메뉴 건너뛰기




Volumn , Issue , 2008, Pages 41-47

A novel unsupervised feature selection method for bioinformatics data sets through feature clustering

Author keywords

[No Author keywords available]

Indexed keywords

BIOINFORMATICS; CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; COMPUTER AIDED DIAGNOSIS; EDUCATION; FEATURE EXTRACTION; GENE EXPRESSION; IMAGE SEGMENTATION; KNOWLEDGE BASED SYSTEMS; LEARNING ALGORITHMS; QUALITY ASSURANCE; REDUNDANCY; RELIABILITY; SUPERVISED LEARNING; UNSUPERVISED LEARNING;

EID: 57949100571     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/GRC.2008.4664788     Document Type: Conference Paper
Times cited : (35)

References (21)
  • 2
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. Blum, and P. Langley, "Selection of relevant features and examples in machine learning", Artificial Intelligence, vol. 97, pp. 245-271, 1997.
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 3
    • 57949100974 scopus 로고    scopus 로고
    • nd Asia-Pacific Bioinformatics Conference, New Zealand, Jan 18-22, 2004.
    • nd Asia-Pacific Bioinformatics Conference, New Zealand, Jan 18-22, 2004.
  • 6
    • 2942723846 scopus 로고    scopus 로고
    • A Divisive Information-Theoretic Feature Clustering Algorithm for Text Classification
    • I. S. Dhillon, S. Mallela, and R. Kumar, "A Divisive Information-Theoretic Feature Clustering Algorithm for Text Classification" , JMLR, vol. 3, pp.1265-1287, 2003.
    • (2003) JMLR , vol.3 , pp. 1265-1287
    • Dhillon, I.S.1    Mallela, S.2    Kumar, R.3
  • 7
    • 0002878444 scopus 로고    scopus 로고
    • Feature Subset Selection and Order Identification for Unsupervised Learning
    • J. G. Dy and C. E. Brodley, "Feature Subset Selection and Order Identification for Unsupervised Learning", ICML, 2000, pp. 247-254.
    • (2000) ICML , pp. 247-254
    • Dy, J.G.1    Brodley, C.E.2
  • 8
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering, Machine Learning
    • D. H. Fisher, "Knowledge acquisition via incremental conceptual clustering, Machine Learning", Machine Learning, vol. 2, pp.139-172, 1987.
    • (1987) Machine Learning , vol.2 , pp. 139-172
    • Fisher, D.H.1
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An Introduction to Variable and Feature Selection JMLR Special Issue on Variable and Feature Selection
    • Mar, pp
    • I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection JMLR Special Issue on Variable and Feature Selection", Kernel Machines Section, Mar, pp. 1157-1182, 2003.
    • (2003) Kernel Machines Section , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 10
    • 57949090847 scopus 로고    scopus 로고
    • Cluster Ensemble and Its Applications in Gene Expression Analysis
    • X. Hu and Y. Yoo, "Cluster Ensemble and Its Applications in Gene Expression Analysis", in BIBE, 2006.
    • (2006) BIBE
    • Hu, X.1    Yoo, Y.2
  • 13
    • 24344503628 scopus 로고    scopus 로고
    • Evolutionary model selection in unsupervised learning
    • Y.S. Kim, N. Street, and F. Menczer, "Evolutionary model selection in unsupervised learning", Intelligent Data Analysis, vol. 6, pp. 531-556, 2002.
    • (2002) Intelligent Data Analysis , vol.6 , pp. 531-556
    • Kim, Y.S.1    Street, N.2    Menczer, F.3
  • 17
    • 0002239156 scopus 로고    scopus 로고
    • Feature Selection as a Preprocessing Step for Hierarchical Clustering
    • L. Talavera, "Feature Selection as a Preprocessing Step for Hierarchical Clustering", in 16th Int'l Conf. on Machine Learning, 1999, pp. 389-397.
    • (1999) 16th Int'l Conf. on Machine Learning , pp. 389-397
    • Talavera, L.1
  • 18
    • 84883699144 scopus 로고    scopus 로고
    • Dependency-Based Feature Selection for Clustering Symbolic Data
    • L. Talavera, "Dependency-Based Feature Selection for Clustering Symbolic Data", Intelligent Data Analysis, vol. 4, pp. 19-28, 2000.
    • (2000) Intelligent Data Analysis , vol.4 , pp. 19-28
    • Talavera, L.1
  • 20
    • 13444252181 scopus 로고    scopus 로고
    • An Adaptive Meta-Clustering Approach: Combining The Information From Different Clustering Results
    • Stanford University, pp
    • Y. Zeng, J. Tang, J. Garcia-Frias, and G.R. Gao, "An Adaptive Meta-Clustering Approach: Combining The Information From Different Clustering Results", in IEEE Computer Society Bioinformatics Conference, Stanford University, pp. 276-287.
    • IEEE Computer Society Bioinformatics Conference , pp. 276-287
    • Zeng, Y.1    Tang, J.2    Garcia-Frias, J.3    Gao, G.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.