메뉴 건너뛰기




Volumn 77, Issue , 2015, Pages 251-270

Homeostatic control of presynaptic neurotransmitter release

Author keywords

Autism; Epilepsy; Homeostatic plasticity; Myasthenia gravis; Neuromuscular junction; Synapse

Indexed keywords

CALCIUM; EPITHELIAL SODIUM CHANNEL; NEUROTRANSMITTER; AGENTS INTERACTING WITH TRANSMITTER, HORMONE OR DRUG RECEPTORS;

EID: 84922762943     PISSN: 00664278     EISSN: 15451585     Source Type: Book Series    
DOI: 10.1146/annurev-physiol-021014-071740     Document Type: Article
Times cited : (188)

References (112)
  • 1
    • 84887011923 scopus 로고    scopus 로고
    • Homeostatic signaling and the stabilization of neural function
    • Davis GW. 2013. Homeostatic signaling and the stabilization of neural function. Neuron 80(3):718-28
    • (2013) Neuron , vol.80 , Issue.3 , pp. 718-728
    • Davis, G.W.1
  • 2
    • 80053141839 scopus 로고    scopus 로고
    • Variability, compensation, and modulation in neurons and circuits
    • Marder E. 2011. Variability, compensation, and modulation in neurons and circuits. Proc. Natl. Acad. Sci. 108(Suppl. 3):15542-48
    • (2011) Proc. Natl. Acad. Sci. , vol.108 , pp. 15542-15548
    • Marder, E.1
  • 4
    • 84899785306 scopus 로고    scopus 로고
    • Kruppel mediates the selective rebalancing of ion channel expression
    • Parrish JZ, Kim CC, Tang L, Bergquist S, Wang T, et al. 2014. Kruppel mediates the selective rebalancing of ion channel expression. Neuron 82(3):537-44
    • (2014) Neuron , vol.82 , Issue.3 , pp. 537-544
    • Parrish, J.Z.1    Kim, C.C.2    Tang, L.3    Bergquist, S.4    Wang, T.5
  • 5
    • 84855416113 scopus 로고    scopus 로고
    • Neuromodulation independently determines correlated channel expression and conductance levels inmotor neurons of the stomatogastric ganglion
    • Temporal S, Desai M, Khorkova O, Varghese G, Dai A, et al. 2012. Neuromodulation independently determines correlated channel expression and conductance levels inmotor neurons of the stomatogastric ganglion. J. Neurophysiol. 107(2):718-27
    • (2012) J. Neurophysiol. , vol.107 , Issue.2 , pp. 718-727
    • Temporal, S.1    Desai, M.2    Khorkova, O.3    Varghese, G.4    Dai, A.5
  • 6
    • 40949112698 scopus 로고    scopus 로고
    • Electrical remodellingmaintains firing properties in cortical pyramidal neurons lacking KCND2-encoded A-type K+ currents
    • Nerbonne JM,Gerber BR, Norris A, Burkhalter A. 2008. Electrical remodellingmaintains firing properties in cortical pyramidal neurons lacking KCND2-encoded A-type K+ currents. J. Physiol. 586(6):1565-79
    • (2008) J. Physiol. , vol.586 , Issue.6 , pp. 1565-1579
    • Nerbonne, J.M.1    Gerber, B.R.2    Norris, A.3    Burkhalter, A.4
  • 7
    • 80053618522 scopus 로고    scopus 로고
    • Mechanisms of GABAergic homeostatic plasticity
    • Wenner P. 2011. Mechanisms of GABAergic homeostatic plasticity. Neural Plast. 2011:489470
    • (2011) Neural Plast. , vol.2011 , pp. 489470
    • Wenner, P.1
  • 8
    • 0032567928 scopus 로고    scopus 로고
    • Activity-dependent scaling of quantal amplitude in neocortical neurons
    • Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. 1998. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391(6670):892-96
    • (1998) Nature , vol.391 , Issue.6670 , pp. 892-896
    • Turrigiano, G.G.1    Leslie, K.R.2    Desai, N.S.3    Rutherford, L.C.4    Nelson, S.B.5
  • 9
    • 0742323527 scopus 로고    scopus 로고
    • Homeostatic plasticity in the developing nervous system
    • Turrigiano GG, Nelson SB. 2004. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5(2):97-107
    • (2004) Nat. Rev. Neurosci. , vol.5 , Issue.2 , pp. 97-107
    • Turrigiano, G.G.1    Nelson, S.B.2
  • 11
    • 33745734146 scopus 로고    scopus 로고
    • Homeostatic control of neural activity: From phenomenology to molecular design
    • Davis GW. 2006. Homeostatic control of neural activity: from phenomenology to molecular design. Annu. Rev. Neurosci. 29:307-23
    • (2006) Annu. Rev. Neurosci. , vol.29 , pp. 307-323
    • Davis, G.W.1
  • 12
    • 33751019274 scopus 로고    scopus 로고
    • Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis
    • Frank CA, Kennedy MJ, Goold CP, Marek KW, Davis GW. 2006. Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 52(4):663-77
    • (2006) Neuron , vol.52 , Issue.4 , pp. 663-677
    • Frank, C.A.1    Kennedy, M.J.2    Goold, C.P.3    Marek, K.W.4    Davis, G.W.5
  • 13
    • 84906537202 scopus 로고    scopus 로고
    • Homeostatic plasticity at the Drosophila neuromuscular junction
    • Frank CA. 2014. Homeostatic plasticity at the Drosophila neuromuscular junction. Neuropharmacology 78:63-74
    • (2014) Neuropharmacology , vol.78 , pp. 63-74
    • Frank, C.A.1
  • 14
    • 67650741663 scopus 로고    scopus 로고
    • Network homeostasis: A matter of coordination
    • Maffei A, Fontanini A. 2009. Network homeostasis: a matter of coordination. Curr. Opin. Neurobiol. 19(2):168-73
    • (2009) Curr. Opin. Neurobiol. , vol.19 , Issue.2 , pp. 168-173
    • Maffei, A.1    Fontanini, A.2
  • 16
    • 84888318195 scopus 로고    scopus 로고
    • Emerging links between homeostatic synaptic plasticity and neurological disease
    • Wondolowski J, Dickman D. 2013. Emerging links between homeostatic synaptic plasticity and neurological disease. Front. Cell. Neurosci. 7:223
    • (2013) Front. Cell. Neurosci. , vol.7 , pp. 223
    • Wondolowski, J.1    Dickman, D.2
  • 17
    • 78649405204 scopus 로고    scopus 로고
    • Homeostatic plasticity and STDP: Keeping a neuron's cool in a fluctuating world
    • Watt AJ, Desai NS. 2010. Homeostatic plasticity and STDP: keeping a neuron's cool in a fluctuating world. Front. Synaptic Neurosci. 2:5
    • (2010) Front. Synaptic Neurosci. , vol.2 , pp. 5
    • Watt, A.J.1    Desai, N.S.2
  • 18
    • 0027048764 scopus 로고
    • Adaptation of quantal content to decreased postsynaptic sensitivity at single endplates in α-bungarotoxin-treated rats
    • Plomp JJ, vanKempenGT, Molenaar PC. 1992. Adaptation of quantal content to decreased postsynaptic sensitivity at single endplates in α-bungarotoxin-treated rats. J. Physiol. 458:487-99
    • (1992) J. Physiol. , vol.458 , pp. 487-499
    • Plomp, J.J.1    Vankempen, G.T.2    Molenaar, P.C.3
  • 19
    • 84893467842 scopus 로고    scopus 로고
    • An age-dependent change in the set point of synaptic homeostasis
    • Mahoney RE, Rawson JM, Eaton BA. 2014. An age-dependent change in the set point of synaptic homeostasis. J. Neurosci. 34(6):2111-19
    • (2014) J. Neurosci. , vol.34 , Issue.6 , pp. 2111-2119
    • Mahoney, R.E.1    Rawson, J.M.2    Eaton, B.A.3
  • 20
    • 0018908724 scopus 로고
    • On the release of transmitter at normal, myasthenia gravis and myasthenic syndrome affected human end-plates
    • Cull-Candy SG, Miledi R, Trautmann A, Uchitel OD. 1980. On the release of transmitter at normal, myasthenia gravis and myasthenic syndrome affected human end-plates. J. Physiol. 299:621-38
    • (1980) J. Physiol. , vol.299 , pp. 621-638
    • Cull-Candy, S.G.1    Miledi, R.2    Trautmann, A.3    Uchitel, O.D.4
  • 21
    • 84865797906 scopus 로고    scopus 로고
    • Ca2+ channels and transmitter release at the active zone
    • Schneggenburger R, Han Y, Kochubey O. 2012. Ca2+ channels and transmitter release at the active zone. Cell Calcium 52(3-4):199-207
    • (2012) Cell Calcium , vol.52 , Issue.3-4 , pp. 199-207
    • Schneggenburger, R.1    Han, Y.2    Kochubey, O.3
  • 22
    • 7644238181 scopus 로고    scopus 로고
    • Biological robustness
    • Kitano H. 2004. Biological robustness. Nat. Rev. Genet. 5(11):826-37
    • (2004) Nat. Rev. Genet. , vol.5 , Issue.11 , pp. 826-837
    • Kitano, H.1
  • 24
    • 0031445676 scopus 로고    scopus 로고
    • Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release
    • Petersen SA, Fetter RD, Noordermeer JN, Goodman CS, DiAntonio A. 1997. Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19(6):1237-48
    • (1997) Neuron , vol.19 , Issue.6 , pp. 1237-1248
    • Petersen, S.A.1    Fetter, R.D.2    Noordermeer, J.N.3    Goodman, C.S.4    Di Antonio, A.5
  • 25
    • 0032485499 scopus 로고    scopus 로고
    • Synapse-specific control of synaptic efficacy at the terminals of a single neuron
    • Davis GW, Goodman CS. 1998. Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature 392(6671):82-86
    • (1998) Nature , vol.392 , Issue.6671 , pp. 82-86
    • Davis, G.W.1    Goodman, C.S.2
  • 26
    • 0031945827 scopus 로고    scopus 로고
    • Genetic analysis of synaptic development and plasticity: Homeostatic regulation of synaptic efficacy
    • Davis GW, Goodman CS. 1998. Genetic analysis of synaptic development and plasticity: homeostatic regulation of synaptic efficacy. Curr. Opin. Neurobiol. 8(1):149-56
    • (1998) Curr. Opin. Neurobiol. , vol.8 , Issue.1 , pp. 149-156
    • Davis, G.W.1    Goodman, C.S.2
  • 27
    • 70450177166 scopus 로고    scopus 로고
    • The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis
    • Dickman DK, Davis GW. 2009. The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science 326(5956):1127-30
    • (2009) Science , vol.326 , Issue.5956 , pp. 1127-1130
    • Dickman, D.K.1    Davis, G.W.2
  • 28
    • 79951696451 scopus 로고    scopus 로고
    • Rab3-GAP controls the progression of synaptic homeostasis at a late stage of vesicle release
    • Muller M, Pym ECG, Tong A, Davis GW. 2011. Rab3-GAP controls the progression of synaptic homeostasis at a late stage of vesicle release. Neuron 69(4):749-62
    • (2011) Neuron , vol.69 , Issue.4 , pp. 749-762
    • Muller, M.1    Pym, E.C.G.2    Tong, A.3    Davis, G.W.4
  • 29
    • 0035043940 scopus 로고    scopus 로고
    • Maintaining the stability of neural function: A homeostatic hypothesis
    • DavisGW, Bezprozvanny I. 2001. Maintaining the stability of neural function: a homeostatic hypothesis. Annu. Rev. Physiol. 63:847-69
    • (2001) Annu. Rev. Physiol. , vol.63 , pp. 847-869
    • Davis, G.W.1    Bezprozvanny, I.2
  • 30
    • 34748920134 scopus 로고    scopus 로고
    • The BMP ligand Gbb gates the expression of synaptic homeostasis independent of synaptic growth control
    • Goold CP, Davis GW. 2007. The BMP ligand Gbb gates the expression of synaptic homeostasis independent of synaptic growth control. Neuron 56(1):109-23
    • (2007) Neuron , vol.56 , Issue.1 , pp. 109-123
    • Goold, C.P.1    Davis, G.W.2
  • 31
    • 78649974217 scopus 로고    scopus 로고
    • The Drosophila miR-310 cluster negatively regulates synaptic strength at the neuromuscular junction
    • TsurudomeK,Tsang K, Liao EH,Ball R, Penney J, et al. 2010. The Drosophila miR-310 cluster negatively regulates synaptic strength at the neuromuscular junction. Neuron 68(5):879-93
    • (2010) Neuron , vol.68 , Issue.5 , pp. 879-893
    • Tsurudome, K.1    Tsang, K.2    Liao, E.H.3    Ball, R.4    Penney, J.5
  • 32
    • 77953802132 scopus 로고    scopus 로고
    • Synaptic homeostasis is consolidated by the cell fate gene gooseberry, a Drosophila pax3/7 homolog
    • Marie B, Pym E, Bergquist S, Davis GW. 2010. Synaptic homeostasis is consolidated by the cell fate gene gooseberry, a Drosophila pax3/7 homolog. J. Neurosci. 30(24):8071-82
    • (2010) J. Neurosci. , vol.30 , Issue.24 , pp. 8071-8082
    • Marie, B.1    Pym, E.2    Bergquist, S.3    Davis, G.W.4
  • 33
    • 79961014437 scopus 로고    scopus 로고
    • MicroRNA regulation of homeostatic synaptic plasticity
    • Cohen JE, Lee PR, Chen S, Li W, Fields RD. 2011. MicroRNA regulation of homeostatic synaptic plasticity. PNAS 108(28):11650-55
    • (2011) PNAS , vol.108 , Issue.28 , pp. 11650-11655
    • Cohen, J.E.1    Lee, P.R.2    Chen, S.3    Li, W.4    Fields, R.D.5
  • 34
    • 0034712843 scopus 로고    scopus 로고
    • Robust perfect adaptation in bacterial chemotaxis through integral feedback control
    • Yi TM, Huang Y, Simon MI, Doyle J. 2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. PNAS 97(9):4649-53
    • (2000) PNAS , vol.97 , Issue.9 , pp. 4649-4653
    • Yi, T.M.1    Huang, Y.2    Simon, M.I.3    Doyle, J.4
  • 35
    • 78049495018 scopus 로고    scopus 로고
    • Activity-dependent regulation of the binomial parameters p and n at the mouse neuromuscular junction in vivo
    • Wang X, Wang Q, Engisch KL, Rich MM. 2010. Activity-dependent regulation of the binomial parameters p and n at the mouse neuromuscular junction in vivo. J. Neurophysiol. 104(5):2352-58
    • (2010) J. Neurophysiol. , vol.104 , Issue.5 , pp. 2352-2358
    • Wang, X.1    Wang, Q.2    Engisch, K.L.3    Rich, M.M.4
  • 36
    • 0029061895 scopus 로고
    • Properties of synaptic transmission at single hippocampal synaptic boutons
    • Liu G, Tsien RW. 1995. Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375(6530):404-8
    • (1995) Nature , vol.375 , Issue.6530 , pp. 404-408
    • Liu, G.1    Tsien, R.W.2
  • 37
    • 0037191791 scopus 로고    scopus 로고
    • Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons
    • Burrone J, O'Byrne M, Murthy VN. 2002. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420(6914):414-18
    • (2002) Nature , vol.420 , Issue.6914 , pp. 414-418
    • Burrone, J.1    O'Byrne, M.2    Murthy, V.N.3
  • 38
    • 23944511446 scopus 로고    scopus 로고
    • Adaptation to synaptic inactivity in hippocampal neurons
    • Thiagarajan TC, Lindskog M, Tsien RW. 2005. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47(5):725-37
    • (2005) Neuron , vol.47 , Issue.5 , pp. 725-737
    • Thiagarajan, T.C.1    Lindskog, M.2    Tsien, R.W.3
  • 39
    • 79955463982 scopus 로고    scopus 로고
    • Sensorymodality-specific homeostatic plasticity in the developing optic tectum
    • Deeg KE, Aizenman CD. 2011. Sensorymodality-specific homeostatic plasticity in the developing optic tectum. Nat. Neurosci. 14(5):548-50
    • (2011) Nat. Neurosci. , vol.14 , Issue.5 , pp. 548-550
    • Deeg, K.E.1    Aizenman, C.D.2
  • 40
    • 78049285752 scopus 로고    scopus 로고
    • Single-cell optogenetic excitation drives homeostatic synaptic depression
    • Goold CP, Nicoll RA. 2010. Single-cell optogenetic excitation drives homeostatic synaptic depression. Neuron 68(3):512-28
    • (2010) Neuron , vol.68 , Issue.3 , pp. 512-528
    • Goold, C.P.1    Nicoll, R.A.2
  • 41
    • 34548434847 scopus 로고    scopus 로고
    • Experience-dependent modification of primary sensory synapses in the mammalian olfactory bulb
    • Tyler WJ, Petzold GC, Pal SK, Murthy VN. 2007. Experience-dependent modification of primary sensory synapses in the mammalian olfactory bulb. J. Neurosci. 27(35):9427-38
    • (2007) J. Neurosci. , vol.27 , Issue.35 , pp. 9427-9438
    • Tyler, W.J.1    Petzold, G.C.2    Pal, S.K.3    Murthy, V.N.4
  • 42
    • 77956314453 scopus 로고    scopus 로고
    • CDK5 serves as a major control point in neurotransmitter release
    • Kim SH, Ryan TA. 2010. CDK5 serves as a major control point in neurotransmitter release. Neuron 67(5):797-809
    • (2010) Neuron , vol.67 , Issue.5 , pp. 797-809
    • Kim, S.H.1    Ryan, T.A.2
  • 43
    • 57349137680 scopus 로고    scopus 로고
    • Differential activity-dependent, homeostatic plasticity of two neocortical inhibitory circuits
    • Bartley AF, Huang ZJ, Huber KM, Gibson JR. 2008. Differential activity-dependent, homeostatic plasticity of two neocortical inhibitory circuits. J. Neurophysiol. 100(4):1983-94
    • (2008) J. Neurophysiol. , vol.100 , Issue.4 , pp. 1983-1994
    • Bartley, A.F.1    Huang, Z.J.2    Huber, K.M.3    Gibson, J.R.4
  • 44
    • 84856259585 scopus 로고    scopus 로고
    • Heterogeneous reallocation of presynaptic efficacy in recurrent excitatory circuits adapting to inactivity
    • Mitra A, Mitra SS, Tsien RW. 2012. Heterogeneous reallocation of presynaptic efficacy in recurrent excitatory circuits adapting to inactivity. Nat. Neurosci. 15:250-57
    • (2012) Nat. Neurosci. , vol.15 , pp. 250-257
    • Mitra, A.1    Mitra, S.S.2    Tsien, R.W.3
  • 45
    • 79956316684 scopus 로고    scopus 로고
    • Homeostatic synaptic plasticity through changes in presynaptic calcium influx
    • Zhao C, Dreosti E, Lagnado L. 2011. Homeostatic synaptic plasticity through changes in presynaptic calcium influx. J. Neurosci. 31(20):7492-96
    • (2011) J. Neurosci. , vol.31 , Issue.20 , pp. 7492-7496
    • Zhao, C.1    Dreosti, E.2    Lagnado, L.3
  • 46
    • 84862331236 scopus 로고    scopus 로고
    • Wherefore art thou, homeo(stasis)? Functional diversity in homeostatic synaptic plasticity
    • Queenan BN, Lee KJ, Pak DTS. 2012. Wherefore art thou, homeo(stasis)? Functional diversity in homeostatic synaptic plasticity. Neural Plast. 2012:718203
    • (2012) Neural Plast. , vol.2012 , pp. 718203
    • Queenan, B.N.1    Lee, K.J.2    Pak, D.T.S.3
  • 47
    • 0035923749 scopus 로고    scopus 로고
    • Inactivity produces increases in neurotransmitter release and synapse size
    • Murthy VN, Schikorski T, Stevens CF, Zhu Y. 2001. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32(4):673-82
    • (2001) Neuron , vol.32 , Issue.4 , pp. 673-682
    • Murthy, V.N.1    Schikorski, T.2    Stevens, C.F.3    Zhu, Y.4
  • 48
    • 33749518278 scopus 로고    scopus 로고
    • Temporal regulation of the expression locus of homeostatic plasticity
    • Wierenga CJ,WalshMF, Turrigiano GG. 2006. Temporal regulation of the expression locus of homeostatic plasticity. J. Neurophysiol. 96(4):2127-33
    • (2006) J. Neurophysiol. , vol.96 , Issue.4 , pp. 2127-2133
    • Wierenga, C.J.1    Walsh, M.F.2    Turrigiano, G.G.3
  • 49
    • 39149120042 scopus 로고    scopus 로고
    • Homeostatic plasticity studied using in vivo hippocampal activity-blockade: Synaptic scaling, intrinsic plasticity and age-dependence
    • Echegoyen J, Neu A,GraberKD, Soltesz I. 2007. Homeostatic plasticity studied using in vivo hippocampal activity-blockade: synaptic scaling, intrinsic plasticity and age-dependence. PLOS ONE 2(8):e700
    • (2007) PLOS ONE , vol.2 , Issue.8 , pp. e700
    • Echegoyen, J.1    Neu, A.2    Graber, K.D.3    Soltesz, I.4
  • 51
    • 79955784858 scopus 로고    scopus 로고
    • Rapid active zone remodeling during synaptic plasticity
    • Weyhersmuller A, Hallermann S, Wagner N, Eilers J. 2011. Rapid active zone remodeling during synaptic plasticity. J. Neurosci. 31(16):6041-52
    • (2011) J. Neurosci. , vol.31 , Issue.16 , pp. 6041-6052
    • Weyhersmuller, A.1    Hallermann, S.2    Wagner, N.3    Eilers, J.4
  • 52
    • 84870044610 scopus 로고    scopus 로고
    • RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool
    • Muller M, Liu KSY, Sigrist SJ, Davis GW. 2012. RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool. J. Neurosci. 32(47):16574-85
    • (2012) J. Neurosci. , vol.32 , Issue.47 , pp. 16574-16585
    • Muller, M.1    Liu, K.S.Y.2    Sigrist, S.J.3    Davis, G.W.4
  • 53
    • 45249121770 scopus 로고    scopus 로고
    • Synapse-specific adaptations to inactivity in hippocampal circuits achieve homeostatic gain control while dampening network reverberation
    • Kim J,Tsien RW. 2008. Synapse-specific adaptations to inactivity in hippocampal circuits achieve homeostatic gain control while dampening network reverberation. Neuron 58(6):925-37
    • (2008) Neuron , vol.58 , Issue.6 , pp. 925-937
    • Kim, J.1    Tsien, R.W.2
  • 54
  • 55
    • 84859628210 scopus 로고    scopus 로고
    • TOR is required for the retrograde regulation of synaptic homeostasis at the Drosophila neuromuscular junction
    • Penney J, Tsurudome K, Liao EH, Elazzouzi F, Livingstone M, et al. 2012. TOR is required for the retrograde regulation of synaptic homeostasis at the Drosophila neuromuscular junction. Neuron 74(1):166-78
    • (2012) Neuron , vol.74 , Issue.1 , pp. 166-178
    • Penney, J.1    Tsurudome, K.2    Liao, E.H.3    Elazzouzi, F.4    Livingstone, M.5
  • 56
    • 84884289719 scopus 로고    scopus 로고
    • A presynaptic ENaC channel drives homeostatic plasticity
    • Younger MA, Muller M, Tong A, Pym EC, Davis GW. 2013. A presynaptic ENaC channel drives homeostatic plasticity. Neuron 79(6):1183-96
    • (2013) Neuron , vol.79 , Issue.6 , pp. 1183-1196
    • Younger, M.A.1    Muller, M.2    Tong, A.3    Pym, E.C.4    Davis, G.W.5
  • 57
    • 84862701054 scopus 로고    scopus 로고
    • Transsynaptic control of presynaptic Ca2+ influx achieves homeostatic potentiation of neurotransmitter release
    • Muller M, Davis GW. 2012. Transsynaptic control of presynaptic Ca2+ influx achieves homeostatic potentiation of neurotransmitter release. Curr. Biol. 22(12):1102-8
    • (2012) Curr. Biol. , vol.22 , Issue.12 , pp. 1102-1108
    • Muller, M.1    Davis, G.W.2
  • 58
    • 0034710645 scopus 로고    scopus 로고
    • Intracellular calcium dependence of transmitter release rates at a fast central synapse
    • Schneggenburger R, Neher E. 2000. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406(6798):889-93
    • (2000) Nature , vol.406 , Issue.6798 , pp. 889-893
    • Schneggenburger, R.1    Neher, E.2
  • 59
    • 0034637149 scopus 로고    scopus 로고
    • Calcium sensitivity of glutamate release in a calyx-type terminal
    • Bollmann JH, Sakmann B, Borst JG. 2000. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289(5481):953-57
    • (2000) Science , vol.289 , Issue.5481 , pp. 953-957
    • Bollmann, J.H.1    Sakmann, B.2    Borst, J.G.3
  • 60
    • 0029808911 scopus 로고    scopus 로고
    • A Drosophila calcium channel α1 subunit gene maps to a genetic locus associated with behavioral and visual defects
    • Smith LA, Wang X, Peixoto AA, Neumann EK, Hall LM, Hall JC. 1996. A Drosophila calcium channel α1 subunit gene maps to a genetic locus associated with behavioral and visual defects. J. Neurosci. 16(24):7868-79
    • (1996) J. Neurosci. , vol.16 , Issue.24 , pp. 7868-7879
    • Smith, L.A.1    Wang, X.2    Peixoto, A.A.3    Neumann, E.K.4    Hall, L.M.5    Hall, J.C.6
  • 61
    • 0031829605 scopus 로고    scopus 로고
    • Courtship and visual defects of cacophony mutants reveal functional complexity of a calcium-channelα1 subunit in Drosophila
    • Smith LA, Peixoto AA, Kramer EM, Villella A, Hall JC. 1998. Courtship and visual defects of cacophony mutants reveal functional complexity of a calcium-channelα1 subunit in Drosophila. Genetics 149(3):1407-26
    • (1998) Genetics , vol.149 , Issue.3 , pp. 1407-1426
    • Smith, L.A.1    Peixoto, A.A.2    Kramer, E.M.3    Villella, A.4    Hall, J.C.5
  • 62
    • 0037171860 scopus 로고    scopus 로고
    • Protons at the gate: DEG/ENaC ion channels help us feel and remember
    • Bianchi L, Driscoll M. 2002. Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron 34(3):337-40
    • (2002) Neuron , vol.34 , Issue.3 , pp. 337-340
    • Bianchi, L.1    Driscoll, M.2
  • 63
    • 0037133199 scopus 로고    scopus 로고
    • Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons
    • Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, et al. 2002. Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. PNAS 99(4):2338-43
    • (2002) PNAS , vol.99 , Issue.4 , pp. 2338-2343
    • Benson, C.J.1    Xie, J.2    Wemmie, J.A.3    Price, M.P.4    Henss, J.M.5
  • 64
    • 34548813656 scopus 로고    scopus 로고
    • Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH
    • Jasti J, Furukawa H, Gonzales EB, Gouaux E. 2007. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449(7160):316-23
    • (2007) Nature , vol.449 , Issue.7160 , pp. 316-323
    • Jasti, J.1    Furukawa, H.2    Gonzales, E.B.3    Gouaux, E.4
  • 65
    • 58049196875 scopus 로고    scopus 로고
    • Neurosensory mechanotransduction
    • Chalfie M. 2009. Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 10(1):44-52
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , Issue.1 , pp. 44-52
    • Chalfie, M.1
  • 66
    • 0037452777 scopus 로고    scopus 로고
    • Drosophila DEG/ENaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance
    • Liu L, Johnson WA, Welsh MJ. 2003. Drosophila DEG/ENaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance. PNAS 100(4):2128-33
    • (2003) PNAS , vol.100 , Issue.4 , pp. 2128-2133
    • Liu, L.1    Johnson, W.A.2    Welsh, M.J.3
  • 67
    • 77949423784 scopus 로고    scopus 로고
    • The cells and peripheral representation of sodium taste in mice
    • Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, et al. 2010. The cells and peripheral representation of sodium taste in mice. Nature 464(7286):297-301
    • (2010) Nature , vol.464 , Issue.7286 , pp. 297-301
    • Chandrashekar, J.1    Kuhn, C.2    Oka, Y.3    Yarmolinsky, D.A.4    Hummler, E.5
  • 68
    • 78049308891 scopus 로고    scopus 로고
    • The epithelial sodium channel and the control of sodium balance
    • Schild L. 2010. The epithelial sodium channel and the control of sodium balance. Biochim. Biophys. Acta 1802(12):1159-65
    • (2010) Biochim. Biophys. Acta , vol.1802 , Issue.12 , pp. 1159-1165
    • Schild, L.1
  • 69
    • 0020822633 scopus 로고
    • Maintained depolarization of synaptic terminals facilitates nerveevoked transmitter release at a crayfish neuromuscular junction
    • Wojtowicz JM, Atwood HL. 1983. Maintained depolarization of synaptic terminals facilitates nerveevoked transmitter release at a crayfish neuromuscular junction. J. Neurobiol. 14(5):385-90
    • (1983) J. Neurobiol. , vol.14 , Issue.5 , pp. 385-390
    • Wojtowicz, J.M.1    Atwood, H.L.2
  • 70
    • 25644432154 scopus 로고    scopus 로고
    • Modulation of transmitter release by presynaptic resting potential and background calcium levels
    • Awatramani GB, Price GD, Trussell LO. 2005. Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron 48(1):109-21
    • (2005) Neuron , vol.48 , Issue.1 , pp. 109-121
    • Awatramani, G.B.1    Price, G.D.2    Trussell, L.O.3
  • 71
    • 78650679477 scopus 로고    scopus 로고
    • Ca2+-dependent enhancement of release by subthreshold somatic depolarization
    • Christie JM,ChiuDN, Jahr CE. 2011. Ca2+-dependent enhancement of release by subthreshold somatic depolarization. Nat. Neurosci. 14(1):62-68
    • (2011) Nat. Neurosci. , vol.14 , Issue.1 , pp. 62-68
    • Christie, J.M.1    Chiu, D.N.2    Jahr, C.E.3
  • 72
    • 0034973980 scopus 로고    scopus 로고
    • Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization
    • Paradis S, Sweeney ST, Davis GW. 2001. Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30(3):737-49
    • (2001) Neuron , vol.30 , Issue.3 , pp. 737-749
    • Paradis, S.1    Sweeney, S.T.2    Davis, G.W.3
  • 73
    • 77952373489 scopus 로고    scopus 로고
    • A hierarchy of cell intrinsic and target-derived homeostatic signaling
    • Bergquist S, DickmanDK, DavisGW. 2010. A hierarchy of cell intrinsic and target-derived homeostatic signaling. Neuron 66(2):220-34
    • (2010) Neuron , vol.66 , Issue.2 , pp. 220-234
    • Bergquist, S.1    Dickman, D.K.2    Davis, G.W.3
  • 74
    • 0033152473 scopus 로고    scopus 로고
    • Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse
    • Schneggenburger R,Meyer AC,Neher E. 1999. Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 23(2):399-409
    • (1999) Neuron , vol.23 , Issue.2 , pp. 399-409
    • Schneggenburger, R.1    Meyer, A.C.2    Neher, E.3
  • 75
    • 84874843974 scopus 로고    scopus 로고
    • Presynaptic calcium influx controls neurotransmitter release in part by regulating the effective size of the readily releasable pool
    • Thanawala MS, RegehrWG. 2013. Presynaptic calcium influx controls neurotransmitter release in part by regulating the effective size of the readily releasable pool. J. Neurosci. 33(11):4625-33
    • (2013) J. Neurosci. , vol.33 , Issue.11 , pp. 4625-4633
    • Thanawala, M.S.1    Regehr, W.G.2
  • 76
    • 84863826404 scopus 로고    scopus 로고
    • The presynaptic active zone
    • Sudhof T. 2012. The presynaptic active zone. Neuron 75(1):11-25
    • (2012) Neuron , vol.75 , Issue.1 , pp. 11-25
    • Sudhof, T.1
  • 77
    • 84877932096 scopus 로고    scopus 로고
    • Balance of calcineurin Aαand CDK5 activities sets release probability at nerve terminals
    • Kim SH, Ryan TA. 2013. Balance of calcineurin Aαand CDK5 activities sets release probability at nerve terminals. J. Neurosci. 33(21):8937-50
    • (2013) J. Neurosci. , vol.33 , Issue.21 , pp. 8937-8950
    • Kim, S.H.1    Ryan, T.A.2
  • 78
    • 79960383831 scopus 로고    scopus 로고
    • Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing
    • Lazarevic V, Sch one C, Heine M, Gundelfinger ED, Fejtova A. 2011. Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing. J. Neurosci. 31(28):10189-200
    • (2011) J. Neurosci. , vol.31 , Issue.28 , pp. 10189-10200
    • Lazarevic, V.1    Schone, C.2    Heine, M.3    Gundelfinger, E.D.4    Fejtova, A.5
  • 79
    • 76149085199 scopus 로고    scopus 로고
    • A role for the ubiquitinproteasome system in activity-dependent presynaptic silencing
    • Jiang X, Litkowski PE, Taylor AA, Lin Y, Snider BJ, Moulder KL. 2010. A role for the ubiquitinproteasome system in activity-dependent presynaptic silencing. J. Neurosci. 30(5):1798-809
    • (2010) J. Neurosci. , vol.30 , Issue.5 , pp. 1798-1809
    • Jiang, X.1    Litkowski, P.E.2    Taylor, A.A.3    Lin, Y.4    Snider, B.J.5    Moulder, K.L.6
  • 80
    • 0035449939 scopus 로고    scopus 로고
    • Chronic blockade of glutamate receptors enhances presynaptic release and downregulates the interaction between synaptophysin-synaptobrevinvesicle-Associated membrane protein2
    • Bacci A, Coco S, Pravettoni E, Schenk U, Armano S, et al. 2001. Chronic blockade of glutamate receptors enhances presynaptic release and downregulates the interaction between synaptophysin-synaptobrevinvesicle-Associated membrane protein2. J. Neurosci. 21(17):6588-96
    • (2001) J. Neurosci. , vol.21 , Issue.17 , pp. 6588-6596
    • Bacci, A.1    Coco, S.2    Pravettoni, E.3    Schenk, U.4    Armano, S.5
  • 81
    • 0041461867 scopus 로고    scopus 로고
    • Retrograde control of synaptic transmission by postsynaptic CaMKII at the Drosophila neuromuscular junction
    • Haghighi AP, McCabe BD, Fetter RD, Palmer JE, Hom S, Goodman CS. 2003. Retrograde control of synaptic transmission by postsynaptic CaMKII at the Drosophila neuromuscular junction. Neuron 39(2):255-67
    • (2003) Neuron , vol.39 , Issue.2 , pp. 255-267
    • Haghighi, A.P.1    McCabe, B.D.2    Fetter, R.D.3    Palmer, J.E.4    Hom, S.5    Goodman, C.S.6
  • 82
    • 80054006090 scopus 로고    scopus 로고
    • S6 kinase localizes to the presynaptic active zone and functions with PDK1 to control synapse development
    • Cheng L, Locke C, Davis GW. 2011. S6 kinase localizes to the presynaptic active zone and functions with PDK1 to control synapse development. J. Cell Biol. 194(6):921-35
    • (2011) J. Cell Biol. , vol.194 , Issue.6 , pp. 921-935
    • Cheng, L.1    Locke, C.2    Davis, G.W.3
  • 83
    • 84877344739 scopus 로고    scopus 로고
    • Excitatory/ inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis
    • Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL. 2013. Excitatory/ inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78(3):510-22
    • (2013) Neuron , vol.78 , Issue.3 , pp. 510-522
    • Bateup, H.S.1    Johnson, C.A.2    Denefrio, C.L.3    Saulnier, J.L.4    Kornacker, K.5    Sabatini, B.L.6
  • 84
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149(2):274-93
    • (2012) Cell , vol.149 , Issue.2 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 85
    • 65649106872 scopus 로고    scopus 로고
    • Importin 13 regulates neurotransmitter release at the Drosophila neuromuscular junction
    • Giagtzoglou N, Lin YQ, Haueter C, Bellen HJ. 2009. Importin 13 regulates neurotransmitter release at the Drosophila neuromuscular junction. J. Neurosci. 29(17):5628-39
    • (2009) J. Neurosci. , vol.29 , Issue.17 , pp. 5628-5639
    • Giagtzoglou, N.1    Lin, Y.Q.2    Haueter, C.3    Bellen, H.J.4
  • 86
    • 78651505248 scopus 로고    scopus 로고
    • The RhoGAP crossveinless-c interacts with Dystrophin and is required for synaptic homeostasis at the Drosophila neuromuscular junction
    • Pilgram GSK, Potikanond S, van der Plas MC, Fradkin LG, Noordermeer JN. 2011. The RhoGAP crossveinless-c interacts with Dystrophin and is required for synaptic homeostasis at the Drosophila neuromuscular junction. J. Neurosci. 31(2):492-500
    • (2011) J. Neurosci. , vol.31 , Issue.2 , pp. 492-500
    • Pilgram, G.S.K.1    Potikanond, S.2    Van Der Plas, M.C.3    Fradkin, L.G.4    Noordermeer, J.N.5
  • 87
    • 60449085252 scopus 로고    scopus 로고
    • A presynaptic homeostatic signaling system composed of the Eph receptor, Ephexin, Cdc42, and CaV2.1 calcium channels
    • Frank CA, Pielage J,Davis GW. 2009. A presynaptic homeostatic signaling system composed of the Eph receptor, Ephexin, Cdc42, and CaV2.1 calcium channels. Neuron 61(4):556-69
    • (2009) Neuron , vol.61 , Issue.4 , pp. 556-569
    • Frank, C.A.1    Pielage, J.2    Davis, G.W.3
  • 88
    • 0037075207 scopus 로고    scopus 로고
    • Wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila
    • Aberle H, Haghighi AP, Fetter RD, McCabe BD, Magalhaes TR, Goodman CS. 2002. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33(4):545-58
    • (2002) Neuron , vol.33 , Issue.4 , pp. 545-558
    • Aberle, H.1    Haghighi, A.P.2    Fetter, R.D.3    McCabe, B.D.4    Magalhaes, T.R.5    Goodman, C.S.6
  • 89
    • 0023736226 scopus 로고
    • Trophic regulation of nerve cell morphology and innervation in the autonomic nervous system
    • Purves D, SniderWD, Voyvodic JT. 1988. Trophic regulation of nerve cell morphology and innervation in the autonomic nervous system. Nature 336(6195):123-28
    • (1988) Nature , vol.336 , Issue.6195 , pp. 123-128
    • Purves, D.1    Snider, W.D.2    Voyvodic, J.T.3
  • 90
    • 84905575091 scopus 로고    scopus 로고
    • Endostatin is a trans-synaptic signal for homeostatic synaptic plasticity
    • Wang T, Hauswirth AG, Tong A, Dickman DK, Davis GW. 2014. Endostatin is a trans-synaptic signal for homeostatic synaptic plasticity. Neuron 83(3):616-29
    • (2014) Neuron , vol.83 , Issue.3 , pp. 616-629
    • Wang, T.1    Hauswirth, A.G.2    Tong, A.3    Dickman, D.K.4    Davis, G.W.5
  • 91
    • 79952104610 scopus 로고    scopus 로고
    • Themultiple functions of collagen XVIII in development and disease
    • Seppinen L, Pihlajaniemi T. 2011. Themultiple functions of collagen XVIII in development and disease. Matrix Biol. 30(2):83-92
    • (2011) Matrix Biol. , vol.30 , Issue.2 , pp. 83-92
    • Seppinen, L.1    Pihlajaniemi, T.2
  • 93
    • 80054804700 scopus 로고    scopus 로고
    • Cysteine cathepsins S and L modulate anti-Angiogenic activities of human endostatin
    • Veillard F, Saidi A, Burden RE, Scott CJ, Gillet L, et al. 2011. Cysteine cathepsins S and L modulate anti-Angiogenic activities of human endostatin. J. Biol. Chem. 286(43):37158-67
    • (2011) J. Biol. Chem. , vol.286 , Issue.43 , pp. 37158-37167
    • Veillard, F.1    Saidi, A.2    Burden, R.E.3    Scott, C.J.4    Gillet, L.5
  • 95
    • 0031454617 scopus 로고    scopus 로고
    • Endostatin: An endogenous inhibitor of angiogenesis and tumor growth
    • O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, et al. 1997. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277-85
    • (1997) Cell , vol.88 , Issue.2 , pp. 277-285
    • O'Reilly, M.S.1    Boehm, T.2    Shing, Y.3    Fukai, N.4    Vasios, G.5
  • 96
    • 0033575658 scopus 로고    scopus 로고
    • Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding
    • Yamaguchi N, Anand-Apte B, LeeM, Sasaki T, Fukai N, et al. 1999. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J. 18(16):4414-23
    • (1999) EMBO J. , vol.18 , Issue.16 , pp. 4414-4423
    • Yamaguchi, N.1    Anand-Apte, B.2    Lee, M.3    Sasaki, T.4    Fukai, N.5
  • 97
    • 10344221035 scopus 로고    scopus 로고
    • A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals
    • Nishimune H, Sanes JR, Carlson SS. 2004. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432(7017):580-87
    • (2004) Nature , vol.432 , Issue.7017 , pp. 580-587
    • Nishimune, H.1    Sanes, J.R.2    Carlson, S.S.3
  • 98
    • 84867712870 scopus 로고    scopus 로고
    • Transsynaptic signaling by activitydependent cleavage of neuroligin-1
    • Peixoto RT, Kunz PA, Kwon H, Mabb AM, Sabatini BL, et al. 2012. Transsynaptic signaling by activitydependent cleavage of neuroligin-1. Neuron 76(2):396-409
    • (2012) Neuron , vol.76 , Issue.2 , pp. 396-409
    • Peixoto, R.T.1    Kunz, P.A.2    Kwon, H.3    Mabb, A.M.4    Sabatini, B.L.5
  • 99
    • 84867780544 scopus 로고    scopus 로고
    • Elfn1 regulates target-specific release probability at CA1-interneuron synapses
    • Sylwestrak EL, Ghosh A. 2012. Elfn1 regulates target-specific release probability at CA1-interneuron synapses. Science 338(6106):536-40
    • (2012) Science , vol.338 , Issue.6106 , pp. 536-540
    • Sylwestrak, E.L.1    Ghosh, A.2
  • 101
    • 84655174934 scopus 로고    scopus 로고
    • Differential control of presynaptic efficacy by postsynaptic N-cadherin and β-catenin
    • Vitureira N, Letellier M, White IJ, Goda Y. 2012. Differential control of presynaptic efficacy by postsynaptic N-cadherin and β-catenin. Nat. Neurosci. 15(1):81-89
    • (2012) Nat. Neurosci. , vol.15 , Issue.1 , pp. 81-89
    • Vitureira, N.1    Letellier, M.2    White, I.J.3    Goda, Y.4
  • 102
    • 84869491358 scopus 로고    scopus 로고
    • Behavioral and electrophysiological outcomes of tissue-specific Smn knockdown in Drosophila melanogaster
    • Timmerman C, Sanyal S. 2012. Behavioral and electrophysiological outcomes of tissue-specific Smn knockdown in Drosophila melanogaster. Brain Res. 1489:66-80
    • (2012) Brain Res. , vol.1489 , pp. 66-80
    • Timmerman, C.1    Sanyal, S.2
  • 103
    • 84862777306 scopus 로고    scopus 로고
    • Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome
    • Ronesi JA, Collins KA, Hays SA, Tsai N-P, Guo W, et al. 2012. Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat. Neurosci. 15(3):431-40
    • (2012) Nat. Neurosci. , vol.15 , Issue.3 , pp. 431-440
    • Ronesi, J.A.1    Collins, K.A.2    Hays, S.A.3    Tsai, N.-P.4    Guo, W.5
  • 104
    • 78650321794 scopus 로고    scopus 로고
    • Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid
    • SodenME, Chen L. 2010. Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid. J. Neurosci. 30(50):16910-21
    • (2010) J. Neurosci. , vol.30 , Issue.50 , pp. 16910-16921
    • Soden, M.E.1    Chen, L.2
  • 105
    • 18844410288 scopus 로고    scopus 로고
    • Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex
    • Houweling AR, Bazhenov M, Timofeev I, SteriadeM, Sejnowski TJ. 2005. Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cereb. Cortex 15(6):834-45
    • (2005) Cereb. Cortex , vol.15 , Issue.6 , pp. 834-845
    • Houweling, A.R.1    Bazhenov, M.2    Timofeev, I.3    Steriade, M.4    Sejnowski, T.J.5
  • 106
    • 54049106103 scopus 로고    scopus 로고
    • Failure of neuronal homeostasis results in common neuropsychiatric phenotypes
    • Ramocki MB, Zoghbi HY. 2008. Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455(7215):912-18
    • (2008) Nature , vol.455 , Issue.7215 , pp. 912-918
    • Ramocki, M.B.1    Zoghbi, H.Y.2
  • 107
    • 67650750977 scopus 로고    scopus 로고
    • A synaptic trek to autism
    • Bourgeron T. 2009. A synaptic trek to autism. Curr. Opin. Neurobiol. 19(2):231-34
    • (2009) Curr. Opin. Neurobiol. , vol.19 , Issue.2 , pp. 231-234
    • Bourgeron, T.1
  • 108
    • 84860155499 scopus 로고    scopus 로고
    • Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice
    • Klooster R, Plomp JJ, Huijbers MG, Niks EH, Straasheijm KR, et al. 2012. Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain 135(4):1081-101
    • (2012) Brain , vol.135 , Issue.4 , pp. 1081-1101
    • Klooster, R.1    Plomp, J.J.2    Huijbers, M.G.3    Niks, E.H.4    Straasheijm, K.R.5
  • 109
    • 9244245770 scopus 로고    scopus 로고
    • Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content
    • Daniels RW. 2004. Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J. Neurosci. 24(46):10466-74
    • (2004) J. Neurosci. , vol.24 , Issue.46 , pp. 10466-10474
    • Daniels, R.W.1
  • 110
    • 30644469248 scopus 로고    scopus 로고
    • Dystrophin is required for appropriate retrograde control of neurotransmitter release at the Drosophila neuromuscular junction
    • van der Plas MC, PilgramGSK, Plomp JJ, de Jong A, FradkinLG, Noordermeer JN. 2006. Dystrophin is required for appropriate retrograde control of neurotransmitter release at the Drosophila neuromuscular junction. J. Neurosci. 26(1):333-44
    • (2006) J. Neurosci. , vol.26 , Issue.1 , pp. 333-344
    • Van Der Plas, M.C.1    Pilgram, G.S.K.2    Plomp, J.J.3    De Jong, A.4    Fradkin, L.G.5    Noordermeer, J.N.6
  • 111
    • 78650230532 scopus 로고    scopus 로고
    • Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis
    • Jakawich SK,NasserHB, Strong MJ,McCartney AJ, PerezAS, et al. 2010. Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 68(6):1143-58
    • (2010) Neuron , vol.68 , Issue.6 , pp. 1143-1158
    • Jakawich, S.K.1    Nasser, H.B.2    Strong, M.J.3    McCartney, A.J.4    Perez, A.S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.