메뉴 건너뛰기




Volumn 150, Issue PB, 2015, Pages 404-416

Weighted ensemble learning of Bayesian network for gene regulatory networks

Author keywords

Bayesian network; Bayesian network fusion; Cluster analysis; Ensemble learning; Microarray data

Indexed keywords

BAYESIAN NETWORKS; CLUSTER ANALYSIS; GENES; LEARNING ALGORITHMS;

EID: 84922623602     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.05.078     Document Type: Article
Times cited : (27)

References (75)
  • 1
    • 84894125354 scopus 로고    scopus 로고
    • Assessing the use of voting methods to improve Bayesian network structure learning
    • (Master's thesis), School of Chemical & Biomolecular Engineering, December, 2012.
    • K. Abu-Hakmeh, Assessing the use of voting methods to improve Bayesian network structure learning, (Master's thesis), School of Chemical & Biomolecular Engineering, December, 2012.
    • Abu-Hakmeh, K.1
  • 2
    • 0012018345 scopus 로고    scopus 로고
    • Comparison of Classifiers in High Dimensional Settings
    • Technical Report 92-02, Department of Computer Science and Department of Mathematics and Statistics, James Cook University of North Queensland, 1992.
    • S. Aeberhard, D. Coomans, O. de Vel, Comparison of Classifiers in High Dimensional Settings, Technical Report 92-02, Department of Computer Science and Department of Mathematics and Statistics, James Cook University of North Queensland, 1992.
    • Aeberhard, S.1    Coomans, D.2    de Vel, O.3
  • 4
    • 41549159731 scopus 로고    scopus 로고
    • Evolutionary approaches for the reverse-engineering of gene regulatory networks. a study on a biologically realistic dataset
    • Auliac C., Frouin V., Gidrol X., d'Alché Buc F. Evolutionary approaches for the reverse-engineering of gene regulatory networks. a study on a biologically realistic dataset. BMC Bioinform. 2008, 9.
    • (2008) BMC Bioinform. , vol.9
    • Auliac, C.1    Frouin, V.2    Gidrol, X.3    d'Alché Buc, F.4
  • 5
    • 0002460150 scopus 로고
    • The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks
    • in: Proceedings of the 2nd European Conference on Artificial Intelligence in Medicine, Springer-Verlag
    • I.A. Beinlich, H.J. Suermondt, R.M. Chavez, G.F. Cooper, The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks. in: Proceedings of the 2nd European Conference on Artificial Intelligence in Medicine, Springer-Verlag, 1989, pp. 247-256.
    • (1989) , pp. 247-256
    • Beinlich, I.A.1    Suermondt, H.J.2    Chavez, R.M.3    Cooper, G.F.4
  • 7
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • Binder J., Koller D., Russell S., Kanazawa K. Adaptive probabilistic networks with hidden variables. Mach. Learn. 1997, 29(2-3):213-244.
    • (1997) Mach. Learn. , vol.29 , Issue.2-3 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 10
    • 44449144053 scopus 로고    scopus 로고
    • Linking gene expression and functional network data in human heart failure
    • Camargo A., Azuaje F. Linking gene expression and functional network data in human heart failure. PLoS ONE 2007, 2(12):e1347.
    • (2007) PLoS ONE , vol.2 , Issue.12
    • Camargo, A.1    Azuaje, F.2
  • 11
    • 0034174324 scopus 로고    scopus 로고
    • Priors on network structures. biasing the search for Bayesian networks
    • Castelo R., Siebes A. Priors on network structures. biasing the search for Bayesian networks. Int. J. Approx. Reason. 2000, 24(1):39-57.
    • (2000) Int. J. Approx. Reason. , vol.24 , Issue.1 , pp. 39-57
    • Castelo, R.1    Siebes, A.2
  • 12
    • 0003846047 scopus 로고
    • Learning Bayesian Networks is np-hard
    • Technical Report
    • D.M. Chickering, Learning Bayesian Networks is np-hard, Technical Report, 1994.
    • (1994)
    • Chickering, D.M.1
  • 13
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow C., Liu C. Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theory 1968, 14(May (3)):462-467.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.3 May , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 14
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G., Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 1992, 9(4):309-347.
    • (1992) Mach. Learn. , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 17
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems. a literature review
    • De Jong H. Modeling and simulation of genetic regulatory systems. a literature review. J. Comput. Biol. 2002, 9:67-103.
    • (2002) J. Comput. Biol. , vol.9 , pp. 67-103
    • De Jong, H.1
  • 18
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning.
    • in: Multiple classifier systems, LBCS-1857, Springer
    • T.G. Dietterich, Ensemble methods in machine learning. in: Multiple classifier systems, LBCS-1857, Springer, 2000, pp. 1-15.
    • (2000) , pp. 1-15
    • Dietterich, T.G.1
  • 19
    • 48249140218 scopus 로고    scopus 로고
    • Seeded Bayesian networks. constructing genetic networks from microarray data
    • Djebbari A., Quackenbush J. Seeded Bayesian networks. constructing genetic networks from microarray data. BMC Syst. Biol. 2008, 2(1):57.
    • (2008) BMC Syst. Biol. , vol.2 , Issue.1 , pp. 57
    • Djebbari, A.1    Quackenbush, J.2
  • 20
    • 0015644825 scopus 로고
    • A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
    • Dunn J.C. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern. 1973, 3(3):32-57.
    • (1973) J. Cybern. , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.C.1
  • 22
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • AAAI Press, E. Simoudis, J. Han, U.M. Fayyad (Eds.)
    • Ester M., Kriegel H.-P., Sander J., Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 1996, 226-231. AAAI Press. E. Simoudis, J. Han, U.M. Fayyad (Eds.).
    • (1996) KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 23
    • 0003578015 scopus 로고
    • Halsted Press, London, New York
    • Everitt B. Cluster Analysis 1980, Halsted Press, London, New York. 2nd edition.
    • (1980) Cluster Analysis
    • Everitt, B.1
  • 24
    • 77954614450 scopus 로고    scopus 로고
    • Privacy wizards for social networking sites,
    • in: Proceedings of the 19th International Conference on World Wide Web. WWW '10, ACM, New York, NY, USA
    • L. Fang, K. LeFevre, Privacy wizards for social networking sites, in: Proceedings of the 19th International Conference on World Wide Web. WWW '10, ACM, New York, NY, USA, 2010, pp. 351-360.
    • (2010) , pp. 351-360
    • Fang, L.1    LeFevre, K.2
  • 25
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7(7):179-188.
    • (1936) Ann. Eugen. , vol.7 , Issue.7 , pp. 179-188
    • Fisher, R.A.1
  • 26
    • 0002219642 scopus 로고    scopus 로고
    • Data analysis with Bayesian networks: a bootstrap approach
    • Morgan Kaufmann, K.B. Laskey, H. Prade (Eds.)
    • Friedman N., Goldszmidt M., Wyner A.J. Data analysis with Bayesian networks: a bootstrap approach. UAI 1999, 196-205. Morgan Kaufmann. K.B. Laskey, H. Prade (Eds.).
    • (1999) UAI , pp. 196-205
    • Friedman, N.1    Goldszmidt, M.2    Wyner, A.J.3
  • 27
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N., Linial M., Nachman I., Pe'er D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 2000, 7(3-4):601-620.
    • (2000) J. Comput. Biol. , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 30
    • 0000411214 scopus 로고
    • Tabu search Part i
    • Glover F. Tabu search Part i. ORSA J. Comput. 1989, 1(June (3)):190-206.
    • (1989) ORSA J. Comput. , vol.1 , Issue.3 June , pp. 190-206
    • Glover, F.1
  • 31
    • 63449139950 scopus 로고    scopus 로고
    • Clustering validity assessment: Finding the optimal partitioning of a data set
    • M. Halkidi, M. Vazirgiannis, Clustering validity assessment: Finding the optimal partitioning of a data set, 2001.
    • (2001)
    • Halkidi, M.1    Vazirgiannis, M.2
  • 33
    • 84874082222 scopus 로고    scopus 로고
    • Using consensus Bayesian network to model the reactive oxygen species regulatory pathway
    • Hu L., Wang L. Using consensus Bayesian network to model the reactive oxygen species regulatory pathway. PLoS ONE 2013, 8(2):e56832.
    • (2013) PLoS ONE , vol.8 , Issue.2
    • Hu, L.1    Wang, L.2
  • 34
    • 33645281928 scopus 로고    scopus 로고
    • A simulated annealing-based method for learning Bayesian networks from statistical data
    • Janzura M., Nielsen J. A simulated annealing-based method for learning Bayesian networks from statistical data. Int. J. Intell. Syst. 2006, 21(3):335-348.
    • (2006) Int. J. Intell. Syst. , vol.21 , Issue.3 , pp. 335-348
    • Janzura, M.1    Nielsen, J.2
  • 35
    • 85044441686 scopus 로고    scopus 로고
    • Unsupervised static discretization methods in data mining,
    • in: Conferinta internationala Educatie si creativitate pentru o societate bazata pe cunoastere
    • D. Joita, Unsupervised static discretization methods in data mining, in: Conferinta internationala Educatie si creativitate pentru o societate bazata pe cunoastere, 2008.
    • (2008)
    • Joita, D.1
  • 36
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • Kauffman S. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 1969, 22(3):437-467.
    • (1969) J. Theor. Biol. , vol.22 , Issue.3 , pp. 437-467
    • Kauffman, S.1
  • 38
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems (with discussion)
    • Lauritzen S., Spiegelhalter D.J. Local computations with probabilities on graphical structures and their application to expert systems (with discussion). J. R. Stat. Soc. Ser. B 1988, 50:157-224.
    • (1988) J. R. Stat. Soc. Ser. B , vol.50 , pp. 157-224
    • Lauritzen, S.1    Spiegelhalter, D.J.2
  • 39
    • 57949100571 scopus 로고    scopus 로고
    • A novel unsupervised feature selection method for bioinformatics data sets through feature clustering
    • in: GrC, IEEE
    • G. Li, X. Hu, X. Shen, X. Chen, Z. Li, A novel unsupervised feature selection method for bioinformatics data sets through feature clustering, in: GrC, IEEE, 2008, pp. 41-47.
    • (2008) , pp. 41-47
    • Li, G.1    Hu, X.2    Shen, X.3    Chen, X.4    Li, Z.5
  • 40
    • 77954760827 scopus 로고    scopus 로고
    • A genome-wide map of human genetic interactions inferred from radiation hybrid genotypes
    • Lin A., Wang R.T., Ahn S., Park C.C., Smith D.J. A genome-wide map of human genetic interactions inferred from radiation hybrid genotypes. Genome Res. 2010, 20(August (8)):1122-1132.
    • (2010) Genome Res. , vol.20 , Issue.8 August , pp. 1122-1132
    • Lin, A.1    Wang, R.T.2    Ahn, S.3    Park, C.C.4    Smith, D.J.5
  • 41
    • 79951748781 scopus 로고    scopus 로고
    • Understanding of internal clustering validation measures
    • in: 2010 IEEE 10th International Conference on Data Mining (ICDM), IEEE
    • Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, Understanding of internal clustering validation measures, in: 2010 IEEE 10th International Conference on Data Mining (ICDM), IEEE, 2010, pp. 911-916.
    • (2010) , pp. 911-916
    • Liu, Y.1    Li, Z.2    Xiong, H.3    Gao, X.4    Wu, J.5
  • 44
    • 0013226542 scopus 로고
    • The topological fusion of Bayes nets
    • Morgan Kaufmann, D. Dubois, M.P. Wellman (Eds.)
    • Matzkevich I., Abramson B. The topological fusion of Bayes nets. UAI 1992, 191-198. Morgan Kaufmann. D. Dubois, M.P. Wellman (Eds.).
    • (1992) UAI , pp. 191-198
    • Matzkevich, I.1    Abramson, B.2
  • 45
    • 0030287048 scopus 로고    scopus 로고
    • The expectation-maximization algorithm
    • Moon T.K. The expectation-maximization algorithm. IEEE Signal Process. Mag. 1996, 13(November (6)):47-60.
    • (1996) IEEE Signal Process. Mag. , vol.13 , Issue.6 November , pp. 47-60
    • Moon, T.K.1
  • 46
    • 84922633642 scopus 로고    scopus 로고
    • Fast committee-based structure learning
    • in: JMLR Workshop and Conference Proceedings
    • E. Mwebaze, J.A. Quinn, Fast committee-based structure learning, in: JMLR Workshop and Conference Proceedings, vol. 6, 2008, pp. 203-214.
    • (2008) , vol.6 , pp. 203-214
    • Mwebaze, E.1    Quinn, J.A.2
  • 47
    • 84922633642 scopus 로고    scopus 로고
    • Fast committee-based structure learning,
    • in: JMLR Workshop and Conference Proceedings
    • E. Mwebaze, J.A. Quinn, Fast committee-based structure learning, in: JMLR Workshop and Conference Proceedings, vol. 6, 2010, pp. 203-214.
    • (2010) , vol.6 , pp. 203-214
    • Mwebaze, E.1    Quinn, J.A.2
  • 50
    • 85051837302 scopus 로고    scopus 로고
    • Réseaux bayésiens et apprentissage ensembliste pour l'étude différentielle de réseaux de régulation génétique
    • (Ph.D. thesis), Université de Nantes
    • H.T. Nguyen, Réseaux bayésiens et apprentissage ensembliste pour l'étude différentielle de réseaux de régulation génétique (Ph.D. thesis), Université de Nantes, 2012.
    • (2012)
    • Nguyen, H.T.1
  • 51
    • 84894211318 scopus 로고    scopus 로고
    • Weighted committee-based structure learning for microarray data
    • in: Proceedings of 13th IEEE International Conference on BioInformatics and BioEngineering, September 2013.
    • H. Njah, S. Jamoussi, Weighted committee-based structure learning for microarray data, in: Proceedings of 13th IEEE International Conference on BioInformatics and BioEngineering, September 2013.
    • Njah, H.1    Jamoussi, S.2
  • 53
    • 77949490032 scopus 로고    scopus 로고
    • A multi-agent systems approach to distributed Bayesian information fusion
    • Pavlin G., de Oude P., Maris M., Nunnink J., Hood T. A multi-agent systems approach to distributed Bayesian information fusion. Inf. Fusion 2010, 11(3):267-282.
    • (2010) Inf. Fusion , vol.11 , Issue.3 , pp. 267-282
    • Pavlin, G.1    de Oude, P.2    Maris, M.3    Nunnink, J.4    Hood, T.5
  • 54
    • 46149134436 scopus 로고
    • Fusion, propagation, and structuring in belief networks
    • Pearl J. Fusion, propagation, and structuring in belief networks. Artif. Intell. 1986, 29(3):241-288.
    • (1986) Artif. Intell. , vol.29 , Issue.3 , pp. 241-288
    • Pearl, J.1
  • 55
    • 48849110444 scopus 로고    scopus 로고
    • Using Markov blankets for causal structure learning
    • Pellet J.-P., Elisseeff A. Using Markov blankets for causal structure learning. J. Mach. Learn. Res. 2008, 9(June):1295-1342.
    • (2008) J. Mach. Learn. Res. , vol.9 , Issue.June , pp. 1295-1342
    • Pellet, J.-P.1    Elisseeff, A.2
  • 56
    • 26944497301 scopus 로고    scopus 로고
    • Assessment of discretization techniques for relevant pattern discovery from gene expression data
    • M.J. Zaki, S. Morishita, I. Rigoutsos (Eds.)
    • Pensa R.G., Leschi C., Besson J., Boulicaut J.-F. Assessment of discretization techniques for relevant pattern discovery from gene expression data. BIOKDD 2004, 24-30. M.J. Zaki, S. Morishita, I. Rigoutsos (Eds.).
    • (2004) BIOKDD , pp. 24-30
    • Pensa, R.G.1    Leschi, C.2    Besson, J.3    Boulicaut, J.-F.4
  • 57
    • 84922643865 scopus 로고    scopus 로고
    • Disease gene explorer: Display disease gene dependency by combining Bayesian networks with clustering
    • in: CSB, IEEE Computer Society
    • D. Qian, H. Wei, Z. Hao, L. Juntao, X. Feng, W. Tao, Y. Zhang, Disease gene explorer: Display disease gene dependency by combining Bayesian networks with clustering, in: CSB, IEEE Computer Society, 2004, pp. 574-575.
    • (2004) , pp. 574-575
    • Qian, D.1    Wei, H.2    Hao, Z.3    Juntao, L.4    Feng, X.5    Tao, W.6    Zhang, Y.7
  • 58
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the em algorithm
    • Redner R.A., Walker H.F. Mixture densities, maximum likelihood and the em algorithm. SIAM Rev. 1984, 26(2):195-239.
    • (1984) SIAM Rev. , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 59
    • 0023453329 scopus 로고
    • Silhouettes. a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw P. Silhouettes. a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20(1):53-65.
    • (1987) J. Comput. Appl. Math. , vol.20 , Issue.1 , pp. 53-65
    • Rousseeuw, P.1
  • 60
    • 0037320217 scopus 로고    scopus 로고
    • Qualitative combination of Bayesian networks
    • Sagrado J.D., Moral S. Qualitative combination of Bayesian networks. Int. J. Intell. Syst. 2003, 18:237-249.
    • (2003) Int. J. Intell. Syst. , vol.18 , pp. 237-249
    • Sagrado, J.D.1    Moral, S.2
  • 61
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Stat. 1978, 6:461-464.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 65
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • Tsamardinos I., Brown L., Aliferis C. The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 2006, 65(October (1)):31-78.
    • (2006) Mach. Learn. , vol.65 , Issue.1 October , pp. 31-78
    • Tsamardinos, I.1    Brown, L.2    Aliferis, C.3
  • 66
    • 84872424156 scopus 로고    scopus 로고
    • Learning ensembles of Bayesian network structures using random forest techniques
    • (Master's thesis), University of Oklahoma
    • C. Utz, Learning ensembles of Bayesian network structures using random forest techniques (Master's thesis), University of Oklahoma, 2010.
    • (2010)
    • Utz, C.1
  • 68
    • 77951296594 scopus 로고    scopus 로고
    • On the comparison of relative clustering validity criteria
    • in: SDM, SIAM
    • L. Vendramin, R.J.G.B. Campello, E.R. Hruschka, On the comparison of relative clustering validity criteria, in: SDM, SIAM, 2009, pp. 733-744.
    • (2009) , pp. 733-744
    • Vendramin, L.1    Campello, R.J.G.B.2    Hruschka, E.R.3
  • 69
    • 84872735831 scopus 로고    scopus 로고
    • Construction and application of dynamic protein interaction network based on time course gene expression data
    • J. Wang, X. Peng, M. Li, Y. Pan, Construction and application of dynamic protein interaction network based on time course gene expression data, Proteomics 13 (2013) 301-313.
    • (2013) Proteomics , vol.13 , pp. 301-313
    • Wang, J.1    Peng, X.2    Li, M.3    Pan, Y.4
  • 70
    • 0035330150 scopus 로고    scopus 로고
    • Constructing the dependency structure of a multiagent probabilistic network
    • Wong S., Butz C. Constructing the dependency structure of a multiagent probabilistic network. IEEE Trans. Knowl. Data Eng. 2001, 13:395-415.
    • (2001) IEEE Trans. Knowl. Data Eng. , vol.13 , pp. 395-415
    • Wong, S.1    Butz, C.2
  • 73
    • 33746929480 scopus 로고    scopus 로고
    • Privacy-preserving computation of Bayesian networks on vertically partitioned data
    • Yang Z. Privacy-preserving computation of Bayesian networks on vertically partitioned data. IEEE Trans. Knowl. Data Eng. 2006, 18(9):1253-1264.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.9 , pp. 1253-1264
    • Yang, Z.1
  • 74
    • 0033574615 scopus 로고    scopus 로고
    • Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation
    • Yue L., Melnyk P., Gaspo R., Wang Z., Nattel S. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ. Res. 1999, 84(7):776-784.
    • (1999) Circ. Res. , vol.84 , Issue.7 , pp. 776-784
    • Yue, L.1    Melnyk, P.2    Gaspo, R.3    Wang, Z.4    Nattel, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.