carere C.R., Rydzak T., Cicek N., Levin D.B., Sparling R. Role of transcription and enzyme activities in redistribution of carbon and electron flux in response to N2 and H2 sparging of open-batch cultures of Clostridium thermocellum ATCC 27405. Appl Microbiol Biotechnol 2014, 10.1007/s00253-013-5500-y.
    • (2014) Appl Microbiol Biotechnol
    • Carere, C.R.1    Rydzak, T.2    Cicek, N.3    Levin, D.B.4    Sparling, R.5
  • 23
    • 41149141711 scopus 로고    scopus 로고
    • End-product pathways in the xylose fermenting bacterium, Thermoanaerobacterium saccharolyticum
    • Shaw A.J., Jenney F.E., Adams M.W.W., Lynd L.R. End-product pathways in the xylose fermenting bacterium, Thermoanaerobacterium saccharolyticum. Enzyme Microb Technol 2008, 42:453-458.
    • (2008) Enzyme Microb Technol , vol.42 , pp. 453-458
    • Shaw, A.J.1    Jenney, F.E.2    Adams, M.W.W.3    Lynd, L.R.4
  • 24
    • 77957292723 scopus 로고    scopus 로고
    • Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii
    • Yao S., Mikkelsen M.J. Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii. J Mol Microbiol Biotechnol 2010, 19:123-133.
    • (2010) J Mol Microbiol Biotechnol , vol.19 , pp. 123-133
    • Yao, S.1    Mikkelsen, M.J.2
  • 25
    • 84897840456 scopus 로고    scopus 로고
    • Metabolic engineering of Thermoanaerobacterium thermosaccharolyticum for increased n-butanol production
    • Bhandiwad A., Guseva A., Lynd L. Metabolic engineering of Thermoanaerobacterium thermosaccharolyticum for increased n-butanol production. Adv Microbiol 2013, 2013:46-51.
    • (2013) Adv Microbiol , vol.2013 , pp. 46-51
    • Bhandiwad, A.1    Guseva, A.2    Lynd, L.3
  • 26
    • 84924067126 scopus 로고    scopus 로고
    • The bifunctional alcohol and aldehyde dehydrogenase gene, adhe, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum
    • (in press)
    • Lo J., Zheng T., Hon S., Olson D., Lynd L. The bifunctional alcohol and aldehyde dehydrogenase gene, adhe, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 2015, (in press). 10.1128/JB.02450-14.
    • (2015) J Bacteriol
    • Lo, J.1    Zheng, T.2    Hon, S.3    Olson, D.4    Lynd, L.5
  • 28
    • 82355185823 scopus 로고    scopus 로고
    • Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum
    • Shao X.J., Raman B., Zhu M.J., Mielenz J.R., Brown S.D., Guss A.M., Lynd L.R. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl Microbiol Biotechnol 2011, 92:641-652.
    • (2011) Appl Microbiol Biotechnol , vol.92 , pp. 641-652
    • Shao, X.J.1    Raman, B.2    Zhu, M.J.3    Mielenz, J.R.4    Brown, S.D.5    Guss, A.M.6    Lynd, L.R.7
  • 29
    • 84924023248 scopus 로고    scopus 로고
    • Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum
    • (in press)
    • Biswas R., Zheng T., Olson D.G., Lynd L.R., Guss A.M. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels 2015, (in press). 10.1186/s13068-015-0204-4.
    • (2015) Biotechnol Biofuels
    • Biswas, R.1    Zheng, T.2    Olson, D.G.3    Lynd, L.R.4    Guss, A.M.5
  • 30
    • 84885460780 scopus 로고    scopus 로고
    • Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius
    • Extance J., Crennell S.J., Eley K., Cripps R., Hough D.W., Danson M.J. Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius. Acta Crystallogr D: Biol Crystallogr 2013, 69:2104-2115.
    • (2013) Acta Crystallogr D: Biol Crystallogr , vol.69 , pp. 2104-2115
    • Extance, J.1    Crennell, S.J.2    Eley, K.3    Cripps, R.4    Hough, D.W.5    Danson, M.J.6
  • 31
    • 0024421725 scopus 로고
    • Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes
    • White H., Strobl G., Feicht R., Simon H. Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes. Eur J Biochem 1989, 184:89-96.
    • (1989) Eur J Biochem , vol.184 , pp. 89-96
    • White, H.1    Strobl, G.2    Feicht, R.3    Simon, H.4
  • 34
    • 84871712835 scopus 로고    scopus 로고
    • Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation
    • Buckel W., Thauer R.K. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta 2013, 1827:94-113.
    • (2013) Biochim Biophys Acta , vol.1827 , pp. 94-113
    • Buckel, W.1    Thauer, R.K.2
  • 35
    • 0028234865 scopus 로고
    • Glucose fermentation to acetate and alanine in resting cell suspensions of Pyrococcus furiosus: proposal of a novel glycolytic pathway based on 13C labeling data and enzyme activities
    • Schäfer T., Xavier K., Santos H., Schönheit P. Glucose fermentation to acetate and alanine in resting cell suspensions of Pyrococcus furiosus: proposal of a novel glycolytic pathway based on 13C labeling data and enzyme activities. FEMS Microbiol Lett 1994, 121:107-114.
    • (1994) FEMS Microbiol Lett , vol.121 , pp. 107-114
    • Schäfer, T.1    Xavier, K.2    Santos, H.3    Schönheit, P.4
  • 36
    • 0029987676 scopus 로고    scopus 로고
    • L-Alanine production from glucose fermentation by hyperthermophilic members of the domains bacteria and Archaea: a remnant of an ancestral metabolism?
    • Ravot G., Ollivier B., Fardeau M.L., Patel B.K., Andrews K.T. l-Alanine production from glucose fermentation by hyperthermophilic members of the domains bacteria and Archaea: a remnant of an ancestral metabolism?. Appl Environ Microbiol 1996, 62:2657-2659.
    • (1996) Appl Environ Microbiol , vol.62 , pp. 2657-2659
    • Ravot, G.1    Ollivier, B.2    Fardeau, M.L.3    Patel, B.K.4    Andrews, K.T.5
  • 38
    • 79960077518 scopus 로고    scopus 로고
    • Genetic tool development underpins recent advances in thermophilic whole-cell biocatalysts
    • Taylor M.P., van Zyl L., Tuffin I.M., Leak D.J., Cowan D.A. Genetic tool development underpins recent advances in thermophilic whole-cell biocatalysts. Microb Biotechnol 2011, 4:438-448.
    • (2011) Microb Biotechnol , vol.4 , pp. 438-448
    • Taylor, M.P.1    van Zyl, L.2    Tuffin, I.M.3    Leak, D.J.4    Cowan, D.A.5
  • 39
    • 80855143688 scopus 로고    scopus 로고
    • Identification and characterization of CbeI, a novel thermostable restriction enzyme from Caldicellulosiruptor bescii DSM 6725 and a member of a new subfamily of HaeIII-like enzymes
    • Chung D.-H., Huddleston J.R., Farkas J., Westpheling J. Identification and characterization of CbeI, a novel thermostable restriction enzyme from Caldicellulosiruptor bescii DSM 6725 and a member of a new subfamily of HaeIII-like enzymes. J Ind Microbiol Biotechnol 2011, 38:1867-1877.
    • (2011) J Ind Microbiol Biotechnol , vol.38 , pp. 1867-1877
    • Chung, D.-H.1    Huddleston, J.R.2    Farkas, J.3    Westpheling, J.4
  • 40
    • 84865154915 scopus 로고    scopus 로고
    • Methylation by a unique α-class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725
    • Chung D., Farkas J., Huddleston J.R., Olivar E., Westpheling J. Methylation by a unique α-class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725. PLOS ONE 2012, 7:e43844.
    • (2012) PLOS ONE , vol.7 , pp. e43844
    • Chung, D.1    Farkas, J.2    Huddleston, J.R.3    Olivar, E.4    Westpheling, J.5
  • 41
    • 79953288906 scopus 로고    scopus 로고
    • Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases
    • Lipscomb G.L., Stirrett K., Schut G.J., Yang F., Jenney F.E., Scott R.A., Adams M.W.W., Westpheling J. Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl Environ Microbiol 2011, 77:2232-2238.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 2232-2238
    • Lipscomb, G.L.1    Stirrett, K.2    Schut, G.J.3    Yang, F.4    Jenney, F.E.5    Scott, R.A.6    Adams, M.W.W.7    Westpheling, J.8
  • 42
    • 0028217090 scopus 로고
    • Highly-efficient electrotransformation of the yeast Hansenula polymorpha
    • Faber K., Haima P., Harder W., Veenhuis M., Geert A. Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr Genet 1994, 16:305-310.
    • (1994) Curr Genet , vol.16 , pp. 305-310
    • Faber, K.1    Haima, P.2    Harder, W.3    Veenhuis, M.4    Geert, A.5
  • 43
    • 0029967418 scopus 로고    scopus 로고
    • Cloning, sequencing, and expression of the gene encoding a large S-layer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 in Escherichia coli
    • Liu S.Y., Gherardini F.C., Matuschek M., Bahl H., Wiegel J. Cloning, sequencing, and expression of the gene encoding a large S-layer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 in Escherichia coli. J Bacteriol 1996, 178:1539-1547.
    • (1996) J Bacteriol , vol.178 , pp. 1539-1547
    • Liu, S.Y.1    Gherardini, F.C.2    Matuschek, M.3    Bahl, H.4    Wiegel, J.5
  • 44
    • 6944242467 scopus 로고    scopus 로고
    • Cloning of l-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485
    • Desai S.G., Guerinot M.L., Lynd L.R. Cloning of l-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Microbiol Biotechnol 2004, 65:600-605.
    • (2004) Appl Microbiol Biotechnol , vol.65 , pp. 600-605
    • Desai, S.G.1    Guerinot, M.L.2    Lynd, L.R.3
  • 46
    • 79953283525 scopus 로고    scopus 로고
    • Marker removal system for Thermoanaerobacterium saccharolyticum and development of a markerless ethanologen
    • Shaw A.J., Covalla S.F., Hogsett D.A., Herring C.D. Marker removal system for Thermoanaerobacterium saccharolyticum and development of a markerless ethanologen. Appl Environ Microbiol 2011, 77:2534-2536.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 2534-2536
    • Shaw, A.J.1    Covalla, S.F.2    Hogsett, D.A.3    Herring, C.D.4
  • 47
    • 0035125230 scopus 로고    scopus 로고
    • Salt accumulation resulting from base added for ph control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture
    • Lynd L.R., Baskaran S., Casten S. Salt accumulation resulting from base added for ph control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture. Biotechnol Prog 2001, 17:118-125.
    • (2001) Biotechnol Prog , vol.17 , pp. 118-125
    • Lynd, L.R.1    Baskaran, S.2    Casten, S.3
  • 48
    • 84865597185 scopus 로고    scopus 로고
    • Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production
    • Shaw A.J., Covalla S.F., Miller B.B., Firliet B.T., Hogsett D.A., Herring C.D. Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metab Eng 2012, 14:528-532.
    • (2012) Metab Eng , vol.14 , pp. 528-532
    • Shaw, A.J.1    Covalla, S.F.2    Miller, B.B.3    Firliet, B.T.4    Hogsett, D.A.5    Herring, C.D.6
  • 50
    • 70350455960 scopus 로고    scopus 로고
    • Identification of the [FeFe]-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout
    • Shaw A.J., Hogsett D.A., Lynd L.R. Identification of the [FeFe]-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout. J Bacteriol 2009, 191:6457-6464.
    • (2009) J Bacteriol , vol.191 , pp. 6457-6464
    • Shaw, A.J.1    Hogsett, D.A.2    Lynd, L.R.3
  • 51
    • 49349105776 scopus 로고    scopus 로고
    • Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor
    • Georgieva T.I., Mikkelsen M.J., Ahring B.K. Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 2008, 145:99-110.
    • (2008) Appl Biochem Biotechnol , vol.145 , pp. 99-110
    • Georgieva, T.I.1    Mikkelsen, M.J.2    Ahring, B.K.3
  • 52
    • 77955853857 scopus 로고    scopus 로고
    • Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii
    • Yao S., Mikkelsen M.J. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 2010, 88:199-208.
    • (2010) Appl Microbiol Biotechnol , vol.88 , pp. 199-208
    • Yao, S.1    Mikkelsen, M.J.2
  • 53
    • 84875414012 scopus 로고    scopus 로고
    • Genomic evaluation of Thermoanaerobacter spp. for the construction of designer co-cultures to improve lignocellulosic biofuel production
    • Verbeke T.J., Zhang X., Henrissat B., Spicer V., Rydzak T., Krokhin O.V., Fristensky B., Levin D.B., Sparling R. Genomic evaluation of Thermoanaerobacter spp. for the construction of designer co-cultures to improve lignocellulosic biofuel production. PLOS ONE 2013, 8:e59362.
    • (2013) PLOS ONE , vol.8 , pp. e59362
    • Verbeke, T.J.1    Zhang, X.2    Henrissat, B.3    Spicer, V.4    Rydzak, T.5    Krokhin, O.V.6    Fristensky, B.7    Levin, D.B.8    Sparling, R.9
  • 54
    • 34250239090 scopus 로고
    • Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium
    • Wiegel J., Ljungdahl L. Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 1981, 1979:343-348.
    • (1981) Arch Microbiol , vol.1979 , pp. 343-348
    • Wiegel, J.1    Ljungdahl, L.2
  • 55
    • 42249098247 scopus 로고    scopus 로고
    • The aldehyde/alcohol dehydrogenase (AdhE) in relation to the ethanol formation in Thermoanaerobacter ethanolicus JW200
    • Peng H., Wu G., Shao W. The aldehyde/alcohol dehydrogenase (AdhE) in relation to the ethanol formation in Thermoanaerobacter ethanolicus JW200. Anaerobe 2008, 14:125-127.
    • (2008) Anaerobe , vol.14 , pp. 125-127
    • Peng, H.1    Wu, G.2    Shao, W.3
  • 58
    • 82455199199 scopus 로고    scopus 로고
    • End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405
    • Rydzak T., Levin D.B., Cicek N., Sparling R. End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405. Appl Microbiol Biotechnol 2011, 92:199-209.
    • (2011) Appl Microbiol Biotechnol , vol.92 , pp. 199-209
    • Rydzak, T.1    Levin, D.B.2    Cicek, N.3    Sparling, R.4
  • 59
    • 84895533735 scopus 로고    scopus 로고
    • Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum
    • Biswas R., Prabhu S., Lynd L.R., Guss A.M. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PLOS ONE 2014, 9:e86389.
    • (2014) PLOS ONE , vol.9 , pp. e86389
    • Biswas, R.1    Prabhu, S.2    Lynd, L.R.3    Guss, A.M.4
  • 60
    • 84871402263 scopus 로고    scopus 로고
    • Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum
    • Deng Y., Olson D.G., Zhou J., Herring C.D., Joe Shaw A., Lynd L.R. Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum. Metab Eng 2013, 15:151-158.
    • (2013) Metab Eng , vol.15 , pp. 151-158
    • Deng, Y.1    Olson, D.G.2    Zhou, J.3    Herring, C.D.4    Joe Shaw, A.5    Lynd, L.R.6
  • 61
    • 84902590153 scopus 로고    scopus 로고
    • Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii
    • Chung D., Cha M., Guss A.M., Westpheling J. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci U S A 2014, 111:8931-8936.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 8931-8936
    • Chung, D.1    Cha, M.2    Guss, A.M.3    Westpheling, J.4
  • 63
    • 54049094405 scopus 로고    scopus 로고
    • Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose
    • Ishchuk O.P., Voronovsky A.Y., Stasyk O.V., Gayda G.Z., Gonchar M.V., Abbas C.A., Sibirny A.A. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Res 2008, 8:1164-1174.
    • (2008) FEMS Yeast Res , vol.8 , pp. 1164-1174
    • Ishchuk, O.P.1    Voronovsky, A.Y.2    Stasyk, O.V.3    Gayda, G.Z.4    Gonchar, M.V.5    Abbas, C.A.6    Sibirny, A.A.7
  • 64
    • 84871713337 scopus 로고    scopus 로고
    • Anaerobic energy metabolism in unicellular photosynthetic eukaryotes
    • Atteia A., van Lis R., Tielens A.G.M., Martin W.F. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochim Biophys Acta 2013, 1827:210-223.
    • (2013) Biochim Biophys Acta , vol.1827 , pp. 210-223
    • Atteia, A.1    van Lis, R.2    Tielens, A.G.M.3    Martin, W.F.4
  • 65
    • 0030448870 scopus 로고    scopus 로고
    • Pyruvate metabolism in Saccharomyces cerevisiae
    • Pronk J.T., Steensma H.Y., van Dijken J.P. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 1996, 12:1607-1633.
    • (1996) Yeast , vol.12 , pp. 1607-1633
    • Pronk, J.T.1    Steensma, H.Y.2    van Dijken, J.P.3
  • 66
    • 80855144181 scopus 로고    scopus 로고
    • Alcoholic fermentation by wild-type Hansenula polymorpha and Saccharomyces cerevisiae versus recombinant strains with an elevated level of intracellular glutathione
    • Grabek-Lejko D., Kurylenko O.O., Sibirny V.A., Ubiyvovk V.M., Penninckx M., Sibirny A.A. Alcoholic fermentation by wild-type Hansenula polymorpha and Saccharomyces cerevisiae versus recombinant strains with an elevated level of intracellular glutathione. J Ind Microbiol Biotechnol 2011, 38:1853-1859.
    • (2011) J Ind Microbiol Biotechnol , vol.38 , pp. 1853-1859
    • Grabek-Lejko, D.1    Kurylenko, O.O.2    Sibirny, V.A.3    Ubiyvovk, V.M.4    Penninckx, M.5    Sibirny, A.A.6
  • 67
    • 0942288120 scopus 로고    scopus 로고
    • Bacteria engineered for fuel ethanol production: current status
    • Dien B.S., Cotta M.A., Jeffries T.W. Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 2003, 63:258-266.
    • (2003) Appl Microbiol Biotechnol , vol.63 , pp. 258-266
    • Dien, B.S.1    Cotta, M.A.2    Jeffries, T.W.3
  • 68
    • 0036209447 scopus 로고    scopus 로고
    • Physiological function of alcohol dehydrogenases and long-chain (C 30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus
    • Burdette D.S., Jung S., Shen G., Hollingsworth R.I., Zeikus J.G. Physiological function of alcohol dehydrogenases and long-chain (C 30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl Environ Microbiol 2002, 68:1914-1918.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 1914-1918
    • Burdette, D.S.1    Jung, S.2    Shen, G.3    Hollingsworth, R.I.4    Zeikus, J.G.5
  • 69
    • 0024023701 scopus 로고
    • Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum
    • Lovitt R.W., Shen G.J., Zeikus J.G. Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 1988, 170:2809-2815.
    • (1988) J Bacteriol , vol.170 , pp. 2809-2815
    • Lovitt, R.W.1    Shen, G.J.2    Zeikus, J.G.3
  • 70
    • 0019158897 scopus 로고
    • Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature
    • Herrero A.A., Gomez R.F. Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol 1980, 40:571-577.
    • (1980) Appl Environ Microbiol , vol.40 , pp. 571-577
    • Herrero, A.A.1    Gomez, R.F.2
  • 71
    • 80055070336 scopus 로고    scopus 로고
    • The Thermoanaerobacter glycobiome reveals mechanisms of pentose and hexose co-utilization in bacteria
    • Lin L., Song H., Tu Q., Qin Y., Zhou A., Liu W., He Z., Zhou J., Xu J. The Thermoanaerobacter glycobiome reveals mechanisms of pentose and hexose co-utilization in bacteria. PLoS Genet 2011, 7:e1002318.
    • (2011) PLoS Genet , vol.7 , pp. e1002318
    • Lin, L.1    Song, H.2    Tu, Q.3    Qin, Y.4    Zhou, A.5    Liu, W.6    He, Z.7    Zhou, J.8    Xu, J.9
  • 72
    • 0037494947 scopus 로고    scopus 로고
    • Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides
    • Schut G.J., Brehm S.D., Datta S., Adams M.W.W. Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J Bacteriol 2003, 185:3935-3947.
    • (2003) J Bacteriol , vol.185 , pp. 3935-3947
    • Schut, G.J.1    Brehm, S.D.2    Datta, S.3    Adams, M.W.W.4
  • 77
    • 0036135110 scopus 로고    scopus 로고
    • Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering
    • Guedon E., Petitdemange H., Poincare H., Desvaux M. Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 2002, 68:53-58.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 53-58
    • Guedon, E.1    Petitdemange, H.2    Poincare, H.3    Desvaux, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.