메뉴 건너뛰기




Volumn 1, Issue 6, 2011, Pages 807-820

Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo

Author keywords

Chemical Langevin equation; Markov jump process; Pseudo marginal approach; Sequential Monte Carlo; Stochastic differential equation; Stochastic kinetic model

Indexed keywords


EID: 84860901236     PISSN: 20428898     EISSN: 20428901     Source Type: Journal    
DOI: 10.1098/rsfs.2011.0047     Document Type: Article
Times cited : (253)

References (47)
  • 1
    • 0037079054 scopus 로고    scopus 로고
    • Computational systems biology
    • (doi:10.1038/nature01254)
    • Kitano, H. 2002 Computational systems biology. Nature 420, 206-210. (doi:10.1038/nature01254)
    • (2002) Nature , vol.420 , pp. 206-210
    • Kitano, H.1
  • 2
    • 0037119587 scopus 로고    scopus 로고
    • Stochastic gene expression in a single cell
    • (doi:10.1126/science.1070919)
    • Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. 2002 Stochastic gene expression in a single cell. Science 297, 1183-1186. (doi:10.1126/science.1070919)
    • (2002) Science , vol.297 , pp. 1183-1186
    • Elowitz, M.B.1    Levine, A.J.2    Siggia, E.D.3    Swain, P.S.4
  • 4
    • 33645429016 scopus 로고
    • Exact stochastic simulation of coupled chemical reactions
    • (doi:10.1021/j100540a008)
    • Gillespie, D. T. 1977 Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340-2361. (doi:10.1021/j100540a008)
    • (1977) J. Phys. Chem. , vol.81 , pp. 2340-2361
    • Gillespie, D.T.1
  • 5
    • 58549110252 scopus 로고    scopus 로고
    • Stochastic modelling for quantitative description of heterogeneous biological systems
    • (doi:10.1038/nrg2509)
    • Wilkinson, D. J. 2009 Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet. 10, 122-133. (doi:10.1038/nrg2509)
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 122-133
    • Wilkinson, D.J.1
  • 6
    • 41549140160 scopus 로고    scopus 로고
    • Bayesian inference for a discretely observed stochastic kinetic model
    • (doi:10.1007/s11222-007-9043-x)
    • Boys, R. J., Wilkinson, D. J. & Kirkwood, T. B. L. 2008 Bayesian inference for a discretely observed stochastic kinetic model. Stat. Comput. 18, 125-135. (doi:10.1007/s11222-007-9043-x)
    • (2008) Stat. Comput. , vol.18 , pp. 125-135
    • Boys, R.J.1    Wilkinson, D.J.2    Kirkwood, T.B.L.3
  • 7
    • 84867660527 scopus 로고    scopus 로고
    • Particle Markov chain Monte Carlo for efficient numerical simulation
    • In, (eds P. L'Ecuyer & A. B. Owen), Berlin/Heidelberg, Germany: Springer
    • Andrieu, C., Doucet, A. & Holenstein, R. 2009 Particle Markov chain Monte Carlo for efficient numerical simulation. In Monte Carlo and quasi-Monte Carlo methods 2008 (eds P. L'Ecuyer & A. B. Owen), pp. 45-60. Berlin/Heidelberg, Germany: Springer.
    • (2009) Monte Carlo and quasi-Monte Carlo methods 2008 , pp. 45-60
    • Andrieu, C.1    Doucet, A.2    Holenstein, R.3
  • 8
    • 0034225547 scopus 로고    scopus 로고
    • The chemical Langevin equation
    • (doi:10.1063/1.481811)
    • Gillespie, D. T. 2000 The chemical Langevin equation. J. Chem. Phys. 113, 297-306. (doi:10.1063/1.481811)
    • (2000) J. Chem. Phys. , vol.113 , pp. 297-306
    • Gillespie, D.T.1
  • 9
    • 44049109914 scopus 로고
    • A rigorous derivation of the chemical master equation
    • (doi:10.1016/0378-4371(92)90283-V)
    • Gillespie, D. T. 1992 A rigorous derivation of the chemical master equation. Phys. A 188, 404-425. (doi:10.1016/0378-4371(92)90283-V)
    • (1992) Phys. A , vol.188 , pp. 404-425
    • Gillespie, D.T.1
  • 10
    • 0346734143 scopus 로고    scopus 로고
    • Markov chain Monte Carlo without likelihoods
    • (doi:10.1073/pnas.0306899100)
    • Marjoram, P., Molitor, J., Plagnol, V. & Tavare, S. 2003 Markov chain Monte Carlo without likelihoods. Proc. Natl Acad. Sci. USA 100, 15 324-15 328. (doi:10.1073/pnas.0306899100)
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 15324-15328
    • Marjoram, P.1    Molitor, J.2    Plagnol, V.3    Tavare, S.4
  • 11
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian computation in population genetics
    • Beaumont, M. A., Zhang, W. & Balding, D. J. 2002 Approximate Bayesian computation in population genetics. Genetics 162, 2025-2035.
    • (2002) Genetics , vol.162 , pp. 2025-2035
    • Beaumont, M.A.1    Zhang, W.2    Balding, D.J.3
  • 12
    • 33845508786 scopus 로고    scopus 로고
    • Inference for nonlinear dynamical systems
    • (doi:10.1073/pnas.0603181103)
    • Ionides, E. L., Breto, C. & King, A. A. 2006 Inference for nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 103, 18 438-18 443. (doi:10.1073/pnas.0603181103)
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 18438-18443
    • Ionides, E.L.1    Breto, C.2    King, A.A.3
  • 13
    • 74049096785 scopus 로고    scopus 로고
    • Plug-and-play inference for disease dynamics: Measles in large and small populations as a case study
    • (doi:10.1098/rsif.2009.0151)
    • He, D., Ionides, E. L. & King, A. A. 2010 Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. J. R. Soc. Interface 7, 271-283. (doi:10.1098/rsif.2009.0151)
    • (2010) J. R. Soc. Interface , vol.7 , pp. 271-283
    • He, D.1    Ionides, E.L.2    King, A.A.3
  • 14
    • 77956231279 scopus 로고    scopus 로고
    • Statistical inference for noisy nonlinear ecological dynamic systems
    • (doi:10.1038/nature09319)
    • Wood, S. N. 2010 Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466, 1102-1104. (doi:10.1038/nature09319)
    • (2010) Nature , vol.466 , pp. 1102-1104
    • Wood, S.N.1
  • 15
    • 84872225617 scopus 로고    scopus 로고
    • Parameter inference for stochastic kinetic models of bacterial gene regulation: A Bayesian approach to systems biology (with discussion)
    • In, (ed. J. M. Bernardo). Oxford, UK: Oxford Science Publications
    • Wilkinson, D. J. 2011 Parameter inference for stochastic kinetic models of bacterial gene regulation: a Bayesian approach to systems biology (with discussion). In Bayesian statistics, vol. 9 (ed. J. M. Bernardo). Oxford, UK: Oxford Science Publications.
    • (2011) Bayesian statistics , vol.9
    • Wilkinson, D.J.1
  • 17
    • 0001225908 scopus 로고    scopus 로고
    • Combined parameter and state estimation in simulation-based filtering
    • In, (eds A. Doucet, N. de Freitas & N. Gordon), New York, NY: Springer
    • Liu, J. & West, M. 2001 Combined parameter and state estimation in simulation-based filtering. In Sequential Monte Carlo methods in practice (eds A. Doucet, N. de Freitas & N. Gordon), pp. 197-224. New York, NY: Springer.
    • (2001) Sequential Monte Carlo methods in practice , pp. 197-224
    • Liu, J.1    West, M.2
  • 18
    • 77953523599 scopus 로고    scopus 로고
    • Particle Markov chain Monte Carlo methods (with discussion)
    • (doi:10.1111/j.1467-9868. 2009.00736.x)
    • Andrieu, C., Doucet, A. & Holenstein, R. 2010 Particle Markov chain Monte Carlo methods (with discussion). J. R. Stat. Soc. B 72, 269-342. (doi:10.1111/j.1467-9868. 2009.00736.x)
    • (2010) J. R. Stat. Soc. B , vol.72 , pp. 269-342
    • Andrieu, C.1    Doucet, A.2    Holenstein, R.3
  • 19
    • 0043210659 scopus 로고    scopus 로고
    • Estimation of population growth or decline in genetically monitored populations
    • Beaumont, M. A. 2003 Estimation of population growth or decline in genetically monitored populations. Genetics 164, 1139-1160.
    • (2003) Genetics , vol.164 , pp. 1139-1160
    • Beaumont, M.A.1
  • 20
    • 60149103563 scopus 로고    scopus 로고
    • The pseudo-marginal approach for efficient computation
    • (doi:10.1214/07-AOS574)
    • Andrieu, C. & Roberts, G. O. 2009 The pseudo-marginal approach for efficient computation. Ann. Stat. 37, 697-725. (doi:10.1214/07-AOS574)
    • (2009) Ann. Stat. , vol.37 , pp. 697-725
    • Andrieu, C.1    Roberts, G.O.2
  • 22
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Gordon, N. J., Salmond, D. J. & Smith, A. F. M. 1993 Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F 140, 107-113.
    • (1993) IEE Proc. F , vol.140 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 24
    • 84972534141 scopus 로고
    • Martingale estimating functions for discretely observed diffusion processes
    • (doi:10.2307/3318679)
    • Bibby, B. M. & Sørensen, M. 1995 Martingale estimating functions for discretely observed diffusion processes. Bernouilli 1, 17-39. (doi:10.2307/3318679)
    • (1995) Bernouilli , vol.1 , pp. 17-39
    • Bibby, B.M.1    Sørensen, M.2
  • 25
    • 0002841968 scopus 로고
    • A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations
    • Pedersen, A. 1995 A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Stat. 22, 55-71.
    • (1995) Scand. J. Stat. , vol.22 , pp. 55-71
    • Pedersen, A.1
  • 26
    • 0036339461 scopus 로고    scopus 로고
    • Numerical techniques for maximum likelihood estimation of continuous time diffusion processes
    • (doi:10.1198/073500102288618397)
    • Durham, G. B. & Gallant, R. A. 2002 Numerical techniques for maximum likelihood estimation of continuous time diffusion processes. J. Bus. Econ. Stat. 20, 279-316. (doi:10.1198/073500102288618397)
    • (2002) J. Bus. Econ. Stat. , vol.20 , pp. 279-316
    • Durham, G.B.1    Gallant, R.A.2
  • 27
    • 0000440935 scopus 로고    scopus 로고
    • Likelihood inference for discretely observed non-linear diffusions
    • (doi:10.1111/1468-0262.00226)
    • Elerian, O., Chib, S. & Shephard, N. 2001 Likelihood inference for discretely observed non-linear diffusions. Econometrika 69, 959-993. (doi:10.1111/1468-0262.00226)
    • (2001) Econometrika , vol.69 , pp. 959-993
    • Elerian, O.1    Chib, S.2    Shephard, N.3
  • 28
    • 10244252366 scopus 로고    scopus 로고
    • On inference for non-linear diffusion models using Metropolis-Hastings algorithms
    • (doi:10.1093/biomet/88.3.603)
    • Roberts, G.O. &Stramer, O. 2001 On inference for non-linear diffusion models using Metropolis-Hastings algorithms. Biometrika 88, 603-621. (doi:10.1093/biomet/88.3.603)
    • (2001) Biometrika , vol.88 , pp. 603-621
    • Roberts, G.O.1    Stramer, O.2
  • 29
    • 0035586814 scopus 로고    scopus 로고
    • MCMC analysis of diffusion models with application to finance
    • (doi:10.1198/073500101316970403)
    • Eraker, B. 2001 MCMC analysis of diffusion models with application to finance. J. Bus. Econ. Stat. 19, 177-191. (doi:10.1198/073500101316970403)
    • (2001) J. Bus. Econ. Stat. , vol.19 , pp. 177-191
    • Eraker, B.1
  • 30
    • 10244220000 scopus 로고    scopus 로고
    • Parametric inference for diffusion processes observed at discrete points in time
    • (doi:10.1111/j.1751-5823.2004. tb00241.x)
    • Sørensen, H. 2004 Parametric inference for diffusion processes observed at discrete points in time. Int. Stat. Rev. 72, 337-354. (doi:10.1111/j.1751-5823.2004. tb00241.x)
    • (2004) Int. Stat. Rev. , vol.72 , pp. 337-354
    • Sørensen, H.1
  • 31
    • 79958760698 scopus 로고    scopus 로고
    • Bayesian inference for irreducible diffusion processes using the pseudo-marginal approach
    • (doi:10.1214/11-BA608)
    • Stramer, O. & Bognar, M. 2011 Bayesian inference for irreducible diffusion processes using the pseudo-marginal approach. Bayesian Anal. 6, 231-258. (doi:10.1214/11-BA608)
    • (2011) Bayesian Anal. , vol.6 , pp. 231-258
    • Stramer, O.1    Bognar, M.2
  • 32
    • 33646690994 scopus 로고    scopus 로고
    • Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes
    • (doi:10. 1111/j.1467-9868.2006.00552.x)
    • Beskos, A., Papaspiliopoulos, O., Roberts, G. O. & Fearnhead, P. 2006 Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes. J. R. Stat. Soc. B 68, 333-382. (doi:10. 1111/j.1467-9868.2006.00552.x)
    • (2006) J. R. Stat. Soc. B , vol.68 , pp. 333-382
    • Beskos, A.1    Papaspiliopoulos, O.2    Roberts, G.O.3    Fearnhead, P.4
  • 34
    • 27744503232 scopus 로고    scopus 로고
    • Bayesian inference for stochastic kinetic models using a diffusion approximation
    • (doi:10.1111/j.1541-0420.2005.00345.x)
    • Golightly, A. & Wilkinson, D. J. 2005 Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61, 781-788. (doi:10.1111/j.1541-0420.2005.00345.x)
    • (2005) Biometrics , vol.61 , pp. 781-788
    • Golightly, A.1    Wilkinson, D.J.2
  • 35
    • 33750049940 scopus 로고    scopus 로고
    • Bayesian sequential inference for nonlinear multivariate diffusions
    • (doi:10.1007/s11222-006-9392-x)
    • Golightly, A. & Wilkinson, D. J. 2006 Bayesian sequential inference for nonlinear multivariate diffusions. Stat. Comput. 16, 323-338. (doi:10.1007/s11222-006-9392-x)
    • (2006) Stat. Comput. , vol.16 , pp. 323-338
    • Golightly, A.1    Wilkinson, D.J.2
  • 36
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • (doi:10.2307/1390750)
    • Kitagawa, G. 1996 Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graphical Stat. 5, 1-25. (doi:10.2307/1390750)
    • (1996) J. Comput. Graphical Stat. , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 38
    • 77951131231 scopus 로고    scopus 로고
    • A tutorial on particle filtering and smoothing: Fifteen years later
    • In, (eds D. Crisan & B. Rozovsky), Oxford, UK: Oxford University Press
    • Doucet, A. & Johansen, A. M. 2011 A tutorial on particle filtering and smoothing: fifteen years later. In The Oxford handbook of nonlinear filtering (eds D. Crisan & B. Rozovsky), pp. 656-704. Oxford, UK: Oxford University Press.
    • (2011) The Oxford handbook of nonlinear filtering , pp. 656-704
    • Doucet, A.1    Johansen, A.M.2
  • 39
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • (doi:10.2307/2670179)
    • Pitt, M. K. & Shephard, N. 1999 Filtering via simulation: auxiliary particle filters. J. Am. Stat. Assoc. 446, 590-599. (doi:10.2307/2670179)
    • (1999) J. Am. Stat. Assoc. , vol.446 , pp. 590-599
    • Pitt, M.K.1    Shephard, N.2
  • 40
    • 35148825956 scopus 로고    scopus 로고
    • Asymptotics of an efficient Monte Carlo estimation for the transition density of diffusion processes
    • (doi:10.1007/s11009-006-9006-2)
    • Stramer, O. & Yan, J. 2007 Asymptotics of an efficient Monte Carlo estimation for the transition density of diffusion processes. Methodol. Comput. Appl. Probab. 9, 483-496. (doi:10.1007/s11009-006-9006-2)
    • (2007) Methodol. Comput. Appl. Probab. , vol.9 , pp. 483-496
    • Stramer, O.1    Yan, J.2
  • 41
    • 33749234368 scopus 로고    scopus 로고
    • Simulation of conditioned diffusion and application to parameter estimation
    • Delyon, B. & Hu, Y. 2006 Simulation of conditioned diffusion and application to parameter estimation. Stoch. Process. Appl. 116, 1660-1675.
    • (2006) Stoch. Process. Appl. , vol.116 , pp. 1660-1675
    • Delyon, B.1    Hu, Y.2
  • 42
    • 41549102613 scopus 로고    scopus 로고
    • Computational methods for complex stochastic systems: A review of some alternatives to MCMC
    • (doi:10.1007/s11222-007-9045-8)
    • Fearnhead, P. 2008 Computational methods for complex stochastic systems: a review of some alternatives to MCMC. Stat. Comput. 18, 151-171. (doi:10.1007/s11222-007-9045-8)
    • (2008) Stat. Comput. , vol.18 , pp. 151-171
    • Fearnhead, P.1
  • 43
    • 41149087694 scopus 로고    scopus 로고
    • CODA: Convergence diagnosis and output analysis for MCMC
    • Plummer, M., Best, N., Cowles, K. & Vines, K. 2006 CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7-11.
    • (2006) R News , vol.6 , pp. 7-11
    • Plummer, M.1    Best, N.2    Cowles, K.3    Vines, K.4
  • 45
    • 0031879114 scopus 로고    scopus 로고
    • Stochastic kinetic analysis of developmental pathway bifurcation in phage l-infected Escherichia coli cells
    • Arkin, A., Ross, J. & McAdams, H. H. 1998 Stochastic kinetic analysis of developmental pathway bifurcation in phage l-infected Escherichia coli cells. Genetics 149, 1633-1648.
    • (1998) Genetics , vol.149 , pp. 1633-1648
    • Arkin, A.1    Ross, J.2    McAdams, H.H.3
  • 46
    • 85026233840 scopus 로고    scopus 로고
    • Parallel Bayesian computation
    • In, (ed. E. J. Kontoghiorghes), New York, NY: Marcel Dekker/CRC Press. (doi:10.1201/97814200 28683.ch16)
    • Wilkinson, D. J. 2005 Parallel Bayesian computation. In Handbook of parallel computing and statistics (ed. E. J. Kontoghiorghes), pp. 481-512. New York, NY: Marcel Dekker/CRC Press. (doi:10.1201/97814200 28683.ch16)
    • (2005) Handbook of parallel computing and statistics , pp. 481-512
    • Wilkinson, D.J.1
  • 47
    • 84255165453 scopus 로고    scopus 로고
    • Markov chain Monte Carlo algorithms for SDE parameter estimation
    • In, (eds N. Lawrence, M. Girolami, M. Rattray & G. Sanguinetti), Cambridge, MA: MIT Press
    • Wilkinson, D. J. & Golightly, A. 2010 Markov chain Monte Carlo algorithms for SDE parameter estimation. In Learning and inference in computational systems biology (eds N. Lawrence, M. Girolami, M. Rattray & G. Sanguinetti), pp. 253-275. Cambridge, MA: MIT Press.
    • (2010) Learning and inference in computational systems biology , pp. 253-275
    • Wilkinson, D.J.1    Golightly, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.