-
2
-
-
77955111796
-
New opportunities for an ancient material
-
Omenetto F.G., Kaplan D.L. New opportunities for an ancient material. Science 2010, 329:528-531.
-
(2010)
Science
, vol.329
, pp. 528-531
-
-
Omenetto, F.G.1
Kaplan, D.L.2
-
3
-
-
84877025483
-
Silk fibroin biomaterials for tissue regenerations
-
Kundu B., Rajkhowa R., Kundu S.C., Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 2013, 65:457-470.
-
(2013)
Adv Drug Deliv Rev
, vol.65
, pp. 457-470
-
-
Kundu, B.1
Rajkhowa, R.2
Kundu, S.C.3
Wang, X.4
-
4
-
-
84855448057
-
Engineered spider silk: the intelligent biomaterial of the future, Part II
-
[online]
-
Kazmierska K., Florczak A., Piekos K., Mackiewicz A., Dams-Kozlowska H. Engineered spider silk: the intelligent biomaterial of the future, Part II. Postepy Hig Med Dosw 2011, 65:389-396. [online].
-
(2011)
Postepy Hig Med Dosw
, vol.65
, pp. 389-396
-
-
Kazmierska, K.1
Florczak, A.2
Piekos, K.3
Mackiewicz, A.4
Dams-Kozlowska, H.5
-
5
-
-
84896541762
-
Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications
-
Schacht K., Scheibel T. Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Curr Opin Biotechnol 2014, 29C:62-69.
-
(2014)
Curr Opin Biotechnol
, vol.29 C
, pp. 62-69
-
-
Schacht, K.1
Scheibel, T.2
-
6
-
-
70349783566
-
Spider silk: from soluble protein to extraordinary fiber
-
Heim M., Keerl D., Scheibel T. Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed Engl 2009, 48:3584-3596.
-
(2009)
Angew Chem Int Ed Engl
, vol.48
, pp. 3584-3596
-
-
Heim, M.1
Keerl, D.2
Scheibel, T.3
-
7
-
-
77956629695
-
Recombinant spider silk proteins for applications in biomaterials
-
Spiess K., Lammel A., Scheibel T. Recombinant spider silk proteins for applications in biomaterials. Macromol Biosci 2010, 10:998-1007.
-
(2010)
Macromol Biosci
, vol.10
, pp. 998-1007
-
-
Spiess, K.1
Lammel, A.2
Scheibel, T.3
-
8
-
-
33947515739
-
Spider silk and amyloid fibrils: a structural comparison
-
Slotta U., Hess S., Spiess K., Stromer T., Serpell L., Scheibel T. Spider silk and amyloid fibrils: a structural comparison. Macromol Biosci 2007, 7:183-188.
-
(2007)
Macromol Biosci
, vol.7
, pp. 183-188
-
-
Slotta, U.1
Hess, S.2
Spiess, K.3
Stromer, T.4
Serpell, L.5
Scheibel, T.6
-
9
-
-
77952378056
-
A conserved spider silk domain acts as a molecular switch that controls fibre assembly
-
Hagn F., Eisoldt L., Hardy J.G., et al. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 2010, 465:239-242.
-
(2010)
Nature
, vol.465
, pp. 239-242
-
-
Hagn, F.1
Eisoldt, L.2
Hardy, J.G.3
-
10
-
-
84858859727
-
Review the role of terminal domains during storage and assembly of spider silk proteins
-
Eisoldt L., Thamm C., Scheibel T. Review the role of terminal domains during storage and assembly of spider silk proteins. Biopolymers 2012, 97:355-361.
-
(2012)
Biopolymers
, vol.97
, pp. 355-361
-
-
Eisoldt, L.1
Thamm, C.2
Scheibel, T.3
-
11
-
-
13644260108
-
Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins
-
Scheibel T. Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb Cell Fact 2004, 3:14.
-
(2004)
Microb Cell Fact
, vol.3
, pp. 14
-
-
Scheibel, T.1
-
12
-
-
34547803343
-
Biotechnological production of spider-silk proteins enables new applications
-
Vendrely C., Scheibel T. Biotechnological production of spider-silk proteins enables new applications. Macromol Biosci 2007, 7:401-409.
-
(2007)
Macromol Biosci
, vol.7
, pp. 401-409
-
-
Vendrely, C.1
Scheibel, T.2
-
13
-
-
84896393957
-
Structure-function-property-design interplay in biopolymers: spider silk
-
Tokareva O., Jacobsen M., Buehler M., Wong J., Kaplan D.L. Structure-function-property-design interplay in biopolymers: spider silk. Acta Biomater 2014, 10:1612-1626.
-
(2014)
Acta Biomater
, vol.10
, pp. 1612-1626
-
-
Tokareva, O.1
Jacobsen, M.2
Buehler, M.3
Wong, J.4
Kaplan, D.L.5
-
14
-
-
84855468749
-
Engineered spider silk: the intelligent biomaterial of the future, Part I
-
[online]
-
Florczak A., Piekos K., Kazmierska K., Mackiewicz A., Dams-Kozlowska H. Engineered spider silk: the intelligent biomaterial of the future, Part I. Postepy Hig Med Dosw 2011, 65:377-388. [online].
-
(2011)
Postepy Hig Med Dosw
, vol.65
, pp. 377-388
-
-
Florczak, A.1
Piekos, K.2
Kazmierska, K.3
Mackiewicz, A.4
Dams-Kozlowska, H.5
-
15
-
-
84866175348
-
Doxorubicin-loaded silk films: drug-silk interactions and in vivo performance in human orthotopic breast cancer
-
Seib F.P., Kaplan D.L. Doxorubicin-loaded silk films: drug-silk interactions and in vivo performance in human orthotopic breast cancer. Biomaterials 2012, 33:8442-8450.
-
(2012)
Biomaterials
, vol.33
, pp. 8442-8450
-
-
Seib, F.P.1
Kaplan, D.L.2
-
16
-
-
84871971565
-
Self-assembling doxorubicin silk hydrogels for the focal treatment of primary breast cancer
-
Seib F.P., Pritchard E.M., Kaplan D.L. Self-assembling doxorubicin silk hydrogels for the focal treatment of primary breast cancer. Adv Funct Mater 2013, 23:58-65.
-
(2013)
Adv Funct Mater
, vol.23
, pp. 58-65
-
-
Seib, F.P.1
Pritchard, E.M.2
Kaplan, D.L.3
-
17
-
-
34447641810
-
Silk fibroin mediated delivery of liposomal emodin to breast cancer cells
-
Cheema S.K., Gobin A.S., Rhea R., Lopez-Berestein G., Newman R.A., Mathur A.B. Silk fibroin mediated delivery of liposomal emodin to breast cancer cells. Int J Pharm 2007, 341:221-229.
-
(2007)
Int J Pharm
, vol.341
, pp. 221-229
-
-
Cheema, S.K.1
Gobin, A.S.2
Rhea, R.3
Lopez-Berestein, G.4
Newman, R.A.5
Mathur, A.B.6
-
18
-
-
84889632460
-
PH-dependent anticancer drug release from silk nanoparticles
-
Seib F.P., Jones G.T., Rnjak-Kovacina J., Lin Y., Kaplan D.L. pH-dependent anticancer drug release from silk nanoparticles. Adv Healthc Mater 2013, 2:1606-1611.
-
(2013)
Adv Healthc Mater
, vol.2
, pp. 1606-1611
-
-
Seib, F.P.1
Jones, G.T.2
Rnjak-Kovacina, J.3
Lin, Y.4
Kaplan, D.L.5
-
19
-
-
77954944881
-
Silk fibroin-derived nanoparticles for biomedical applications
-
Mathur A.B., Gupta V. Silk fibroin-derived nanoparticles for biomedical applications. Nanomedicine (Lond) 2010, 5:807-820.
-
(2010)
Nanomedicine (Lond)
, vol.5
, pp. 807-820
-
-
Mathur, A.B.1
Gupta, V.2
-
20
-
-
84890467788
-
Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery
-
Wu P., Liu Q., Li R., et al. Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery. ACS Appl Mater Interfaces 2013, 5:12638-12645.
-
(2013)
ACS Appl Mater Interfaces
, vol.5
, pp. 12638-12645
-
-
Wu, P.1
Liu, Q.2
Li, R.3
-
21
-
-
84871538885
-
Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers
-
Subia B., Kundu S.C. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers. Nanotechnology 2013, 24:035103.
-
(2013)
Nanotechnology
, vol.24
, pp. 035103
-
-
Subia, B.1
Kundu, S.C.2
-
22
-
-
69149110897
-
Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy
-
Gupta V., Aseh A., Rios C.N., Aggarwal B.B., Mathur A.B. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomed 2009, 4:115-122.
-
(2009)
Int J Nanomed
, vol.4
, pp. 115-122
-
-
Gupta, V.1
Aseh, A.2
Rios, C.N.3
Aggarwal, B.B.4
Mathur, A.B.5
-
23
-
-
77950065443
-
Controlling silk fibroin particle features for drug delivery
-
Lammel A.S., Hu X., Park S.H., Kaplan D.L., Scheibel T.R. Controlling silk fibroin particle features for drug delivery. Biomaterials 2010, 31:4583-4591.
-
(2010)
Biomaterials
, vol.31
, pp. 4583-4591
-
-
Lammel, A.S.1
Hu, X.2
Park, S.H.3
Kaplan, D.L.4
Scheibel, T.R.5
-
24
-
-
84906089486
-
Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model
-
Chiu B., Coburn J., Pilichowska M., et al. Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model. Br J Cancer 2014, 111:708-715.
-
(2014)
Br J Cancer
, vol.111
, pp. 708-715
-
-
Chiu, B.1
Coburn, J.2
Pilichowska, M.3
-
25
-
-
84923959250
-
Silk fibroin rods for sustained delivery of breast cancer therapeutics
-
Yucel T., Lovett M.L., Giangregorio R., Coonahan E., Kaplan D.L. Silk fibroin rods for sustained delivery of breast cancer therapeutics. Biomaterials 2014, 35:8613-8620.
-
(2014)
Biomaterials
, vol.35
, pp. 8613-8620
-
-
Yucel, T.1
Lovett, M.L.2
Giangregorio, R.3
Coonahan, E.4
Kaplan, D.L.5
-
26
-
-
84880947293
-
Mechanisms of monoclonal antibody stabilization and release from silk biomaterials
-
Guziewicz N.A., Massetti A.J., Perez-Ramirez B.J., Kaplan D.L. Mechanisms of monoclonal antibody stabilization and release from silk biomaterials. Biomaterials 2013, 34:7766-7775.
-
(2013)
Biomaterials
, vol.34
, pp. 7766-7775
-
-
Guziewicz, N.A.1
Massetti, A.J.2
Perez-Ramirez, B.J.3
Kaplan, D.L.4
-
27
-
-
79251593187
-
Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies
-
Guziewicz N., Best A., Perez-Ramirez B., Kaplan D.L. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials 2011, 32:2642-2650.
-
(2011)
Biomaterials
, vol.32
, pp. 2642-2650
-
-
Guziewicz, N.1
Best, A.2
Perez-Ramirez, B.3
Kaplan, D.L.4
-
28
-
-
81855221805
-
Paclitaxel-loaded silk fibroin nanospheres
-
Chen M., Shao Z., Chen X. Paclitaxel-loaded silk fibroin nanospheres. J Biomed Mater Res A 2012, 100:203-210.
-
(2012)
J Biomed Mater Res A
, vol.100
, pp. 203-210
-
-
Chen, M.1
Shao, Z.2
Chen, X.3
-
29
-
-
77953457158
-
Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting
-
Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol 2010, 624:25-37.
-
(2010)
Methods Mol Biol
, vol.624
, pp. 25-37
-
-
Greish, K.1
-
30
-
-
33846840258
-
Silk-fibroin-coated liposomes for long-term and targeted drug delivery
-
Gobin A.S., Rhea R., Newman R.A., Mathur A.B. Silk-fibroin-coated liposomes for long-term and targeted drug delivery. Int J Nanomed 2006, 1:81-87.
-
(2006)
Int J Nanomed
, vol.1
, pp. 81-87
-
-
Gobin, A.S.1
Rhea, R.2
Newman, R.A.3
Mathur, A.B.4
-
31
-
-
0037130997
-
Genetically engineered silk-elastinlike protein polymers for controlled drug delivery
-
Megeed Z., Cappello J., Ghandehari H. Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Adv Drug Deliv Rev 2002, 54:1075-1091.
-
(2002)
Adv Drug Deliv Rev
, vol.54
, pp. 1075-1091
-
-
Megeed, Z.1
Cappello, J.2
Ghandehari, H.3
-
32
-
-
68849085397
-
Silk-elastinlike protein polymer hydrogels for localized adenoviral gene therapy of head and neck tumors
-
Greish K., Araki K., Li D., et al. Silk-elastinlike protein polymer hydrogels for localized adenoviral gene therapy of head and neck tumors. Biomacromolecules 2009, 10:2183-2188.
-
(2009)
Biomacromolecules
, vol.10
, pp. 2183-2188
-
-
Greish, K.1
Araki, K.2
Li, D.3
-
33
-
-
70449698522
-
Silk-elastinlike recombinant polymers for gene therapy of head and neck cancer: from molecular definition to controlled gene expression
-
Gustafson J., Greish K., Frandsen J., Cappello J., Ghandehari H. Silk-elastinlike recombinant polymers for gene therapy of head and neck cancer: from molecular definition to controlled gene expression. J Control Release 2009, 140:256-261.
-
(2009)
J Control Release
, vol.140
, pp. 256-261
-
-
Gustafson, J.1
Greish, K.2
Frandsen, J.3
Cappello, J.4
Ghandehari, H.5
-
34
-
-
84896763905
-
Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery
-
Xia X.X., Wang M., Lin Y., Xu Q., Kaplan D.L. Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery. Biomacromolecules 2014, 15:908-914.
-
(2014)
Biomacromolecules
, vol.15
, pp. 908-914
-
-
Xia, X.X.1
Wang, M.2
Lin, Y.3
Xu, Q.4
Kaplan, D.L.5
-
35
-
-
84885957687
-
Control of drug loading and release properties of spider silk sub-microparticles
-
Blüm C., Scheibel T. Control of drug loading and release properties of spider silk sub-microparticles. BioNanoScience 2012, 2:67-74.
-
(2012)
BioNanoScience
, vol.2
, pp. 67-74
-
-
Blüm, C.1
Scheibel, T.2
-
36
-
-
78651468091
-
Recombinant spider silk particles as drug delivery vehicles
-
Lammel A., Schwab M., Hofer M., Winter G., Scheibel T. Recombinant spider silk particles as drug delivery vehicles. Biomaterials 2011, 32:2233-2240.
-
(2011)
Biomaterials
, vol.32
, pp. 2233-2240
-
-
Lammel, A.1
Schwab, M.2
Hofer, M.3
Winter, G.4
Scheibel, T.5
-
37
-
-
83355166780
-
Recombinant spider silk particles for controlled delivery of protein drugs
-
Hofer M., Winter G., Myschik J. Recombinant spider silk particles for controlled delivery of protein drugs. Biomaterials 2011, 33:1554-1562.
-
(2011)
Biomaterials
, vol.33
, pp. 1554-1562
-
-
Hofer, M.1
Winter, G.2
Myschik, J.3
-
38
-
-
84855470671
-
Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery
-
Numata K., Mieszawska-Czajkowska A.J., Kvenvold L.A., Kaplan D.L. Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery. Macromol Biosci 2012, 12:75-82.
-
(2012)
Macromol Biosci
, vol.12
, pp. 75-82
-
-
Numata, K.1
Mieszawska-Czajkowska, A.J.2
Kvenvold, L.A.3
Kaplan, D.L.4
-
39
-
-
80051734273
-
Spider silk-based gene carriers for tumor cell-specific delivery
-
Numata K., Reagan M.R., Goldstein R.H., Rosenblatt M., Kaplan D.L. Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug Chem 2011, 22:1605-1610.
-
(2011)
Bioconjug Chem
, vol.22
, pp. 1605-1610
-
-
Numata, K.1
Reagan, M.R.2
Goldstein, R.H.3
Rosenblatt, M.4
Kaplan, D.L.5
-
40
-
-
84905816340
-
Functionalized spider silk spheres as drug carriers for targeted cancer therapy
-
Florczak A., Mackiewicz A., Dams-Kozlowska H. Functionalized spider silk spheres as drug carriers for targeted cancer therapy. Biomacromolecules 2014, 15:2971-2981.
-
(2014)
Biomacromolecules
, vol.15
, pp. 2971-2981
-
-
Florczak, A.1
Mackiewicz, A.2
Dams-Kozlowska, H.3
-
41
-
-
6344228390
-
Primary structure elements of spider dragline silks and their contribution to protein solubility
-
Huemmerich D., Helsen C.W., Quedzuweit S., Oschmann J., Rudolph R., Scheibel T. Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 2004, 43:13604-13612.
-
(2004)
Biochemistry
, vol.43
, pp. 13604-13612
-
-
Huemmerich, D.1
Helsen, C.W.2
Quedzuweit, S.3
Oschmann, J.4
Rudolph, R.5
Scheibel, T.6
-
42
-
-
47149110216
-
An engineered spider silk protein forms microspheres
-
Slotta U.K., Rammensee S., Gorb S., Scheibel T. An engineered spider silk protein forms microspheres. Angew Chem Int Ed Engl 2008, 47:4592-4594.
-
(2008)
Angew Chem Int Ed Engl
, vol.47
, pp. 4592-4594
-
-
Slotta, U.K.1
Rammensee, S.2
Gorb, S.3
Scheibel, T.4
-
43
-
-
50949132083
-
Processing conditions for the formation of spider silk microspheres
-
Lammel A., Schwab M., Slotta U., Winter G., Scheibel T. Processing conditions for the formation of spider silk microspheres. ChemSusChem 2008, 1:413-416.
-
(2008)
ChemSusChem
, vol.1
, pp. 413-416
-
-
Lammel, A.1
Schwab, M.2
Slotta, U.3
Winter, G.4
Scheibel, T.5
-
44
-
-
56549086514
-
Formulation of poorly water-soluble substances using self-assembling spider silk protein
-
Liebmann B., Hummerich D., Scheibel T., Fehr M. Formulation of poorly water-soluble substances using self-assembling spider silk protein. Colloids Surf A 2008, 331:126-132.
-
(2008)
Colloids Surf A
, vol.331
, pp. 126-132
-
-
Liebmann, B.1
Hummerich, D.2
Scheibel, T.3
Fehr, M.4
-
45
-
-
36949016932
-
Permeability of silk microcapsules made by the interfacial adsorption of protein
-
Hermanson K.D., Harasim M.B., Scheibel T., Bausch A.R. Permeability of silk microcapsules made by the interfacial adsorption of protein. Phys Chem Chem Phys 2007, 9:6442-6446.
-
(2007)
Phys Chem Chem Phys
, vol.9
, pp. 6442-6446
-
-
Hermanson, K.D.1
Harasim, M.B.2
Scheibel, T.3
Bausch, A.R.4
-
46
-
-
34547422260
-
Engineered microcapsules fabricated from reconstituted spider silk
-
Hermanson K., Huemmerich D., Scheibel T., Bausch A. Engineered microcapsules fabricated from reconstituted spider silk. Adv Mater 2007, 19:1810-1815.
-
(2007)
Adv Mater
, vol.19
, pp. 1810-1815
-
-
Hermanson, K.1
Huemmerich, D.2
Scheibel, T.3
Bausch, A.4
-
47
-
-
84893862812
-
Spider silk capsules as protective reaction containers for enzymes
-
Blüm C., Nichtl A., Scheibel T. Spider silk capsules as protective reaction containers for enzymes. Adv Funct Mater 2014, 23:763-768.
-
(2014)
Adv Funct Mater
, vol.23
, pp. 763-768
-
-
Blüm, C.1
Nichtl, A.2
Scheibel, T.3
-
48
-
-
0344304541
-
Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels
-
Christian S., Pilch J., Akerman M.E., Porkka K., Laakkonen P., Ruoslahti E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 2003, 163:871-878.
-
(2003)
J Cell Biol
, vol.163
, pp. 871-878
-
-
Christian, S.1
Pilch, J.2
Akerman, M.E.3
Porkka, K.4
Laakkonen, P.5
Ruoslahti, E.6
-
49
-
-
84884821689
-
CGKRK-modified nanoparticles for dual-targeting drug delivery to tumor cells and angiogenic blood vessels
-
Hu Q., Gao X., Kang T., et al. CGKRK-modified nanoparticles for dual-targeting drug delivery to tumor cells and angiogenic blood vessels. Biomaterials 2013, 34:9496-9508.
-
(2013)
Biomaterials
, vol.34
, pp. 9496-9508
-
-
Hu, Q.1
Gao, X.2
Kang, T.3
-
50
-
-
0038575385
-
Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer
-
Witton C.J., Reeves J.R., Going J.J., Cooke T.G., Bartlett J.M. Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol 2003, 200:290-297.
-
(2003)
J Pathol
, vol.200
, pp. 290-297
-
-
Witton, C.J.1
Reeves, J.R.2
Going, J.J.3
Cooke, T.G.4
Bartlett, J.M.5
-
51
-
-
77955897623
-
Structural characterization and functionalization of engineered spider silk films
-
Spiess K., Wohlrab S., Scheibel T. Structural characterization and functionalization of engineered spider silk films. Soft Matter 2010, 6:4168-4174.
-
(2010)
Soft Matter
, vol.6
, pp. 4168-4174
-
-
Spiess, K.1
Wohlrab, S.2
Scheibel, T.3
-
52
-
-
84900422237
-
Recombinant spider silk genetically functionalized with affinity domains
-
Jansson R., Thatikonda N., Lindberg D., et al. Recombinant spider silk genetically functionalized with affinity domains. Biomacromolecules 2014, 15:1696-1706.
-
(2014)
Biomacromolecules
, vol.15
, pp. 1696-1706
-
-
Jansson, R.1
Thatikonda, N.2
Lindberg, D.3
-
53
-
-
84864006044
-
Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins
-
Wohlrab S., Muller S., Schmidt A., et al. Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins. Biomaterials 2012, 33:6650-6659.
-
(2012)
Biomaterials
, vol.33
, pp. 6650-6659
-
-
Wohlrab, S.1
Muller, S.2
Schmidt, A.3
-
54
-
-
33846005182
-
RGD-functionalized bioengineered spider dragline silk biomaterial
-
Bini E., Foo C.W., Huang J., Karageorgiou V., Kitchel B., Kaplan D.L. RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 2006, 7:3139-3145.
-
(2006)
Biomacromolecules
, vol.7
, pp. 3139-3145
-
-
Bini, E.1
Foo, C.W.2
Huang, J.3
Karageorgiou, V.4
Kitchel, B.5
Kaplan, D.L.6
-
55
-
-
77955588339
-
Evaluation of a new type of wound dressing made from recombinant spider silk protein using rat models
-
Baoyong L., Jian Z., Denglong C., Min L. Evaluation of a new type of wound dressing made from recombinant spider silk protein using rat models. Burns 2010, 36:891-896.
-
(2010)
Burns
, vol.36
, pp. 891-896
-
-
Baoyong, L.1
Jian, Z.2
Denglong, C.3
Min, L.4
-
56
-
-
84881668935
-
Recombinant spider silk with cell binding motifs for specific adherence of cells
-
Widhe M., Johansson U., Hillerdahl C.O., Hedhammar M. Recombinant spider silk with cell binding motifs for specific adherence of cells. Biomaterials 2013, 34:8223-8234.
-
(2013)
Biomaterials
, vol.34
, pp. 8223-8234
-
-
Widhe, M.1
Johansson, U.2
Hillerdahl, C.O.3
Hedhammar, M.4
-
57
-
-
84899513546
-
Three-dimensional in vitro cancer models: a short review
-
Wang C., Tang Z., Zhao Y., Yao R., Li L., Sun W. Three-dimensional in vitro cancer models: a short review. Biofabrication 2014, 6:022001.
-
(2014)
Biofabrication
, vol.6
, pp. 022001
-
-
Wang, C.1
Tang, Z.2
Zhao, Y.3
Yao, R.4
Li, L.5
Sun, W.6
-
58
-
-
84921957467
-
Three-dimensional in vitro tumor models for cancer research and drug evaluation
-
Xu X., Farach-Carson M.C., Jia X. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv 2014, 32:1256-1268.
-
(2014)
Biotechnol Adv
, vol.32
, pp. 1256-1268
-
-
Xu, X.1
Farach-Carson, M.C.2
Jia, X.3
-
59
-
-
79959884148
-
Three-dimensional porous silk tumor constructs in the approximation of in vivo osteosarcoma physiology
-
Tan P.H., Aung K.Z., Toh S.L., Goh J.C., Nathan S.S. Three-dimensional porous silk tumor constructs in the approximation of in vivo osteosarcoma physiology. Biomaterials 2011, 32:6131-6137.
-
(2011)
Biomaterials
, vol.32
, pp. 6131-6137
-
-
Tan, P.H.1
Aung, K.Z.2
Toh, S.L.3
Goh, J.C.4
Nathan, S.S.5
-
60
-
-
78651437012
-
Engineered silk fibroin protein 3D matrices for in vitro tumor model
-
Talukdar S., Mandal M., Hutmacher D.W., Russell P.J., Soekmadji C., Kundu S.C. Engineered silk fibroin protein 3D matrices for in vitro tumor model. Biomaterials 2011, 32:2149-2159.
-
(2011)
Biomaterials
, vol.32
, pp. 2149-2159
-
-
Talukdar, S.1
Mandal, M.2
Hutmacher, D.W.3
Russell, P.J.4
Soekmadji, C.5
Kundu, S.C.6
-
61
-
-
84885361354
-
Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds
-
Bulysheva A.A., Bowlin G.L., Petrova S.P., Yeudall W.A. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater 2013, 8:055009.
-
(2013)
Biomed Mater
, vol.8
, pp. 055009
-
-
Bulysheva, A.A.1
Bowlin, G.L.2
Petrova, S.P.3
Yeudall, W.A.4
-
62
-
-
84884813681
-
A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells
-
Kundu B., Saha P., Datta K., Kundu S.C. A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells. Biomaterials 2013, 34:9462-9474.
-
(2013)
Biomaterials
, vol.34
, pp. 9462-9474
-
-
Kundu, B.1
Saha, P.2
Datta, K.3
Kundu, S.C.4
-
63
-
-
35948949806
-
Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model
-
Moreau J.E., Anderson K., Mauney J.R., Nguyen T., Kaplan D.L., Rosenblatt M. Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Res 2007, 67:10304-10308.
-
(2007)
Cancer Res
, vol.67
, pp. 10304-10308
-
-
Moreau, J.E.1
Anderson, K.2
Mauney, J.R.3
Nguyen, T.4
Kaplan, D.L.5
Rosenblatt, M.6
-
64
-
-
58849131828
-
Cancer and the tumor microenvironment: a review of an essential relationship
-
Mbeunkui F., Johann D.J. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 2009, 63:571-582.
-
(2009)
Cancer Chemother Pharmacol
, vol.63
, pp. 571-582
-
-
Mbeunkui, F.1
Johann, D.J.2
-
65
-
-
84867680330
-
Stem cell implants for cancer therapy: TRAIL-expressing mesenchymal stem cells target cancer cells in situ
-
Reagan M.R., Seib F.P., McMillin D.W., et al. Stem cell implants for cancer therapy: TRAIL-expressing mesenchymal stem cells target cancer cells in situ. J Breast Cancer 2012, 15:273-282.
-
(2012)
J Breast Cancer
, vol.15
, pp. 273-282
-
-
Reagan, M.R.1
Seib, F.P.2
McMillin, D.W.3
-
66
-
-
84872682883
-
Purification and cytotoxicity of tag-free bioengineered spider silk proteins
-
Dams-Kozlowska H., Majer A., Tomasiewicz P., Lozinska J., Kaplan D.L., Mackiewicz A. Purification and cytotoxicity of tag-free bioengineered spider silk proteins. J Biomed Mater Res A 2013, 101:456-464.
-
(2013)
J Biomed Mater Res A
, vol.101
, pp. 456-464
-
-
Dams-Kozlowska, H.1
Majer, A.2
Tomasiewicz, P.3
Lozinska, J.4
Kaplan, D.L.5
Mackiewicz, A.6
-
67
-
-
64149121998
-
Self-assembly of genetically engineered spider silk block copolymers
-
Rabotyagova O.S., Cebe P., Kaplan D.L. Self-assembly of genetically engineered spider silk block copolymers. Biomacromolecules 2009, 10:229-236.
-
(2009)
Biomacromolecules
, vol.10
, pp. 229-236
-
-
Rabotyagova, O.S.1
Cebe, P.2
Kaplan, D.L.3
-
68
-
-
44349186609
-
Assembly mechanism of recombinant spider silk proteins
-
Rammensee S., Slotta U., Scheibel T., Bausch A.R. Assembly mechanism of recombinant spider silk proteins. Proc Natl Acad Sci U S A 2008, 105:6590-6595.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 6590-6595
-
-
Rammensee, S.1
Slotta, U.2
Scheibel, T.3
Bausch, A.R.4
-
69
-
-
77951977674
-
Characterization of recombinantly produced spider flagelliform silk domains
-
Heim M., Ackerschott C.B., Scheibel T. Characterization of recombinantly produced spider flagelliform silk domains. J Struct Biol 2010, 170:420-425.
-
(2010)
J Struct Biol
, vol.170
, pp. 420-425
-
-
Heim, M.1
Ackerschott, C.B.2
Scheibel, T.3
-
70
-
-
40849102539
-
Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation
-
Hedhammar M., Rising A., Grip S., et al. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. Biochemistry 2008, 47:3407-3417.
-
(2008)
Biochemistry
, vol.47
, pp. 3407-3417
-
-
Hedhammar, M.1
Rising, A.2
Grip, S.3
-
71
-
-
81255161459
-
Tunable self-assembly of genetically engineered silk-elastin-like protein polymers
-
Xia X.X., Xu Q., Hu X., Qin G., Kaplan D.L. Tunable self-assembly of genetically engineered silk-elastin-like protein polymers. Biomacromolecules 2011, 12:3844-3850.
-
(2011)
Biomacromolecules
, vol.12
, pp. 3844-3850
-
-
Xia, X.X.1
Xu, Q.2
Hu, X.3
Qin, G.4
Kaplan, D.L.5
|