메뉴 건너뛰기




Volumn 25, Issue 2, 2010, Pages 172-190

The random walk metropolis: Linking theory and practice through a case study

Author keywords

Adaptive MCMC; MCMC; Metropolis hastings; MMPP; Random walk Metropolis

Indexed keywords


EID: 78650237279     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/10-STS327     Document Type: Article
Times cited : (84)

References (26)
  • 2
    • 42649097792 scopus 로고    scopus 로고
    • Weak convergence of Metropolis algorithms for non-i. i. d. target distributions
    • Bédard, M. (2007). Weak convergence of Metropolis algorithms for non-i.i.d. target distributions. Ann. Appl. Probab. 17 1222-1244.
    • (2007) Ann. Appl. Probab. , vol.17 , pp. 1222-1244
    • Bédard, M.1
  • 3
    • 55649115998 scopus 로고    scopus 로고
    • Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234
    • Bédard, M. (2008). Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234. Stochastic Process. Appl. 118 2198-2222.
    • (2008) Stochastic Process. Appl. , vol.118 , pp. 2198-2222
    • Bédard, M.1
  • 4
    • 0037443901 scopus 로고    scopus 로고
    • Analysis of photon count data from single-molecule fluorescence experiments
    • BURZYKOWSKI, T., SZUBIAKOWSKI, J. and RYDEN, T. (2003). Analysis of photon count data from single-molecule fluorescence experiments. Chem. Phys. 288 291-307.
    • (2003) Chem. Phys. , vol.288 , pp. 291-307
    • Burzykowski, T.1    Szubiakowski, J.2    Ryden, T.3
  • 6
    • 0842316460 scopus 로고    scopus 로고
    • An introduction to MCMC
    • (J. Moller, ed.). Lecture Notes in Statistics. Springer, Berlin
    • DELLAPORTAS, P. and ROBERTS, G. O. (2003). An introduction to MCMC. In Spatial Statistics and Computational Methods (J. Moller, ed.). Lecture Notes in Statistics 173 1-41. Springer, Berlin.
    • (2003) Spatial Statistics and Computational Methods , vol.173 , pp. 1-41
    • Dellaportas, P.1    Roberts, G.O.2
  • 7
    • 33750325305 scopus 로고    scopus 로고
    • An exact Gibbs sampler for the Markov modulated Poisson processes
    • FEARNHEAD, P. and SHERLOCK, C. (2006). An exact Gibbs sampler for the Markov modulated Poisson processes. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 767-784.
    • (2006) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.68 , pp. 767-784
    • Fearnhead, P.1    Sherlock, C.2
  • 9
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo
    • GEYER, C. J. (1992). Practical Markov chain Monte Carlo. Statist. Sci. 7 473-483.
    • (1992) Statist. Sci. , vol.7 , pp. 473-483
    • Geyer, C.J.1
  • 11
    • 0036117479 scopus 로고    scopus 로고
    • Polynomial convergence rates of Markov chains
    • JARNER, S. F. and ROBERTS, G. O. (2002). Polynomial convergence rates of Markov chains. Ann. Appl. Probab. 12 224-247.
    • (2002) Ann. Appl. Probab. , vol.12 , pp. 224-247
    • Jarner, S.F.1    Roberts, G.O.2
  • 12
    • 18444379363 scopus 로고    scopus 로고
    • Bayesian analysis of single-molecule experimental data
    • KOU, S. C., XIE, X. S. and LIU, J. S. (2005). Bayesian analysis of single-molecule experimental data. Appl. Statist. 54 1-28.
    • (2005) Appl. Statist. , vol.54 , pp. 1-28
    • Kou, S.C.1    Xie, X.S.2    Liu, J.S.3
  • 13
    • 0030551974 scopus 로고    scopus 로고
    • Rates of convergence of the Hastings and Metropolis algorithms
    • MENGERSEN, K. L. and TWEEDIE, R. L. (1996). Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24 101-121.
    • (1996) Ann. Statist. , vol.24 , pp. 101-121
    • Mengersen, K.L.1    Tweedie, R.L.2
  • 16
    • 33746863011 scopus 로고    scopus 로고
    • Optimal scaling for partially updating MCMC algorithm
    • NEAL, P. and ROBERTS, G. (2006). Optimal scaling for partially updating MCMC algorithm. Ann. Appl. Probab. 16 475-515.
    • (2006) Ann. Appl. Probab. , vol.16 , pp. 475-515
    • Neal, P.1    Roberts, G.2
  • 18
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling for various Metropolis-Hastings algorithms
    • ROBERTS, G. O. and ROSENTHAL, J. S. (2001). Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci. 16 351-367.
    • (2001) Statist. Sci. , vol.16 , pp. 351-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 19
    • 34548026526 scopus 로고    scopus 로고
    • Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms
    • ROBERTS, G. O. and ROSENTHAL, J. S. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44 458-475.
    • (2007) J. Appl. Probab. , vol.44 , pp. 458-475
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 21
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk Metropolis algorithms
    • ROBERTS, G. O., GELMAN, A. and GILKS, W. R. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7 110-120.
    • (1997) Ann. Appl. Probab. , vol.7 , pp. 110-120
    • Roberts, G.O.1    Gelman, A.2    Gilks, W.R.3
  • 22
    • 0442304908 scopus 로고    scopus 로고
    • The Markov modulated Poisson process and Markov Poisson cascade with applications to web traffic modelling
    • SCOTT, S. L. and SMYTH, P. (2003). The Markov modulated Poisson process and Markov Poisson cascade with applications to web traffic modelling. Bayesian Statist. 7 1-10.
    • (2003) Bayesian Statist. , vol.7 , pp. 1-10
    • Scott, S.L.1    Smyth, P.2
  • 23
    • 33750379489 scopus 로고    scopus 로고
    • In discussion of Bayesian analysis of single-molecule experimental data
    • SHERLOCK, C. (2005). In discussion of 'Bayesian analysis of single-molecule experimental data.' J. Roy. Statist. Soc. Ser. C 54 500.
    • (2005) J. Roy. Statist. Soc. Ser. , vol.54 , pp. 500
    • Sherlock, C.1
  • 25
    • 72249090639 scopus 로고    scopus 로고
    • Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets
    • SHERLOCK, C. and ROBERTS, G. (2009). Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets. Bernoulli 15 774-798.
    • (2009) Bernoulli , vol.15 , pp. 774-798
    • Sherlock, C.1    Roberts, G.2
  • 26
    • 0038658626 scopus 로고    scopus 로고
    • Monte Carlo methods in statistical mechanics: Foundations and new algorithms
    • Plenum, New York
    • SOKAL, A. (1997). Monte Carlo methods in statistical mechanics: Foundations and new algorithms. In Functional Integration (Cargèse, 1996). NATO Adv. Sci. Inst. Ser. B Phys. 361 131-192. Plenum, New York.
    • (1997) Functional Integration (Cargèse, 1996). NATO Adv. Sci. Inst. Ser. B Phys. , vol.361 , pp. 131-192
    • Sokal, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.