메뉴 건너뛰기




Volumn 20, Issue 2, 2015, Pages 87-98

Silk as an innovative biomaterial for cancer therapy

Author keywords

3D cancer model; Bioengineered silk; Cancer therapy; Drug delivery; Silkworm silk; Spider silk

Indexed keywords

ANTINEOPLASTIC AGENT; BIOMATERIAL; DRUG CARRIER; NANOSPHERE; SCAFFOLD PROTEIN; SILK; SILK FIBROIN;

EID: 84924004081     PISSN: 15071367     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rpor.2014.11.010     Document Type: Review
Times cited : (76)

References (71)
  • 1
  • 2
    • 77955111796 scopus 로고    scopus 로고
    • New opportunities for an ancient material
    • Omenetto F.G., Kaplan D.L. New opportunities for an ancient material. Science 2010, 329:528-531.
    • (2010) Science , vol.329 , pp. 528-531
    • Omenetto, F.G.1    Kaplan, D.L.2
  • 5
    • 84896541762 scopus 로고    scopus 로고
    • Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications
    • Schacht K., Scheibel T. Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Curr Opin Biotechnol 2014, 29C:62-69.
    • (2014) Curr Opin Biotechnol , vol.29 C , pp. 62-69
    • Schacht, K.1    Scheibel, T.2
  • 6
    • 70349783566 scopus 로고    scopus 로고
    • Spider silk: from soluble protein to extraordinary fiber
    • Heim M., Keerl D., Scheibel T. Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed Engl 2009, 48:3584-3596.
    • (2009) Angew Chem Int Ed Engl , vol.48 , pp. 3584-3596
    • Heim, M.1    Keerl, D.2    Scheibel, T.3
  • 7
    • 77956629695 scopus 로고    scopus 로고
    • Recombinant spider silk proteins for applications in biomaterials
    • Spiess K., Lammel A., Scheibel T. Recombinant spider silk proteins for applications in biomaterials. Macromol Biosci 2010, 10:998-1007.
    • (2010) Macromol Biosci , vol.10 , pp. 998-1007
    • Spiess, K.1    Lammel, A.2    Scheibel, T.3
  • 9
    • 77952378056 scopus 로고    scopus 로고
    • A conserved spider silk domain acts as a molecular switch that controls fibre assembly
    • Hagn F., Eisoldt L., Hardy J.G., et al. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 2010, 465:239-242.
    • (2010) Nature , vol.465 , pp. 239-242
    • Hagn, F.1    Eisoldt, L.2    Hardy, J.G.3
  • 10
    • 84858859727 scopus 로고    scopus 로고
    • Review the role of terminal domains during storage and assembly of spider silk proteins
    • Eisoldt L., Thamm C., Scheibel T. Review the role of terminal domains during storage and assembly of spider silk proteins. Biopolymers 2012, 97:355-361.
    • (2012) Biopolymers , vol.97 , pp. 355-361
    • Eisoldt, L.1    Thamm, C.2    Scheibel, T.3
  • 11
    • 13644260108 scopus 로고    scopus 로고
    • Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins
    • Scheibel T. Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb Cell Fact 2004, 3:14.
    • (2004) Microb Cell Fact , vol.3 , pp. 14
    • Scheibel, T.1
  • 12
    • 34547803343 scopus 로고    scopus 로고
    • Biotechnological production of spider-silk proteins enables new applications
    • Vendrely C., Scheibel T. Biotechnological production of spider-silk proteins enables new applications. Macromol Biosci 2007, 7:401-409.
    • (2007) Macromol Biosci , vol.7 , pp. 401-409
    • Vendrely, C.1    Scheibel, T.2
  • 13
    • 84896393957 scopus 로고    scopus 로고
    • Structure-function-property-design interplay in biopolymers: spider silk
    • Tokareva O., Jacobsen M., Buehler M., Wong J., Kaplan D.L. Structure-function-property-design interplay in biopolymers: spider silk. Acta Biomater 2014, 10:1612-1626.
    • (2014) Acta Biomater , vol.10 , pp. 1612-1626
    • Tokareva, O.1    Jacobsen, M.2    Buehler, M.3    Wong, J.4    Kaplan, D.L.5
  • 15
    • 84866175348 scopus 로고    scopus 로고
    • Doxorubicin-loaded silk films: drug-silk interactions and in vivo performance in human orthotopic breast cancer
    • Seib F.P., Kaplan D.L. Doxorubicin-loaded silk films: drug-silk interactions and in vivo performance in human orthotopic breast cancer. Biomaterials 2012, 33:8442-8450.
    • (2012) Biomaterials , vol.33 , pp. 8442-8450
    • Seib, F.P.1    Kaplan, D.L.2
  • 16
    • 84871971565 scopus 로고    scopus 로고
    • Self-assembling doxorubicin silk hydrogels for the focal treatment of primary breast cancer
    • Seib F.P., Pritchard E.M., Kaplan D.L. Self-assembling doxorubicin silk hydrogels for the focal treatment of primary breast cancer. Adv Funct Mater 2013, 23:58-65.
    • (2013) Adv Funct Mater , vol.23 , pp. 58-65
    • Seib, F.P.1    Pritchard, E.M.2    Kaplan, D.L.3
  • 19
    • 77954944881 scopus 로고    scopus 로고
    • Silk fibroin-derived nanoparticles for biomedical applications
    • Mathur A.B., Gupta V. Silk fibroin-derived nanoparticles for biomedical applications. Nanomedicine (Lond) 2010, 5:807-820.
    • (2010) Nanomedicine (Lond) , vol.5 , pp. 807-820
    • Mathur, A.B.1    Gupta, V.2
  • 20
    • 84890467788 scopus 로고    scopus 로고
    • Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery
    • Wu P., Liu Q., Li R., et al. Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery. ACS Appl Mater Interfaces 2013, 5:12638-12645.
    • (2013) ACS Appl Mater Interfaces , vol.5 , pp. 12638-12645
    • Wu, P.1    Liu, Q.2    Li, R.3
  • 21
    • 84871538885 scopus 로고    scopus 로고
    • Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers
    • Subia B., Kundu S.C. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers. Nanotechnology 2013, 24:035103.
    • (2013) Nanotechnology , vol.24 , pp. 035103
    • Subia, B.1    Kundu, S.C.2
  • 22
    • 69149110897 scopus 로고    scopus 로고
    • Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy
    • Gupta V., Aseh A., Rios C.N., Aggarwal B.B., Mathur A.B. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomed 2009, 4:115-122.
    • (2009) Int J Nanomed , vol.4 , pp. 115-122
    • Gupta, V.1    Aseh, A.2    Rios, C.N.3    Aggarwal, B.B.4    Mathur, A.B.5
  • 23
  • 24
    • 84906089486 scopus 로고    scopus 로고
    • Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model
    • Chiu B., Coburn J., Pilichowska M., et al. Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model. Br J Cancer 2014, 111:708-715.
    • (2014) Br J Cancer , vol.111 , pp. 708-715
    • Chiu, B.1    Coburn, J.2    Pilichowska, M.3
  • 26
    • 84880947293 scopus 로고    scopus 로고
    • Mechanisms of monoclonal antibody stabilization and release from silk biomaterials
    • Guziewicz N.A., Massetti A.J., Perez-Ramirez B.J., Kaplan D.L. Mechanisms of monoclonal antibody stabilization and release from silk biomaterials. Biomaterials 2013, 34:7766-7775.
    • (2013) Biomaterials , vol.34 , pp. 7766-7775
    • Guziewicz, N.A.1    Massetti, A.J.2    Perez-Ramirez, B.J.3    Kaplan, D.L.4
  • 27
    • 79251593187 scopus 로고    scopus 로고
    • Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies
    • Guziewicz N., Best A., Perez-Ramirez B., Kaplan D.L. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials 2011, 32:2642-2650.
    • (2011) Biomaterials , vol.32 , pp. 2642-2650
    • Guziewicz, N.1    Best, A.2    Perez-Ramirez, B.3    Kaplan, D.L.4
  • 28
    • 81855221805 scopus 로고    scopus 로고
    • Paclitaxel-loaded silk fibroin nanospheres
    • Chen M., Shao Z., Chen X. Paclitaxel-loaded silk fibroin nanospheres. J Biomed Mater Res A 2012, 100:203-210.
    • (2012) J Biomed Mater Res A , vol.100 , pp. 203-210
    • Chen, M.1    Shao, Z.2    Chen, X.3
  • 29
    • 77953457158 scopus 로고    scopus 로고
    • Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting
    • Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol 2010, 624:25-37.
    • (2010) Methods Mol Biol , vol.624 , pp. 25-37
    • Greish, K.1
  • 30
    • 33846840258 scopus 로고    scopus 로고
    • Silk-fibroin-coated liposomes for long-term and targeted drug delivery
    • Gobin A.S., Rhea R., Newman R.A., Mathur A.B. Silk-fibroin-coated liposomes for long-term and targeted drug delivery. Int J Nanomed 2006, 1:81-87.
    • (2006) Int J Nanomed , vol.1 , pp. 81-87
    • Gobin, A.S.1    Rhea, R.2    Newman, R.A.3    Mathur, A.B.4
  • 31
    • 0037130997 scopus 로고    scopus 로고
    • Genetically engineered silk-elastinlike protein polymers for controlled drug delivery
    • Megeed Z., Cappello J., Ghandehari H. Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Adv Drug Deliv Rev 2002, 54:1075-1091.
    • (2002) Adv Drug Deliv Rev , vol.54 , pp. 1075-1091
    • Megeed, Z.1    Cappello, J.2    Ghandehari, H.3
  • 32
    • 68849085397 scopus 로고    scopus 로고
    • Silk-elastinlike protein polymer hydrogels for localized adenoviral gene therapy of head and neck tumors
    • Greish K., Araki K., Li D., et al. Silk-elastinlike protein polymer hydrogels for localized adenoviral gene therapy of head and neck tumors. Biomacromolecules 2009, 10:2183-2188.
    • (2009) Biomacromolecules , vol.10 , pp. 2183-2188
    • Greish, K.1    Araki, K.2    Li, D.3
  • 33
    • 70449698522 scopus 로고    scopus 로고
    • Silk-elastinlike recombinant polymers for gene therapy of head and neck cancer: from molecular definition to controlled gene expression
    • Gustafson J., Greish K., Frandsen J., Cappello J., Ghandehari H. Silk-elastinlike recombinant polymers for gene therapy of head and neck cancer: from molecular definition to controlled gene expression. J Control Release 2009, 140:256-261.
    • (2009) J Control Release , vol.140 , pp. 256-261
    • Gustafson, J.1    Greish, K.2    Frandsen, J.3    Cappello, J.4    Ghandehari, H.5
  • 34
    • 84896763905 scopus 로고    scopus 로고
    • Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery
    • Xia X.X., Wang M., Lin Y., Xu Q., Kaplan D.L. Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery. Biomacromolecules 2014, 15:908-914.
    • (2014) Biomacromolecules , vol.15 , pp. 908-914
    • Xia, X.X.1    Wang, M.2    Lin, Y.3    Xu, Q.4    Kaplan, D.L.5
  • 35
    • 84885957687 scopus 로고    scopus 로고
    • Control of drug loading and release properties of spider silk sub-microparticles
    • Blüm C., Scheibel T. Control of drug loading and release properties of spider silk sub-microparticles. BioNanoScience 2012, 2:67-74.
    • (2012) BioNanoScience , vol.2 , pp. 67-74
    • Blüm, C.1    Scheibel, T.2
  • 36
    • 78651468091 scopus 로고    scopus 로고
    • Recombinant spider silk particles as drug delivery vehicles
    • Lammel A., Schwab M., Hofer M., Winter G., Scheibel T. Recombinant spider silk particles as drug delivery vehicles. Biomaterials 2011, 32:2233-2240.
    • (2011) Biomaterials , vol.32 , pp. 2233-2240
    • Lammel, A.1    Schwab, M.2    Hofer, M.3    Winter, G.4    Scheibel, T.5
  • 37
    • 83355166780 scopus 로고    scopus 로고
    • Recombinant spider silk particles for controlled delivery of protein drugs
    • Hofer M., Winter G., Myschik J. Recombinant spider silk particles for controlled delivery of protein drugs. Biomaterials 2011, 33:1554-1562.
    • (2011) Biomaterials , vol.33 , pp. 1554-1562
    • Hofer, M.1    Winter, G.2    Myschik, J.3
  • 38
  • 40
    • 84905816340 scopus 로고    scopus 로고
    • Functionalized spider silk spheres as drug carriers for targeted cancer therapy
    • Florczak A., Mackiewicz A., Dams-Kozlowska H. Functionalized spider silk spheres as drug carriers for targeted cancer therapy. Biomacromolecules 2014, 15:2971-2981.
    • (2014) Biomacromolecules , vol.15 , pp. 2971-2981
    • Florczak, A.1    Mackiewicz, A.2    Dams-Kozlowska, H.3
  • 41
    • 6344228390 scopus 로고    scopus 로고
    • Primary structure elements of spider dragline silks and their contribution to protein solubility
    • Huemmerich D., Helsen C.W., Quedzuweit S., Oschmann J., Rudolph R., Scheibel T. Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 2004, 43:13604-13612.
    • (2004) Biochemistry , vol.43 , pp. 13604-13612
    • Huemmerich, D.1    Helsen, C.W.2    Quedzuweit, S.3    Oschmann, J.4    Rudolph, R.5    Scheibel, T.6
  • 43
    • 50949132083 scopus 로고    scopus 로고
    • Processing conditions for the formation of spider silk microspheres
    • Lammel A., Schwab M., Slotta U., Winter G., Scheibel T. Processing conditions for the formation of spider silk microspheres. ChemSusChem 2008, 1:413-416.
    • (2008) ChemSusChem , vol.1 , pp. 413-416
    • Lammel, A.1    Schwab, M.2    Slotta, U.3    Winter, G.4    Scheibel, T.5
  • 44
    • 56549086514 scopus 로고    scopus 로고
    • Formulation of poorly water-soluble substances using self-assembling spider silk protein
    • Liebmann B., Hummerich D., Scheibel T., Fehr M. Formulation of poorly water-soluble substances using self-assembling spider silk protein. Colloids Surf A 2008, 331:126-132.
    • (2008) Colloids Surf A , vol.331 , pp. 126-132
    • Liebmann, B.1    Hummerich, D.2    Scheibel, T.3    Fehr, M.4
  • 45
    • 36949016932 scopus 로고    scopus 로고
    • Permeability of silk microcapsules made by the interfacial adsorption of protein
    • Hermanson K.D., Harasim M.B., Scheibel T., Bausch A.R. Permeability of silk microcapsules made by the interfacial adsorption of protein. Phys Chem Chem Phys 2007, 9:6442-6446.
    • (2007) Phys Chem Chem Phys , vol.9 , pp. 6442-6446
    • Hermanson, K.D.1    Harasim, M.B.2    Scheibel, T.3    Bausch, A.R.4
  • 46
    • 34547422260 scopus 로고    scopus 로고
    • Engineered microcapsules fabricated from reconstituted spider silk
    • Hermanson K., Huemmerich D., Scheibel T., Bausch A. Engineered microcapsules fabricated from reconstituted spider silk. Adv Mater 2007, 19:1810-1815.
    • (2007) Adv Mater , vol.19 , pp. 1810-1815
    • Hermanson, K.1    Huemmerich, D.2    Scheibel, T.3    Bausch, A.4
  • 47
    • 84893862812 scopus 로고    scopus 로고
    • Spider silk capsules as protective reaction containers for enzymes
    • Blüm C., Nichtl A., Scheibel T. Spider silk capsules as protective reaction containers for enzymes. Adv Funct Mater 2014, 23:763-768.
    • (2014) Adv Funct Mater , vol.23 , pp. 763-768
    • Blüm, C.1    Nichtl, A.2    Scheibel, T.3
  • 48
    • 0344304541 scopus 로고    scopus 로고
    • Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels
    • Christian S., Pilch J., Akerman M.E., Porkka K., Laakkonen P., Ruoslahti E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 2003, 163:871-878.
    • (2003) J Cell Biol , vol.163 , pp. 871-878
    • Christian, S.1    Pilch, J.2    Akerman, M.E.3    Porkka, K.4    Laakkonen, P.5    Ruoslahti, E.6
  • 49
    • 84884821689 scopus 로고    scopus 로고
    • CGKRK-modified nanoparticles for dual-targeting drug delivery to tumor cells and angiogenic blood vessels
    • Hu Q., Gao X., Kang T., et al. CGKRK-modified nanoparticles for dual-targeting drug delivery to tumor cells and angiogenic blood vessels. Biomaterials 2013, 34:9496-9508.
    • (2013) Biomaterials , vol.34 , pp. 9496-9508
    • Hu, Q.1    Gao, X.2    Kang, T.3
  • 50
    • 0038575385 scopus 로고    scopus 로고
    • Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer
    • Witton C.J., Reeves J.R., Going J.J., Cooke T.G., Bartlett J.M. Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol 2003, 200:290-297.
    • (2003) J Pathol , vol.200 , pp. 290-297
    • Witton, C.J.1    Reeves, J.R.2    Going, J.J.3    Cooke, T.G.4    Bartlett, J.M.5
  • 51
    • 77955897623 scopus 로고    scopus 로고
    • Structural characterization and functionalization of engineered spider silk films
    • Spiess K., Wohlrab S., Scheibel T. Structural characterization and functionalization of engineered spider silk films. Soft Matter 2010, 6:4168-4174.
    • (2010) Soft Matter , vol.6 , pp. 4168-4174
    • Spiess, K.1    Wohlrab, S.2    Scheibel, T.3
  • 52
    • 84900422237 scopus 로고    scopus 로고
    • Recombinant spider silk genetically functionalized with affinity domains
    • Jansson R., Thatikonda N., Lindberg D., et al. Recombinant spider silk genetically functionalized with affinity domains. Biomacromolecules 2014, 15:1696-1706.
    • (2014) Biomacromolecules , vol.15 , pp. 1696-1706
    • Jansson, R.1    Thatikonda, N.2    Lindberg, D.3
  • 53
    • 84864006044 scopus 로고    scopus 로고
    • Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins
    • Wohlrab S., Muller S., Schmidt A., et al. Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins. Biomaterials 2012, 33:6650-6659.
    • (2012) Biomaterials , vol.33 , pp. 6650-6659
    • Wohlrab, S.1    Muller, S.2    Schmidt, A.3
  • 55
    • 77955588339 scopus 로고    scopus 로고
    • Evaluation of a new type of wound dressing made from recombinant spider silk protein using rat models
    • Baoyong L., Jian Z., Denglong C., Min L. Evaluation of a new type of wound dressing made from recombinant spider silk protein using rat models. Burns 2010, 36:891-896.
    • (2010) Burns , vol.36 , pp. 891-896
    • Baoyong, L.1    Jian, Z.2    Denglong, C.3    Min, L.4
  • 56
    • 84881668935 scopus 로고    scopus 로고
    • Recombinant spider silk with cell binding motifs for specific adherence of cells
    • Widhe M., Johansson U., Hillerdahl C.O., Hedhammar M. Recombinant spider silk with cell binding motifs for specific adherence of cells. Biomaterials 2013, 34:8223-8234.
    • (2013) Biomaterials , vol.34 , pp. 8223-8234
    • Widhe, M.1    Johansson, U.2    Hillerdahl, C.O.3    Hedhammar, M.4
  • 57
    • 84899513546 scopus 로고    scopus 로고
    • Three-dimensional in vitro cancer models: a short review
    • Wang C., Tang Z., Zhao Y., Yao R., Li L., Sun W. Three-dimensional in vitro cancer models: a short review. Biofabrication 2014, 6:022001.
    • (2014) Biofabrication , vol.6 , pp. 022001
    • Wang, C.1    Tang, Z.2    Zhao, Y.3    Yao, R.4    Li, L.5    Sun, W.6
  • 58
    • 84921957467 scopus 로고    scopus 로고
    • Three-dimensional in vitro tumor models for cancer research and drug evaluation
    • Xu X., Farach-Carson M.C., Jia X. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv 2014, 32:1256-1268.
    • (2014) Biotechnol Adv , vol.32 , pp. 1256-1268
    • Xu, X.1    Farach-Carson, M.C.2    Jia, X.3
  • 59
    • 79959884148 scopus 로고    scopus 로고
    • Three-dimensional porous silk tumor constructs in the approximation of in vivo osteosarcoma physiology
    • Tan P.H., Aung K.Z., Toh S.L., Goh J.C., Nathan S.S. Three-dimensional porous silk tumor constructs in the approximation of in vivo osteosarcoma physiology. Biomaterials 2011, 32:6131-6137.
    • (2011) Biomaterials , vol.32 , pp. 6131-6137
    • Tan, P.H.1    Aung, K.Z.2    Toh, S.L.3    Goh, J.C.4    Nathan, S.S.5
  • 61
    • 84885361354 scopus 로고    scopus 로고
    • Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds
    • Bulysheva A.A., Bowlin G.L., Petrova S.P., Yeudall W.A. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater 2013, 8:055009.
    • (2013) Biomed Mater , vol.8 , pp. 055009
    • Bulysheva, A.A.1    Bowlin, G.L.2    Petrova, S.P.3    Yeudall, W.A.4
  • 62
    • 84884813681 scopus 로고    scopus 로고
    • A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells
    • Kundu B., Saha P., Datta K., Kundu S.C. A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells. Biomaterials 2013, 34:9462-9474.
    • (2013) Biomaterials , vol.34 , pp. 9462-9474
    • Kundu, B.1    Saha, P.2    Datta, K.3    Kundu, S.C.4
  • 63
    • 35948949806 scopus 로고    scopus 로고
    • Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model
    • Moreau J.E., Anderson K., Mauney J.R., Nguyen T., Kaplan D.L., Rosenblatt M. Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Res 2007, 67:10304-10308.
    • (2007) Cancer Res , vol.67 , pp. 10304-10308
    • Moreau, J.E.1    Anderson, K.2    Mauney, J.R.3    Nguyen, T.4    Kaplan, D.L.5    Rosenblatt, M.6
  • 64
    • 58849131828 scopus 로고    scopus 로고
    • Cancer and the tumor microenvironment: a review of an essential relationship
    • Mbeunkui F., Johann D.J. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 2009, 63:571-582.
    • (2009) Cancer Chemother Pharmacol , vol.63 , pp. 571-582
    • Mbeunkui, F.1    Johann, D.J.2
  • 65
    • 84867680330 scopus 로고    scopus 로고
    • Stem cell implants for cancer therapy: TRAIL-expressing mesenchymal stem cells target cancer cells in situ
    • Reagan M.R., Seib F.P., McMillin D.W., et al. Stem cell implants for cancer therapy: TRAIL-expressing mesenchymal stem cells target cancer cells in situ. J Breast Cancer 2012, 15:273-282.
    • (2012) J Breast Cancer , vol.15 , pp. 273-282
    • Reagan, M.R.1    Seib, F.P.2    McMillin, D.W.3
  • 67
    • 64149121998 scopus 로고    scopus 로고
    • Self-assembly of genetically engineered spider silk block copolymers
    • Rabotyagova O.S., Cebe P., Kaplan D.L. Self-assembly of genetically engineered spider silk block copolymers. Biomacromolecules 2009, 10:229-236.
    • (2009) Biomacromolecules , vol.10 , pp. 229-236
    • Rabotyagova, O.S.1    Cebe, P.2    Kaplan, D.L.3
  • 69
    • 77951977674 scopus 로고    scopus 로고
    • Characterization of recombinantly produced spider flagelliform silk domains
    • Heim M., Ackerschott C.B., Scheibel T. Characterization of recombinantly produced spider flagelliform silk domains. J Struct Biol 2010, 170:420-425.
    • (2010) J Struct Biol , vol.170 , pp. 420-425
    • Heim, M.1    Ackerschott, C.B.2    Scheibel, T.3
  • 70
    • 40849102539 scopus 로고    scopus 로고
    • Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation
    • Hedhammar M., Rising A., Grip S., et al. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. Biochemistry 2008, 47:3407-3417.
    • (2008) Biochemistry , vol.47 , pp. 3407-3417
    • Hedhammar, M.1    Rising, A.2    Grip, S.3
  • 71
    • 81255161459 scopus 로고    scopus 로고
    • Tunable self-assembly of genetically engineered silk-elastin-like protein polymers
    • Xia X.X., Xu Q., Hu X., Qin G., Kaplan D.L. Tunable self-assembly of genetically engineered silk-elastin-like protein polymers. Biomacromolecules 2011, 12:3844-3850.
    • (2011) Biomacromolecules , vol.12 , pp. 3844-3850
    • Xia, X.X.1    Xu, Q.2    Hu, X.3    Qin, G.4    Kaplan, D.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.