-
1
-
-
80051470705
-
Towards optimal scaling of metropolis-coupled markov chain monte carlo
-
Atchade, Y. F., Roberts, G. O. and Rosenthal, J. S. (2011). Towards optimal scaling of Metropolis-coupled Markov chain Monte Carlo. Statist. Comput. 21, 555-568.
-
(2011)
Statist. Comput.
, vol.21
, pp. 555-568
-
-
Atchade, Y.F.1
Roberts, G.O.2
Rosenthal, J.S.3
-
2
-
-
42649097792
-
Weak convergence of metropolis algorithms for non-i.i.d. Target distributions
-
Bedard, M. (2007). Weak convergence of Metropolis algorithms for non-i.i.d. target distributions. Ann. Appl. Prob. 17, 1222-1244.
-
(2007)
Ann. Appl. Prob.
, vol.17
, pp. 1222-1244
-
-
Bedard, M.1
-
3
-
-
55649115998
-
Optimal acceptance rates for metropolis algorithms: Moving beyond 0.234
-
Bedard, M. (2008). Optimal acceptance rates for Metropolis algorithms: moving beyond 0.234. Stock. Process. Appl. 118, 2198-2222.
-
(2008)
Stock. Process. Appl
, vol.118
, pp. 2198-2222
-
-
Bedard, M.1
-
4
-
-
69149086344
-
Optimal scalings for local metropolis-Hastings chains on nonproduct targets in high dimensions
-
Beskos, A., Roberts, G. and Stuart, A. (2009). Optimal scalings for local Metropolis-Hastings chains on nonproduct targets in high dimensions. Ann. Appl. Prob. 19, 863-898.
-
(2009)
Ann. Appl. Prob.
, vol.19
, pp. 863-898
-
-
Beskos, A.1
Roberts, G.2
Stuart, A.3
-
5
-
-
0041906743
-
From metropolis to diffusions: Gibbs states and optimal scaling
-
Breyer, L. A. and Roberts, G. O. (2000). From Metropolis to diffusions: Gibbs states and optimal scaling. Stock. Process. Appl. 90, 181-206.
-
(2000)
Stock. Process. Appl.
, vol.90
, pp. 181-206
-
-
Breyer, L.A.1
Roberts, G.O.2
-
6
-
-
27744495708
-
-
Prentice-Hall, Upper Saddle River, NJ
-
Folland, G. B. (2002). Advanced Calculus. Prentice-Hall, Upper Saddle River, NJ.
-
(2002)
Advanced Calculus
-
-
Folland, G.B.1
-
8
-
-
5744249209
-
Equations of state calculations by fast computing machines
-
Metropolis, N. et al. (1953). Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087-1091.
-
(1953)
J. Chem. Phys.
, vol.21
, pp. 1087-1091
-
-
Metropolis, N.1
-
9
-
-
42649128773
-
Optimal scaling for random walk Metropolis on spherically constrained target densities
-
Neal, P and Roberts, G. (2008). Optimal scaling for random walk Metropolis on spherically constrained target densities. Methodology Comput. Appl. Prob. 10, 277-297.
-
(2008)
Methodology Comput. Appl. Prob.
, vol.10
, pp. 277-297
-
-
Neal, P.1
Roberts, G.2
-
10
-
-
0042908776
-
Optimal metropolis algorithms for product measures on the vertices of a hypercube
-
Roberts, G. O. (1998). Optimal Metropolis algorithms for product measures on the vertices of a hypercube. Stock. Stock. 62, 275-283.
-
(1998)
Stock. Stock.
, vol.62
, pp. 275-283
-
-
Roberts, G.O.1
-
11
-
-
0013037129
-
Optimal scaling for various metropolis-hastings algorithms
-
Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci. 16, 351-367.
-
(2001)
Statist. Sci.
, vol.16
, pp. 351-367
-
-
Roberts, G.O.1
Rosenthal, J.S.2
-
12
-
-
0031285157
-
Weak convergence and optimal scaling of random walk Metropolis algorithms
-
Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Prob. 7, 110-120.
-
(1997)
Ann. Appl. Prob.
, vol.7
, pp. 110-120
-
-
Roberts, G.O.1
Gelman, A.2
Gilks, W.R.3
-
14
-
-
84858300916
-
A subclass of spherical and elliptical distributions with Gaussian-like limit properties
-
Sherlock, C. and Elton, D. (2012). A subclass of spherical and elliptical distributions with Gaussian-like limit properties. J. Prob. Statist. 2012, 17pp.
-
(2012)
J. Prob. Statist. 2012
, pp. 17
-
-
Sherlock, C.1
Elton, D.2
-
15
-
-
72249090639
-
Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets
-
Sherlock, C. and Roberts, G. (2009). Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets. Bernoulli 15, 774-798.
-
(2009)
Bernoulli
, vol.15
, pp. 774-798
-
-
Sherlock, C.1
Roberts, G.2
|