메뉴 건너뛰기




Volumn 18, Issue 3, 2007, Pages 745-755

Unsupervised learning of Gaussian mixtures based on variational component splitting

Author keywords

Clustering; Mixture models; Model selection; Variational Bayes methods

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; CLUSTER ANALYSIS; ITERATIVE METHODS; MATHEMATICAL MODELS; STATISTICAL MECHANICS; VARIATIONAL TECHNIQUES;

EID: 34248648503     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2006.891114     Document Type: Article
Times cited : (84)

References (28)
  • 2
    • 26844499879 scopus 로고    scopus 로고
    • Statistical analysis of network traffic for adaptive faults detection
    • Sep
    • H. Hajji, "Statistical analysis of network traffic for adaptive faults detection," IEEE Trans. Neural Netw., vol. 16, no. 5, pp. 1053-1063, Sep. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.5 , pp. 1053-1063
    • Hajji, H.1
  • 3
    • 15344351001 scopus 로고    scopus 로고
    • L. A. G. N. P. Blekas, K. and I. E. Lagaris, A spatially constrained mixture model for image segmentation, IEEE Trans. Neural Netw., 16, no. 2, pp. 494-498, Mar. 2005.
    • L. A. G. N. P. Blekas, K. and I. E. Lagaris, "A spatially constrained mixture model for image segmentation," IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 494-498, Mar. 2005.
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood estimation from incomplete data via the EM algorithm
    • A. Dempster,N. Laird, and D. Rubin, "Maximum likelihood estimation from incomplete data via the EM algorithm," J. Roy. Statist. Soc., Ser. B vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Roy. Statist. Soc., Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 6
    • 0001942153 scopus 로고    scopus 로고
    • Model selection for probabilistic clustering using cross- validated likelihood
    • P. Smyth, "Model selection for probabilistic clustering using cross- validated likelihood," Statist. Comput., vol. 10, no. 1, pp. 63-72, 2000.
    • (2000) Statist. Comput , vol.10 , Issue.1 , pp. 63-72
    • Smyth, P.1
  • 8
    • 0029415778 scopus 로고
    • Probabilistic validation approach for clustering
    • M. Hareven and V. L. Brailovsky, "Probabilistic validation approach for clustering," Pattern Recognit. Lett., vol. 16, pp. 1189-1196, 1995.
    • (1995) Pattern Recognit. Lett , vol.16 , pp. 1189-1196
    • Hareven, M.1    Brailovsky, V.L.2
  • 9
    • 0036522404 scopus 로고    scopus 로고
    • Unsupervised learning of finite mixture models
    • Mar
    • M. A. T. Figueiredo and A. K. Jain, "Unsupervised learning of finite mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 381-396, Mar. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.3 , pp. 381-396
    • Figueiredo, M.A.T.1    Jain, A.K.2
  • 10
    • 20844432428 scopus 로고    scopus 로고
    • Maximum weighted likelihood via rival penalized EM for density mixture clustering with automatic model selection
    • Jun
    • Y. M. Cheung, "Maximum weighted likelihood via rival penalized EM for density mixture clustering with automatic model selection," IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 750-761, Jun. 2005.
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.6 , pp. 750-761
    • Cheung, Y.M.1
  • 11
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with unknown number of components
    • S. Richardson and P. Green, "On Bayesian analysis of mixtures with unknown number of components," J. Roy. Statist. Soc.i], Ser. B, vol. 59, no. 4, pp. 731-792, 1997.
    • (1997) J. Roy. Statist. Soc.i], Ser. B , vol.59 , Issue.4 , pp. 731-792
    • Richardson, S.1    Green, P.2
  • 12
    • 4043084564 scopus 로고    scopus 로고
    • Tutorial on variational approximation methods
    • M. Opper and D. Saad, Eds. Cambridge, MA: MIT Press
    • T. Jaakkola, "Tutorial on variational approximation methods," in Advanced Mean Field Methods: Theory and Practice, M. Opper and D. Saad, Eds. Cambridge, MA: MIT Press, 2000, pp. 129-160.
    • (2000) Advanced Mean Field Methods: Theory and Practice , pp. 129-160
    • Jaakkola, T.1
  • 13
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for Bayesian mixtures of factor analysers
    • Cambridge, MA: MIT Press
    • Z. Ghahramani and M. Beal, "Variational inference for Bayesian mixtures of factor analysers," in Advances in Neural Information Processing Systems 12. Cambridge, MA: MIT Press, 2000, pp. 449-455.
    • (2000) Advances in Neural Information Processing Systems 12 , pp. 449-455
    • Ghahramani, Z.1    Beal, M.2
  • 14
    • 84899003086 scopus 로고    scopus 로고
    • Propagation algorithms for variational Bayesian learning
    • Cambridge, MA: MIT Press
    • Z. Ghahramani and M. Beal, "Propagation algorithms for variational Bayesian learning," in Advances in Neural Information Processing Systems 13. Cambridge, MA: MIT Press, 2001, pp. 507-513.
    • (2001) Advances in Neural Information Processing Systems 13 , pp. 507-513
    • Ghahramani, Z.1    Beal, M.2
  • 15
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan, Ed. Norwell, MA: Kluwer
    • R. Neal and G. Hinton, "A view of the EM algorithm that justifies incremental, sparse, and other variants," in Learning in Graphical Models, M. I. Jordan, Ed. Norwell, MA: Kluwer, 1998, pp. 355-370.
    • (1998) Learning in Graphical Models , pp. 355-370
    • Neal, R.1    Hinton, G.2
  • 16
    • 0000147488 scopus 로고    scopus 로고
    • On-line model selection based on the variational Bayes
    • M. Sato, "On-line model selection based on the variational Bayes," Neural Comput., vol. 13, no. 7, pp. 1649-1681, 2001.
    • (2001) Neural Comput , vol.13 , Issue.7 , pp. 1649-1681
    • Sato, M.1
  • 17
    • 0003278032 scopus 로고    scopus 로고
    • Inferring parameters and structure of latent variable models by variational Bayes
    • H. Attias, "Inferring parameters and structure of latent variable models by variational Bayes," in Proc. 15th Conf. Uncertainty Artif. Intel., 1999, pp. 21-30.
    • (1999) Proc. 15th Conf. Uncertainty Artif. Intel , pp. 21-30
    • Attias, H.1
  • 18
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • Cambridge, MA: MIT Press
    • H. Attias, "A variational Bayesian framework for graphical models," in Advances in Neural Information Processing Systems 12. Cambridge, MA: MIT Press, 2000, pp. 209-215.
    • (2000) Advances in Neural Information Processing Systems 12 , pp. 209-215
    • Attias, H.1
  • 19
    • 4043061882 scopus 로고    scopus 로고
    • Variational Bayesian model selection for mixture distributions
    • San Mateo, CA: Morgan Kaufmann
    • A. Corduneanu and C. M. Bishop, "Variational Bayesian model selection for mixture distributions," in Artificial Intelligence and Statistics 2001. San Mateo, CA: Morgan Kaufmann, 2001, pp. 27-34.
    • (2001) Artificial Intelligence and Statistics 2001 , pp. 27-34
    • Corduneanu, A.1    Bishop, C.M.2
  • 20
    • 0036887504 scopus 로고    scopus 로고
    • Bayesian model search for mixture models based on optimizing variational bounds
    • N. Ueda and Z. Ghahramani, "Bayesian model search for mixture models based on optimizing variational bounds," Neural Netw., vol. 15, no. 10, pp. 1223-1241, 2002.
    • (2002) Neural Netw , vol.15 , Issue.10 , pp. 1223-1241
    • Ueda, N.1    Ghahramani, Z.2
  • 21
    • 0034264299 scopus 로고    scopus 로고
    • SMEM algorithm for mixture models
    • N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton, "SMEM algorithm for mixture models," Neural Comput., vol. 12, no. 9, pp. 2109-2128, 2000.
    • (2000) Neural Comput , vol.12 , Issue.9 , pp. 2109-2128
    • Ueda, N.1    Nakano, R.2    Ghahramani, Z.3    Hinton, G.E.4
  • 24
    • 34248665772 scopus 로고    scopus 로고
    • Critical lines in symmetry of mixture models and its application to component splitting
    • Cambridge, MA: MIT Press
    • K. Fukumizu, S. Akaho, and S. Amari, "Critical lines in symmetry of mixture models and its application to component splitting," in Advances in Neural Information Processing Systems 15. Cambridge, MA: MIT Press, 2003, pp. 865-872.
    • (2003) Advances in Neural Information Processing Systems 15 , pp. 865-872
    • Fukumizu, K.1    Akaho, S.2    Amari, S.3
  • 25
    • 0038309400 scopus 로고    scopus 로고
    • EM algorithms for Gaussian mixtures with split-and-merge operation
    • Z. Zhang, C. Chen, J. Sun, and K. L. Chan, "EM algorithms for Gaussian mixtures with split-and-merge operation," Pattern Recognit., vol. 36, no. 9, pp. 1973-1983, 2003.
    • (2003) Pattern Recognit , vol.36 , Issue.9 , pp. 1973-1983
    • Zhang, Z.1    Chen, C.2    Sun, J.3    Chan, K.L.4
  • 27
    • 0028428774 scopus 로고
    • A database for handwritten text recognition research
    • May
    • J. J. Hull, "A database for handwritten text recognition research," IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 5, pp. 550-554, May 1994.
    • (1994) IEEE Trans. Pattern Anal. Mach. Intell , vol.16 , Issue.5 , pp. 550-554
    • Hull, J.J.1
  • 28
    • 33746874813 scopus 로고    scopus 로고
    • An incremental training method for the probabilistic RBF network
    • Jul
    • C. Constantinopoulos and A. Likas, "An incremental training method for the probabilistic RBF network," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 966-974, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 966-974
    • Constantinopoulos, C.1    Likas, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.