메뉴 건너뛰기




Volumn 20, Issue 1, 2010, Pages 343-364

Adaptively scaling the metropolis algorithm using expected squared jumped distance

Author keywords

Acceptance rates; Bayesian computation; Iterative simulation; Markov chain monte carlo; Multiple importance sampling

Indexed keywords


EID: 77949374261     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (90)

References (32)
  • 4
    • 20744442841 scopus 로고    scopus 로고
    • Identification of regeneration times in MCMC Simulations, with application to adaptive schemes
    • Brockwell, A. E. and Kadane, J. B. (2005). Identification of regeneration times in MCMC Simulations, with application to adaptive schemes. J. Comput. Graph. Statist. 14, 436-458.
    • (2005) J. Comput. Graph. Statist. , vol.14 , pp. 436-458
    • Brockwell, A.E.1    Kadane, J.B.2
  • 5
    • 0000103562 scopus 로고
    • Spatial statistics and Bayesian computation
    • Besag, J. and Green, P. J. (1993). Spatial statistics and Bayesian computation. J. Roy. Statist. Soc. Ser. B 55, 25-37.
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 25-37
    • Besag, J.1    Green, P.J.2
  • 8
    • 2942657876 scopus 로고    scopus 로고
    • Bayesian analysis of serial dilution assays
    • Gelman, A., Chew, G. L. and Shnaidman, M. (2004). Bayesian analysis of serial dilution assays. Biometrics 60, 407-417.
    • (2004) Biometrics , vol.60 , pp. 407-417
    • Gelman, A.1    Chew, G.L.2    Shnaidman, M.3
  • 10
    • 0000106855 scopus 로고
    • On the convergence of Monte Carlo maximum likelihood calculations
    • Geyer, C. J. (1994). On the convergence of Monte Carlo maximum likelihood calculations. J. Roy. Statist. Soc. Ser. B 56, 261-274.
    • (1994) J. Roy. Statist. Soc. Ser. B , vol.56 , pp. 261-274
    • Geyer, C.J.1
  • 11
    • 0000247137 scopus 로고    scopus 로고
    • Estimation and optimization of functions
    • Edited by W. R. Gilks, S. Richardson and D. J. Spiegelhalter, Chapman and Hall, London
    • Geyer, C. J. (1996). Estimation and optimization of functions. In Markov Chain Monte Carlo in Practice (Edited by W. R. Gilks, S. Richardson and D. J. Spiegelhalter), 241-258. Chapman and Hall, London.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 241-258
    • Geyer, C.J.1
  • 12
    • 0000051109 scopus 로고
    • Constrained maximum Monte Carlo maximum likelihood for dependent data with discussion
    • Geyer, C. J. and Thompson, E. A. (1992). Constrained maximum Monte Carlo maximum likelihood for dependent data (with discussion). J. Roy. Statist. Soc. Ser. B 54, 657-699.
    • (1992) J. Roy. Statist. Soc. Ser. B , vol.54 , pp. 657-699
    • Geyer, C.J.1    Thompson, E.A.2
  • 13
    • 0032333313 scopus 로고    scopus 로고
    • Adaptive Markov chain Monte Carlo through regeneration
    • Gilks, W. R., Roberts, G. O. and Sahu, S. K. (1998). Adaptive Markov chain Monte Carlo through regeneration. J. Amer. Statist. Assoc. 93, 1045-1054.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 1045-1054
    • Gilks, W.R.1    Roberts, G.O.2    Sahu, S.K.3
  • 14
    • 0033436531 scopus 로고    scopus 로고
    • Adaptive proposal distribution for random walk Metropolis algorithm
    • Haario, H., Saksman, E. and Tamminen, J. (1999). Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Statist. 14, 375-395.
    • (1999) Comput. Statist. , vol.14 , pp. 375-395
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 15
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario, H., Saksman, E. and Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli 7, 223-242.
    • (2001) Bernoulli , vol.7 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 16
    • 33750082644 scopus 로고    scopus 로고
    • DRAM: Efficient adaptive MCMC Statist
    • Haario, H., Laine, M., Mira, A. and Salesman, E. (2006). DRAM: Efficient adaptive MCMC Statist. Comput. 16, 339-354.
    • (2006) Comput. , vol.16 , pp. 339-354
    • Haario, H.1    Laine, M.2    Mira, A.3    Salesman, E.4
  • 17
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 18
    • 78649424388 scopus 로고
    • Weighted average importance sampling and defensive mixture distribution
    • Hesterberg, T. (1995). Weighted average importance sampling and defensive mixture distribution. Technometrics 37, 185-194.
    • (1995) Technometrics , vol.37 , pp. 185-194
    • Hesterberg, T.1
  • 19
    • 0003573107 scopus 로고    scopus 로고
    • Technical report, Norwegian Computing Centre
    • Holden, L. (2000). Adaptive chains. Technical report, Norwegian Computing Centre.
    • (2000) Adaptive Chains.
    • Holden, L.1
  • 20
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility; likelihood inference and comparison with ARCH models
    • Kim, S., Shephard, N. and Chib, J. B. (1998). Stochastic volatility; likelihood inference and comparison with ARCH models. Rev. Econom. Stud. 65, 361-393.
    • (1998) Rev. Econom. Stud. , vol.65 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, J.B.3
  • 25
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling with discussion
    • Neal, R. M. (2003). Slice sampling (with discussion). Ann. Statist. 31, 705-767.
    • (2003) Ann. Statist. , vol.31 , pp. 705-767
    • Neal, R.M.1
  • 28
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of the random walk Metropolis algorithms
    • Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and optimal scaling of the random walk Metropolis algorithms. Ann. Appl. Probab. 7, 110-220.
    • (1997) Ann. Appl. Probab. , vol.7 , pp. 110-220
    • Roberts, G.O.1    Gelman, A.2    Gilks, W.R.3
  • 29
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling for various Metropolis-Hastings algorithms
    • Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci. 16, 351-367.
    • (2001) Statist. Sci. , vol.16 , pp. 351-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 31
    • 0033619197 scopus 로고    scopus 로고
    • Some adaptive Monte Carlo methods for Bayesian inference
    • Tierney, L. and Mira, A. (1999). Some adaptive Monte Carlo methods for Bayesian inference. Statist. Medicine 18, 2507-2515.
    • (1999) Statist. Medicine , vol.18 , pp. 2507-2515
    • Tierney, L.1    Mira, A.2
  • 32
    • 0029191761 scopus 로고
    • Optimally combining importance sampling techniques for Monte Carlo rendering
    • Veach, E. and Guibas, L. (1995). Optimally combining importance sampling techniques for Monte Carlo rendering. SIGRAPH'95 Conference Proceedings, 419-428.
    • (1995) SIGRAPH'95 Conference Proceedings , pp. 419-428
    • Veach, E.1    Guibas, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.