메뉴 건너뛰기




Volumn , Issue , 2009, Pages 838-847

Training of radial basis function classifiers with resilient propagation and variational Bayesian inference

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION TASKS; DATA SETS; DISCRIMINATIVE CLASSIFIERS; GAUSSIAN BASIS FUNCTIONS; HIDDEN NEURONS; LOSS FUNCTIONS; ON THE FLIES; POSTERIOR PROBABILITY; PROBABILISTIC INTERPRETATION; RADIAL BASIS FUNCTION CLASSIFIERS; RESILIENT PROPAGATION; TRAINING TECHNIQUES; VARIATIONAL BAYESIAN;

EID: 70449437193     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2009.5178699     Document Type: Conference Paper
Times cited : (25)

References (34)
  • 1
    • 70449398468 scopus 로고    scopus 로고
    • T. Poggio and F. Girosi, A theory of networks for approximation and learning, Massachusetts Institute of Technology - Artificial Intelligence Laboratory &Center for Biological Information Processing - Whitaker College, A. I. Memo No. 1140, C. B. I. P. Paper No. 31, 1989.
    • T. Poggio and F. Girosi, "A theory of networks for approximation and learning, " Massachusetts Institute of Technology - Artificial Intelligence Laboratory &Center for Biological Information Processing - Whitaker College, A. I. Memo No. 1140, C. B. I. P. Paper No. 31, 1989.
  • 2
    • 0000621802 scopus 로고
    • Multivariate functional interpolation and adaptive networks
    • D. S. Broomhead and D. Lowe, "Multivariate functional interpolation and adaptive networks, " Complex Systems, vol. 2, pp. 321-355, 1988.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 4
    • 67650546307 scopus 로고    scopus 로고
    • Hard computing and soft computing in classification: Bridging the gap,
    • under review
    • D. Fisch, B. Kühbeck, B. Sick, and S. J. Ovaska, "Hard computing and soft computing in classification: Bridging the gap, " Information Sciences, 2008, (under review).
    • (2008) Information Sciences
    • Fisch, D.1    Kühbeck, B.2    Sick, B.3    Ovaska, S.J.4
  • 7
  • 9
    • 0027205884 scopus 로고
    • A scaled conjugate algorithm for fast supervised learning
    • M. F Moller, "A scaled conjugate algorithm for fast supervised learning, " Neural Networks, vol. 6, no. 1, pp. 525 - 533, 1993.
    • (1993) Neural Networks , vol.6 , Issue.1 , pp. 525-533
    • Moller, M.F.1
  • 12
    • 0742321288 scopus 로고    scopus 로고
    • Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
    • J. Gonzalez, I. Rojas, J. Ortega, H. Pomares, F Fernández, and A. F Diaz, "Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation, " IEEE Transactions on Neural Networks, vol. 14, no. 6, pp. 1478 - 1495, 2003.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.6 , pp. 1478-1495
    • Gonzalez, J.1    Rojas, I.2    Ortega, J.3    Pomares, H.4    Fernández, F.5    Diaz, A.F.6
  • 13
    • 0030197198 scopus 로고    scopus 로고
    • Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction
    • B. A. Whitehead and T. D. Choate, "Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction, " IEEE Transactions on Neural Networks, vol. 7, no. 4, pp. 869 - 880, 1996.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.4 , pp. 869-880
    • Whitehead, B.A.1    Choate, T.D.2
  • 14
    • 0242637124 scopus 로고    scopus 로고
    • Combining genetic optimisation with hybrid learning algorithm for radial basis function neural networks
    • L. Guo, D.-S. Huang, and W. Zhao, "Combining genetic optimisation with hybrid learning algorithm for radial basis function neural networks, " Electronics Letters, vol. 39, no. 22, pp. 1600 - 1601, 2003.
    • (2003) Electronics Letters , vol.39 , Issue.22 , pp. 1600-1601
    • Guo, L.1    Huang, D.-S.2    Zhao, W.3
  • 15
    • 0035015680 scopus 로고    scopus 로고
    • Three learning phases for radial-basis-function networks
    • F Schwenker, H. Kestler, and G. Palm, "Three learning phases for radial-basis-function networks, " Neural Networks, vol. 14, no. 4-5, pp. 439-458, 2001.
    • (2001) Neural Networks , vol.14 , Issue.4-5 , pp. 439-458
    • Schwenker, F.1    Kestler, H.2    Palm, G.3
  • 21
    • 33646500527 scopus 로고    scopus 로고
    • A novel radial basis function neural network for discriminant analysis
    • Z. R. Yang, "A novel radial basis function neural network for discriminant analysis, " IEEE Transactions on Neural Networks, vol. 17, no. 3, pp. 604 - 612, 2006.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.3 , pp. 604-612
    • Yang, Z.R.1
  • 22
    • 13844266749 scopus 로고    scopus 로고
    • Data classification with radial basis function networks based on a novel kernel density estimation algorithm
    • Y.-J. Oyang, S.-C. Hwang, Y.-Y. Ou, C.-Y. Chen, and Z.-W. Chen, "Data classification with radial basis function networks based on a novel kernel density estimation algorithm, " IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 225 - 236, 2005.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 225-236
    • Oyang, Y.-J.1    Hwang, S.-C.2    Ou, Y.-Y.3    Chen, C.-Y.4    Chen, Z.-W.5
  • 24
    • 0035440306 scopus 로고    scopus 로고
    • Shared kernel models for class conditional density estimation
    • M. K. Titsias and A. C. Likas, "Shared kernel models for class conditional density estimation, " IEEE Transactions on Neural Networks, vol. 12, no. 5, pp. 987 - 997, 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.5 , pp. 987-997
    • Titsias, M.K.1    Likas, A.C.2
  • 25
    • 0041347630 scopus 로고    scopus 로고
    • Class conditional density estimation using mixtures with constrained component sharing
    • M. K. Titsias and A. Likas, "Class conditional density estimation using mixtures with constrained component sharing, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 7, pp. 924- 928, 2003.
    • (2003) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.25 , Issue.7 , pp. 924-928
    • Titsias, M.K.1    Likas, A.2
  • 26
    • 33746874813 scopus 로고    scopus 로고
    • An incremental training method for the probabilistic RBF network
    • C. Constantinopoulos and A. Likas, "An incremental training method for the probabilistic RBF network, " IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 966 - 974, 2006.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 966-974
    • Constantinopoulos, C.1    Likas, A.2
  • 27
    • 34248648503 scopus 로고    scopus 로고
    • Unsupervised learning of gaussian mixtures based on variational component splitting
    • -, "Unsupervised learning of gaussian mixtures based on variational component splitting, " IEEE Transactions on Neural Networks, vol. 18, no. 3, pp. 745 - 755, 2007.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 745-755
    • Constantinopoulos, C.1    Likas, A.2
  • 30
    • 84948109721 scopus 로고    scopus 로고
    • The EM Algorithm and Extensions
    • 2nd ed, John Wiley &Sons, New York, NY
    • G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions, 2nd ed., ser. Probability and Statistics. John Wiley &Sons, New York, NY, 2008.
    • (2008) ser. Probability and Statistics
    • McLachlan, G.J.1    Krishnan, T.2
  • 31
    • 4043084564 scopus 로고    scopus 로고
    • Tutorial on variational approximation methods,
    • M. Opper and D. Saad, Eds. MIT Press, Cambridge, MA
    • T. S. Jaakkola, "Tutorial on variational approximation methods, " in Advanced Mean Field Methods: Theory and Practice, M. Opper and D. Saad, Eds. MIT Press, Cambridge, MA, 2001, pp. 129 - 160.
    • (2001) Advanced Mean Field Methods: Theory and Practice , pp. 129-160
    • Jaakkola, T.S.1
  • 33
    • 70449415349 scopus 로고    scopus 로고
    • C. Aviles-Cruz, A. Guerin-Dugue, J. L. Voz, and D. Van Cappel, ELENA - enhanced learning for evolutive neural architecture, UCL Machine Learning Group, Catholic University of Leuven, Leuven, Belgium, Technical report of ESPRIT Basic Research Project Number 6891, http://www.dice.ucl.ac.be/mlg/?page=Elena, 1995.
    • C. Aviles-Cruz, A. Guerin-Dugue, J. L. Voz, and D. Van Cappel, "ELENA - enhanced learning for evolutive neural architecture, " UCL Machine Learning Group, Catholic University of Leuven, Leuven, Belgium, Technical report of ESPRIT Basic Research Project Number 6891, http://www.dice.ucl.ac.be/mlg/?page=Elena, 1995.
  • 34
    • 43849113820 scopus 로고    scopus 로고
    • Organic Computing
    • R. P. Würtz, Ed, Germany: Springer-Verlag Berlin and Heidelberg
    • R. P. Würtz, Ed., Organic Computing, ser. Understanding Complex Systems. Germany: Springer-Verlag Berlin and Heidelberg, 2008.
    • (2008) ser. Understanding Complex Systems


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.