메뉴 건너뛰기




Volumn 36, Issue 4, 2008, Pages 483-503

Optimal scaling of Metropolis algorithms: Heading toward general target distributions

Author keywords

Acceptance rate; Langevin diffusion; Marginal process; Metropolis algorithm; Scaling; Weak convergence

Indexed keywords


EID: 59149089296     PISSN: 03195724     EISSN: None     Source Type: Journal    
DOI: 10.1002/cjs.5550360401     Document Type: Article
Times cited : (47)

References (25)
  • 2
    • 42649097792 scopus 로고    scopus 로고
    • Weak convergence of Metropolis algorithms fornon-iid target distributions
    • M. Bédard (2007a). Weak convergence of Metropolis algorithms fornon-iid target distributions. The Annals of Applied Probability, 17, 1222-1244.
    • (2007) The Annals of Applied Probability , vol.17 , pp. 1222-1244
    • Bédard, M.1
  • 3
    • 59149104015 scopus 로고    scopus 로고
    • Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234
    • press: corrected proof available online 31 December
    • M. Bédard (2007b). Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234. Stochastic Processes and their Applications, In press: corrected proof available online 31 December 2007.
    • (2007) Stochastic Processes and their Applications
    • Bédard, M.1
  • 4
    • 46849119211 scopus 로고    scopus 로고
    • Efficient sampling using Metropolis algorithms: Applications of optimal scaling results
    • M. Bédard (2008). Efficient sampling using Metropolis algorithms: Applications of optimal scaling results. Journal of Computational and Graphical Statistics, 17, 312-332.
    • (2008) Journal of Computational and Graphical Statistics , vol.17 , pp. 312-332
    • Bédard, M.1
  • 5
    • 59149090404 scopus 로고    scopus 로고
    • Optimal scaling for the multiple-try Metropolis algorithm
    • In preparation
    • M. Bédard, G. Fort & E. Moulines (2008). Optimal scaling for the multiple-try Metropolis algorithm. In preparation.
    • (2008)
    • Bédard, M.1    Fort, G.2    Moulines, E.3
  • 6
    • 59149104871 scopus 로고    scopus 로고
    • Weak convergence of RWM algorithms using Dirichlet forms
    • In preparation
    • M. Bédard & W. S. Kendall (2008). Weak convergence of RWM algorithms using Dirichlet forms. In preparation.
    • (2008)
    • Bédard, M.1    Kendall, W.S.2
  • 13
    • 0000954353 scopus 로고    scopus 로고
    • Efficient Metropolis jumping rules
    • J. M. Bernardo, J. O. Berger, A. F. David and A. F. M. Smith, eds, Oxford University Press, pp
    • A. Gelman, G. O. Roberts & W. R. Gilks (1996). Efficient Metropolis jumping rules. In Bayesian Statistics V (J. M. Bernardo, J. O. Berger, A. F. David and A. F. M. Smith, eds.), Oxford University Press, pp. 599-608.
    • (1996) Bayesian Statistics V , pp. 599-608
    • Gelman, A.1    Roberts, G.O.2    Gilks, W.R.3
  • 14
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W. K. Hastings (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 17
    • 84891435216 scopus 로고    scopus 로고
    • On Metropolis-Hastings algorithms with delayed rejection
    • A. Mira (2001). On Metropolis-Hastings algorithms with delayed rejection. Metron, 59, 231-241.
    • (2001) Metron , vol.59 , pp. 231-241
    • Mira, A.1
  • 18
    • 33746863011 scopus 로고    scopus 로고
    • Optimal scaling for partially updating MCMC algorithms
    • P. Neal & G. O. Roberts (2006). Optimal scaling for partially updating MCMC algorithms. The Annals of Applied Probability, 16, 475-515.
    • (2006) The Annals of Applied Probability , vol.16 , pp. 475-515
    • Neal, P.1    Roberts, G.O.2
  • 19
    • 59149102082 scopus 로고    scopus 로고
    • Optimal scaling of random walk Metropolis algorithms with discontinuous target densities
    • Technical Report
    • P. Neal, G. O. Roberts & J. Yuen (2007). Optimal scaling of random walk Metropolis algorithms with discontinuous target densities. Technical Report.
    • (2007)
    • Neal, P.1    Roberts, G.O.2    Yuen, J.3
  • 21
    • 46849099967 scopus 로고    scopus 로고
    • Adaptively scaling the Metropolis algorithm using expected squared jumped distance
    • Technical report, Department of Statistics, Columbia University, New York
    • C. Pasarica & A. Gelman (2003). Adaptively scaling the Metropolis algorithm using expected squared jumped distance. Technical report, Department of Statistics, Columbia University, New York.
    • (2003)
    • Pasarica, C.1    Gelman, A.2
  • 22
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk Metropolis algorithms
    • G. O. Roberts, A. Gelman & W. R. Gilks (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. The Annals of Applied Probability, 7, 110-120.
    • (1997) The Annals of Applied Probability , vol.7 , pp. 110-120
    • Roberts, G.O.1    Gelman, A.2    Gilks, W.R.3
  • 24
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling for various Metropolis-Hastings algorithms
    • G. O. Roberts & J. S. Rosenthal (2001). Optimal scaling for various Metropolis-Hastings algorithms. Statistical Science, 16, 351-367.
    • (2001) Statistical Science , vol.16 , pp. 351-367
    • Roberts, G.O.1    Rosenthal, J.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.