메뉴 건너뛰기




Volumn 362, Issue , 2014, Pages 53-61

Review on statistical methods for gene network reconstruction using expression data

Author keywords

Bayesian networks; Coexpression networks; Community detection; Dynamic networks; Genomic data integration

Indexed keywords

BAYESIAN ANALYSIS; GENE EXPRESSION; GENETIC ANALYSIS; GEOSTATISTICS; NETWORK ANALYSIS; RECONSTRUCTION;

EID: 84921978377     PISSN: 00225193     EISSN: 10958541     Source Type: Journal    
DOI: 10.1016/j.jtbi.2014.03.040     Document Type: Article
Times cited : (158)

References (148)
  • 2
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu, T., Miyano, S., Kuhara, S., 1999. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Pacific Symposium on Biocomputing. pp. 17-28.
    • (1999) Pacific Symposium on Biocomputing , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 3
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., Mack D., Levine A.J. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 1999, 96:6745-6750.
    • (1999) Proc. Natl. Acad. Sci. , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 4
    • 0037250158 scopus 로고    scopus 로고
    • InterPreTS. protein interaction prediction through tertiary structure
    • Aloy P., Russell R.B. InterPreTS. protein interaction prediction through tertiary structure. Bioinformatics 2003, 19:161-162.
    • (2003) Bioinformatics , vol.19 , pp. 161-162
    • Aloy, P.1    Russell, R.B.2
  • 5
    • 84907144758 scopus 로고    scopus 로고
    • Pseudo-likelihood methods for community detection in large sparse networks
    • Amini A.A., Chen A., Bickel P.J., Levina E. Pseudo-likelihood methods for community detection in large sparse networks. Ann. Stat. 2013, 41:2097-2122.
    • (2013) Ann. Stat. , vol.41 , pp. 2097-2122
    • Amini, A.A.1    Chen, A.2    Bickel, P.J.3    Levina, E.4
  • 8
    • 84863887694 scopus 로고    scopus 로고
    • Studying and modelling dynamic biological processes using time-series gene expression data
    • Bar-Joseph Z., Gitter A., Simon I. Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genetics 2012, 13:552-564.
    • (2012) Nat. Rev. Genetics , vol.13 , pp. 552-564
    • Bar-Joseph, Z.1    Gitter, A.2    Simon, I.3
  • 9
    • 0742305866 scopus 로고    scopus 로고
    • Network biology. understanding the cell's functional organization
    • Barabási A.L., Oltvai Z.N. Network biology. understanding the cell's functional organization. Nat. Rev. Genetics 2004, 5:101-113.
    • (2004) Nat. Rev. Genetics , vol.5 , pp. 101-113
    • Barabási, A.L.1    Oltvai, Z.N.2
  • 12
    • 44949225040 scopus 로고    scopus 로고
    • Context-specific metabolic networks are consistent with experiments
    • Becker S.A., Palsson B.O. Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 2008, 4:e1000082.
    • (2008) PLoS Comput. Biol. , vol.4
    • Becker, S.A.1    Palsson, B.O.2
  • 14
    • 16344387892 scopus 로고    scopus 로고
    • Probabilities of spurious connections in gene networks. application to expression time series
    • Bickel D.R. Probabilities of spurious connections in gene networks. application to expression time series. Bioinformatics 2005, 21:1121-1128.
    • (2005) Bioinformatics , vol.21 , pp. 1121-1128
    • Bickel, D.R.1
  • 15
    • 75849140057 scopus 로고    scopus 로고
    • A nonparametric view of network models and Newman-Girvan and other modularities
    • Bickel P., Chen A. A nonparametric view of network models and Newman-Girvan and other modularities. Proc. Natl. Acad. Sci. 2009, 106:21068-21073.
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , pp. 21068-21073
    • Bickel, P.1    Chen, A.2
  • 16
    • 84907151164 scopus 로고    scopus 로고
    • Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels
    • Bickel P.J., Choi D., Chang X., Zhang H. Asymptotic normality of maximum likelihood and its variational approximation for stochastic blockmodels. Ann. Stat. 2013, 41:1922-1943.
    • (2013) Ann. Stat. , vol.41 , pp. 1922-1943
    • Bickel, P.J.1    Choi, D.2    Chang, X.3    Zhang, H.4
  • 17
    • 34547844158 scopus 로고    scopus 로고
    • Supervised reconstruction of biological networks with local models
    • Bleakley K., Biau G., Vert J.P. Supervised reconstruction of biological networks with local models. Bioinformatics 2007, 23:i57-i65.
    • (2007) Bioinformatics , vol.23 , pp. i57-i65
    • Bleakley, K.1    Biau, G.2    Vert, J.P.3
  • 18
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator. an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau R., Reiss D.J., Shannon P., Facciotti M., Hood L., Baliga N.S., Thorsson V. The Inferelator. an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 2006, 7:R36.
    • (2006) Genome Biol. , vol.7 , pp. R36
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.S.6    Thorsson, V.7
  • 19
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements
    • Butte, A.J., Kohane, I.S., 2000. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. in: Pacific Symposium on Biocomputing. pp. 418-429.
    • (2000) Pacific Symposium on Biocomputing , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 21
    • 5044245707 scopus 로고    scopus 로고
    • Gene co-expression network topology provides a framework for molecular characterization of cellular state
    • Carter S.L., Brechbühler C.M., Griffin M., Bond A.T. Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 2004, 20:2242-2250.
    • (2004) Bioinformatics , vol.20 , pp. 2242-2250
    • Carter, S.L.1    Brechbühler, C.M.2    Griffin, M.3    Bond, A.T.4
  • 22
    • 84875385659 scopus 로고    scopus 로고
    • Consistency of maximum-likelihood and variational estimators in the stochastic block model
    • Celisse A., Daudin J.J., Pierre L. Consistency of maximum-likelihood and variational estimators in the stochastic block model. Electron. J. Stat. 2012, 6:1847-1899.
    • (2012) Electron. J. Stat. , vol.6 , pp. 1847-1899
    • Celisse, A.1    Daudin, J.J.2    Pierre, L.3
  • 23
    • 77951774810 scopus 로고    scopus 로고
    • Learning gene regulatory networks from only positive and unlabeled data
    • Cerulo L., Elkan C., Ceccarelli M. Learning gene regulatory networks from only positive and unlabeled data. BMC Bioinformat. 2010, 11:228.
    • (2010) BMC Bioinformat. , vol.11 , pp. 228
    • Cerulo, L.1    Elkan, C.2    Ceccarelli, M.3
  • 24
    • 84875394054 scopus 로고    scopus 로고
    • Classification and estimation in the stochastic block model based on the empirical degrees
    • Channarond A., Daudin J.-J., Robin S. Classification and estimation in the stochastic block model based on the empirical degrees. Electron. J. Stat. 2012, 6:2574-2601.
    • (2012) Electron. J. Stat. , vol.6 , pp. 2574-2601
    • Channarond, A.1    Daudin, J.-J.2    Robin, S.3
  • 25
    • 20844452570 scopus 로고    scopus 로고
    • A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
    • Chen K.C., Wang T.Y., Tseng H.H., Huang C.Y., Kao C.Y. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 2005, 21:2883-2890.
    • (2005) Bioinformatics , vol.21 , pp. 2883-2890
    • Chen, K.C.1    Wang, T.Y.2    Tseng, H.H.3    Huang, C.Y.4    Kao, C.Y.5
  • 26
    • 0035060857 scopus 로고    scopus 로고
    • Identifying gene regulatory networks from experimental data
    • Chen T., Filkov V., Skiena S. Identifying gene regulatory networks from experimental data. Parallel Comput. 2001, 27:141-162.
    • (2001) Parallel Comput. , vol.27 , pp. 141-162
    • Chen, T.1    Filkov, V.2    Skiena, S.3
  • 28
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 1992, 9:309-347.
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 29
    • 13244267007 scopus 로고    scopus 로고
    • Estimating mutual information using B-spline functions - an improved similarity measure for analysing gene expression data
    • Daub C.O., Steuer R., Selbig J., Kloska S. Estimating mutual information using B-spline functions - an improved similarity measure for analysing gene expression data. BMC Bioinformat. 2004, 5:118.
    • (2004) BMC Bioinformat. , vol.5 , pp. 118
    • Daub, C.O.1    Steuer, R.2    Selbig, J.3    Kloska, S.4
  • 30
  • 31
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • De La Fuente A., Bing N., Hoeschele I., Mendes P. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 2004, 20:3565-3574.
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • De La Fuente, A.1    Bing, N.2    Hoeschele, I.3    Mendes, P.4
  • 32
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • De Smet R., Marchal K. Advantages and limitations of current network inference methods. Nat. Rev. Microbiol. 2010, 8:717-729.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 33
    • 84555195640 scopus 로고    scopus 로고
    • Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications
    • Decelle A., Krzakala F., Moore C., Zdeborová L. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Phys. Rev. E 2011, 84:066106.
    • (2011) Phys. Rev. E , vol.84 , pp. 066106
    • Decelle, A.1    Krzakala, F.2    Moore, C.3    Zdeborová, L.4
  • 34
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy C-means method for clustering microarray data
    • Dembélé D., Kastner P. Fuzzy C-means method for clustering microarray data. Bioinformatics 2003, 19:973-980.
    • (2003) Bioinformatics , vol.19 , pp. 973-980
    • Dembélé, D.1    Kastner, P.2
  • 36
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference. from co-expression clustering to reverse engineering
    • D'haeseleer P., Liang S., Somogyi R. Genetic network inference. from co-expression clustering to reverse engineering. Bioinformatics 2000, 16:707-726.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 40
    • 41849115550 scopus 로고    scopus 로고
    • A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli
    • Ernst J., Beg Q.K., Kay K.A., Balázsi G., Oltvai Z.N., Bar-Joseph Z. A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli. PLoS Comput. Biol. 2008, 4:e1000044.
    • (2008) PLoS Comput. Biol. , vol.4
    • Ernst, J.1    Beg, Q.K.2    Kay, K.A.3    Balázsi, G.4    Oltvai, Z.N.5    Bar-Joseph, Z.6
  • 42
    • 0036100833 scopus 로고    scopus 로고
    • Analysis techniques for microarray time-series data
    • Filkov V., Skiena S., Zhi J. Analysis techniques for microarray time-series data. J. Comput. Biol. 2002, 9:317-330.
    • (2002) J. Comput. Biol. , vol.9 , pp. 317-330
    • Filkov, V.1    Skiena, S.2    Zhi, J.3
  • 43
    • 84877319528 scopus 로고    scopus 로고
    • Consistent adjacency-spectral partitioning for the stochastic block model when the model parameters are unknown
    • Fishkind D., Sussman D., Tang M., Vogelstein J., Priebe C. Consistent adjacency-spectral partitioning for the stochastic block model when the model parameters are unknown. SIAM J. Matrix Anal. Appl. 2013, 34:23-29.
    • (2013) SIAM J. Matrix Anal. Appl. , vol.34 , pp. 23-29
    • Fishkind, D.1    Sussman, D.2    Tang, M.3    Vogelstein, J.4    Priebe, C.5
  • 44
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical Lasso
    • Friedman J., Hastie T., Tibshirani R. Sparse inverse covariance estimation with the graphical Lasso. Biostatistics 2007, 9:432-441.
    • (2007) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 46
    • 39449096984 scopus 로고    scopus 로고
    • FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data
    • Fu L., Medico E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformat. 2007, 8:3.
    • (2007) BMC Bioinformat. , vol.8 , pp. 3
    • Fu, L.1    Medico, E.2
  • 47
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner T.S., di Bernardo D., Lorenz D., Collins J.J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102-105.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 49
    • 84861179768 scopus 로고    scopus 로고
    • "Guilt by association" is the exception rather than the rule in gene networks
    • Gillis J., Pavlidis P. "Guilt by association" is the exception rather than the rule in gene networks. PLoS Comput. Biol. 2012, 8:e1002444.
    • (2012) PLoS Comput. Biol. , vol.8
    • Gillis, J.1    Pavlidis, P.2
  • 50
    • 14644396645 scopus 로고    scopus 로고
    • Functional cartography of complex metabolic networks
    • Guimerà R., Amaral L.A.N. Functional cartography of complex metabolic networks. Nature 2005, 433:895-900.
    • (2005) Nature , vol.433 , pp. 895-900
    • Guimerà, R.1    Amaral, L.A.N.2
  • 51
    • 80053069269 scopus 로고    scopus 로고
    • Whole-genome metabolic network reconstruction and constraint-based modeling
    • Haggart C.R., Bartell J.A., Saucerman J.J., Papin J.A. Whole-genome metabolic network reconstruction and constraint-based modeling. Meth. Enzymol. 2011, 500:411-433.
    • (2011) Meth. Enzymol. , vol.500 , pp. 411-433
    • Haggart, C.R.1    Bartell, J.A.2    Saucerman, J.J.3    Papin, J.A.4
  • 52
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • Hartemink, A.J., Gifford, D.K., Jaakkola, T.S., Young, R.A., 2001. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. in: Pacific Symposium on Biocomputing. pp. 422-433.
    • (2001) Pacific Symposium on Biocomputing , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 54
    • 45749117949 scopus 로고    scopus 로고
    • A Bayesian approach to network modularity
    • Hofman J.M., Wiggins C.H. A Bayesian approach to network modularity. Phys. Rev. Lett. 2008, 100:258701.
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 258701
    • Hofman, J.M.1    Wiggins, C.H.2
  • 56
    • 50949084896 scopus 로고    scopus 로고
    • Geometric interpretation of gene coexpression network analysis
    • Horvath S., Dong J. Geometric interpretation of gene coexpression network analysis. PLoS Comput. Biol. 2008, 4:e1000117.
    • (2008) PLoS Comput. Biol. , vol.4
    • Horvath, S.1    Dong, J.2
  • 57
    • 0033642067 scopus 로고    scopus 로고
    • Discovery of regulatory interactions through perturbation: inference and experimental design
    • Ideker, T.E., Thorsson, V., Karp, R.M., 2000. Discovery of regulatory interactions through perturbation: inference and experimental design. In: Pacific Symposium on Biocomputing. pp. 305-316.
    • (2000) Pacific Symposium on Biocomputing , pp. 305-316
    • Ideker, T.E.1    Thorsson, V.2    Karp, R.M.3
  • 61
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data. a survey
    • Jiang D., Tang C., Zhang A. Cluster analysis for gene expression data. a survey. IEEE Trans. Knowl. Data Eng. 2004, 16:1370-1386.
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , pp. 1370-1386
    • Jiang, D.1    Tang, C.2    Zhang, A.3
  • 62
    • 79951710564 scopus 로고    scopus 로고
    • Stochastic blockmodels and community structure in networks
    • Karrer B., Newman M.E.J. Stochastic blockmodels and community structure in networks. Phys. Rev. E 2011, 83:016107.
    • (2011) Phys. Rev. E , vol.83 , pp. 016107
    • Karrer, B.1    Newman, M.E.J.2
  • 63
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • Kauffman S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theoret. Biol. 1969, 22:437-467.
    • (1969) J. Theoret. Biol. , vol.22 , pp. 437-467
    • Kauffman, S.A.1
  • 66
    • 84859073880 scopus 로고    scopus 로고
    • Using biologically interrelated experiments to identify pathway genes in Arabidopsis
    • Kim K., Jiang K., Teng S.M., Feldman L.J., Huang H. Using biologically interrelated experiments to identify pathway genes in Arabidopsis. Bioinformatics 2012, 28:815-822.
    • (2012) Bioinformatics , vol.28 , pp. 815-822
    • Kim, K.1    Jiang, K.2    Teng, S.M.3    Feldman, L.J.4    Huang, H.5
  • 67
    • 33847657554 scopus 로고    scopus 로고
    • Measuring similarities between gene expression profiles through new data transformations
    • Kim K., Zhang S., Jiang K., Cai L., Lee I.B., Feldman L.J., Huang H. Measuring similarities between gene expression profiles through new data transformations. BMC Bioinformat. 2007, 8:29.
    • (2007) BMC Bioinformat. , vol.8 , pp. 29
    • Kim, K.1    Zhang, S.2    Jiang, K.3    Cai, L.4    Lee, I.B.5    Feldman, L.J.6    Huang, H.7
  • 68
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • Kim S., Imoto S., Miyano S. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 2004, 75:57-65.
    • (2004) Biosystems , vol.75 , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 70
    • 84895815806 scopus 로고    scopus 로고
    • Equitability, mutual information, and the maximal information coefficient. Proc
    • Kinney J.B., Atwal G.S. Equitability, mutual information, and the maximal information coefficient. Proc. Natl. Acad. Sci. 2014, 111:3354-3359.
    • (2014) Natl. Acad. Sci. , vol.111 , pp. 3354-3359
    • Kinney, J.B.1    Atwal, G.S.2
  • 71
    • 79952202448 scopus 로고    scopus 로고
    • Cytoscape. software for visualization and analysis of biological networks
    • Kohl M., Wiese S., Warscheid B. Cytoscape. software for visualization and analysis of biological networks. Meth. Mol. Biol. 2011, 696:291-303.
    • (2011) Meth. Mol. Biol. , vol.696 , pp. 291-303
    • Kohl, M.1    Wiese, S.2    Warscheid, B.3
  • 72
    • 84870626688 scopus 로고    scopus 로고
    • Evaluation of gene association methods for coexpression network construction and biological knowledge discovery
    • Kumari S., Nie J., Chen H.S., Ma H., Stewart R., Li X., Lu M.Z., Taylor W.M., Wei H. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery. PLoS ONE 2012, 7:e50411.
    • (2012) PLoS ONE , vol.7
    • Kumari, S.1    Nie, J.2    Chen, H.S.3    Ma, H.4    Stewart, R.5    Li, X.6    Lu, M.Z.7    Taylor, W.M.8    Wei, H.9
  • 73
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA. an R package for weighted correlation network analysis
    • Langfelder P., Horvath S. WGCNA. an R package for weighted correlation network analysis. BMC Bioinformat. 2008, 9:559.
    • (2008) BMC Bioinformat. , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2
  • 74
    • 40049099114 scopus 로고    scopus 로고
    • Defining clusters from a hierarchical cluster tree. The Dynamic Tree Cut package for R
    • Langfelder P., Zhang B., Horvath S. Defining clusters from a hierarchical cluster tree. The Dynamic Tree Cut package for R. Bioinformatics 2008, 24:719-720.
    • (2008) Bioinformatics , vol.24 , pp. 719-720
    • Langfelder, P.1    Zhang, B.2    Horvath, S.3
  • 75
    • 84859344722 scopus 로고    scopus 로고
    • Variational Bayesian inference and complexity control for stochastic block models
    • Latouche P., Birmelé E., Ambroise C. Variational Bayesian inference and complexity control for stochastic block models. Stat. Modell. 2012, 12:93-115.
    • (2012) Stat. Modell. , vol.12 , pp. 93-115
    • Latouche, P.1    Birmelé, E.2    Ambroise, C.3
  • 77
    • 33645568358 scopus 로고    scopus 로고
    • Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks
    • Li H., Gui J. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics 2006, 7:302-317.
    • (2006) Biostatistics , vol.7 , pp. 302-317
    • Li, H.1    Gui, J.2
  • 78
    • 0037168518 scopus 로고    scopus 로고
    • Genome-wide coexpression dynamics. theory and application
    • Li K.-C. Genome-wide coexpression dynamics. theory and application. Proc. Natl. Acad. Sci. 2002, 99:16875-16880.
    • (2002) Proc. Natl. Acad. Sci. , vol.99 , pp. 16875-16880
    • Li, K.-C.1
  • 80
    • 0031616241 scopus 로고    scopus 로고
    • Reveal, a general reverse engineering algorithm for inference of genetic network architectures
    • Liang, S., Fuhrman, S., Somogyi, R., 1998. Reveal, a general reverse engineering algorithm for inference of genetic network architectures. In: Pacific Symposium on Biocomputing. pp. 18-29.
    • (1998) Pacific Symposium on Biocomputing , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 82
    • 33644855951 scopus 로고    scopus 로고
    • A data-driven clustering method for time course gene expression data
    • Ma P., Castillo-Davis C.I., Zhong W., Liu J.S. A data-driven clustering method for time course gene expression data. Nucl. Acids Res. 2006, 34:1261-1269.
    • (2006) Nucl. Acids Res. , vol.34 , pp. 1261-1269
    • Ma, P.1    Castillo-Davis, C.I.2    Zhong, W.3    Liu, J.S.4
  • 84
    • 84892376552 scopus 로고    scopus 로고
    • Supervised, semi-supervised and unsupervised inference of gene regulatory networks
    • Maetschke S.R., Madhamshettiwar P.B., Davis M.J., Ragan M.A. Supervised, semi-supervised and unsupervised inference of gene regulatory networks. Brief. Bioinform. 2014, 15:195-211.
    • (2014) Brief. Bioinform. , vol.15 , pp. 195-211
    • Maetschke, S.R.1    Madhamshettiwar, P.B.2    Davis, M.J.3    Ragan, M.A.4
  • 85
    • 27844482652 scopus 로고    scopus 로고
    • Estimating genomic coexpression networks using first-order conditional independence
    • Magwene P., Kim J. Estimating genomic coexpression networks using first-order conditional independence. Genome Biol. 2004, 5:R100.
    • (2004) Genome Biol. , vol.5 , pp. R100
    • Magwene, P.1    Kim, J.2
  • 87
    • 34547840242 scopus 로고    scopus 로고
    • Nested effects models for high-dimensional phenotyping screens
    • Markowetz F., Kostka D., Troyanskaya O.G., Spang R. Nested effects models for high-dimensional phenotyping screens. Bioinformatics 2007, 23:i305-i312.
    • (2007) Bioinformatics , vol.23 , pp. i305-i312
    • Markowetz, F.1    Kostka, D.2    Troyanskaya, O.G.3    Spang, R.4
  • 88
    • 75649151459 scopus 로고    scopus 로고
    • Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling
    • Mazur J., Ritter D., Reinelt G., Kaderali L. Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling. BMC Bioinform. 2009, 10:448.
    • (2009) BMC Bioinform. , vol.10 , pp. 448
    • Mazur, J.1    Ritter, D.2    Reinelt, G.3    Kaderali, L.4
  • 89
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • Meinshausen N., Bühlmann P. High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 2006, 34:1049-1579.
    • (2006) Ann. Stat. , vol.34 , pp. 1049-1579
    • Meinshausen, N.1    Bühlmann, P.2
  • 90
    • 49549104230 scopus 로고    scopus 로고
    • SIRENE. supervised inference of regulatory networks
    • Mordelet F., Vert J.P. SIRENE. supervised inference of regulatory networks. Bioinformatics 2008, 24:i76-i82.
    • (2008) Bioinformatics , vol.24 , pp. i76-i82
    • Mordelet, F.1    Vert, J.P.2
  • 94
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • Newman M.E.J., Girvan M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69:026113.
    • (2004) Phys. Rev. E , vol.69 , pp. 026113
    • Newman, M.E.J.1    Girvan, M.2
  • 95
    • 0442296603 scopus 로고    scopus 로고
    • Estimation and prediction for stochastic blockstructures
    • Nowicki K., Snijders T.A.B. Estimation and prediction for stochastic blockstructures. J. Am. Stat. Assoc. 2001, 96:1077-1087.
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 1077-1087
    • Nowicki, K.1    Snijders, T.A.B.2
  • 99
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er, D., Regev, A., Elidan, G., N., F., 2001. Inferring subnetworks from perturbed expression profiles. Bioinformatics 17, S215-S224.
    • (2001) Bioinformatics , vol.17 , pp. S215-S224
    • Pe'er, D.1    Regev, A.2    Elidan, G.N.F.3
  • 101
    • 66549116888 scopus 로고    scopus 로고
    • Partial correlation estimation by joint sparse regression models
    • Peng J., Wang P., Zhou N., Zhu J. Partial correlation estimation by joint sparse regression models. J. Am. Stat. Assoc. 2009, 104:736-746.
    • (2009) J. Am. Stat. Assoc. , vol.104 , pp. 736-746
    • Peng, J.1    Wang, P.2    Zhou, N.3    Zhu, J.4
  • 103
    • 9544253891 scopus 로고    scopus 로고
    • Genome-scale models of microbial cells. evaluating the consequences of constraints
    • Price N.D., Reed J.L., Palsson B.O. Genome-scale models of microbial cells. evaluating the consequences of constraints. Nat. Rev. Microbiol. 2004, 2:886-897.
    • (2004) Nat. Rev. Microbiol. , vol.2 , pp. 886-897
    • Price, N.D.1    Reed, J.L.2    Palsson, B.O.3
  • 107
    • 80052860256 scopus 로고    scopus 로고
    • Spectral clustering and the high-dimensional stochastic block model
    • Rohe K., Chatterjee S., Yu B. Spectral clustering and the high-dimensional stochastic block model. Ann. Stat. 2011, 39:1878-1915.
    • (2011) Ann. Stat. , vol.39 , pp. 1878-1915
    • Rohe, K.1    Chatterjee, S.2    Yu, B.3
  • 108
    • 33645107349 scopus 로고    scopus 로고
    • Bayesian sparse hidden components analysis for transcription regulation networks
    • Sabatti C., James G.M. Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics 2006, 22:739-746.
    • (2006) Bioinformatics , vol.22 , pp. 739-746
    • Sabatti, C.1    James, G.M.2
  • 109
    • 0025768289 scopus 로고
    • Biochemical systems theory. operational differences among variant representations and their significance
    • Savageau M.A. Biochemical systems theory. operational differences among variant representations and their significance. J. Theor. Biol. 1991, 151:509-530.
    • (1991) J. Theor. Biol. , vol.151 , pp. 509-530
    • Savageau, M.A.1
  • 110
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schäfer J., Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 2005, 21(6):754-764.
    • (2005) Bioinformatics , vol.21 , Issue.6 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 111
    • 0141506116 scopus 로고    scopus 로고
    • CLICK and EXPANDER. a system for clustering and visualizing gene expression data
    • Sharan R., Maron-Katz A., Shamir R. CLICK and EXPANDER. a system for clustering and visualizing gene expression data. Bioinformatics 2003, 19:1787-1799.
    • (2003) Bioinformatics , vol.19 , pp. 1787-1799
    • Sharan, R.1    Maron-Katz, A.2    Shamir, R.3
  • 114
    • 0031495186 scopus 로고    scopus 로고
    • Estimation and prediction for stochastic blockmodels for graphs with latent block structure
    • Snijders T.A.B., Nowicki K. Estimation and prediction for stochastic blockmodels for graphs with latent block structure. J. Classif. 1997, 14:75-100.
    • (1997) J. Classif. , vol.14 , pp. 75-100
    • Snijders, T.A.B.1    Nowicki, K.2
  • 115
    • 79952267533 scopus 로고    scopus 로고
    • Interactome mapping suggests new mechanistic details underlying Alzheimer's disease
    • Soler-López M., Zanzoni A., Lluís R., Stelzl U., Aloy P. Interactome mapping suggests new mechanistic details underlying Alzheimer's disease. Genome Res. 2011, 21:364-376.
    • (2011) Genome Res. , vol.21 , pp. 364-376
    • Soler-López, M.1    Zanzoni, A.2    Lluís, R.3    Stelzl, U.4    Aloy, P.5
  • 118
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: detecting and evaluating dependencies between variables
    • Steuer, R., Kurths, J., Daub, C.O., Weise, J., Selbig, J., 2002. The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18, S231-S240.
    • (2002) Bioinformatics , vol.18 , pp. S231-S240
    • Steuer, R.1    Kurths, J.2    Daub, C.O.3    Weise, J.4    Selbig, J.5
  • 119
    • 0141993704 scopus 로고    scopus 로고
    • A gene-coexpression network for global discovery of conserved genetic modules
    • Stuart J.M., Segal E., Koller D., Kim S.K. A gene-coexpression network for global discovery of conserved genetic modules. Science 2003, 302:249-255.
    • (2003) Science , vol.302 , pp. 249-255
    • Stuart, J.M.1    Segal, E.2    Koller, D.3    Kim, S.K.4
  • 120
  • 121
    • 1542357674 scopus 로고    scopus 로고
    • Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data
    • Tanay A., Sharan R., Kupiec M., Shamir R. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc. Natl. Acad. Sci. 2004, 101:2981-2986.
    • (2004) Proc. Natl. Acad. Sci. , vol.101 , pp. 2981-2986
    • Tanay, A.1    Sharan, R.2    Kupiec, M.3    Shamir, R.4
  • 123
    • 66549106409 scopus 로고    scopus 로고
    • A statistical framework to infer functional gene relationships from biologically interrelated microarray experiments
    • Teng S.L., Huang H. A statistical framework to infer functional gene relationships from biologically interrelated microarray experiments. J. Am. Stat. Assoc. 2009, 104(486):465-473.
    • (2009) J. Am. Stat. Assoc. , vol.104 , Issue.486 , pp. 465-473
    • Teng, S.L.1    Huang, H.2
  • 124
    • 21444450507 scopus 로고    scopus 로고
    • A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data
    • Teschendorff A.E., Wang Y., Barbosa-Morais N.L., Brenton J.D., Caldas C. A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data. Bioinformatics 2005, 21:3025-3033.
    • (2005) Bioinformatics , vol.21 , pp. 3025-3033
    • Teschendorff, A.E.1    Wang, Y.2    Barbosa-Morais, N.L.3    Brenton, J.D.4    Caldas, C.5
  • 127
    • 33750016109 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from multiple microarray datasets
    • Wang Y., Joshi T., Zhang X.S., Xu D., Chen L. Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 2006, 22:2413-2420.
    • (2006) Bioinformatics , vol.22 , pp. 2413-2420
    • Wang, Y.1    Joshi, T.2    Zhang, X.S.3    Xu, D.4    Chen, L.5
  • 128
    • 69249154268 scopus 로고    scopus 로고
    • A network biology study on circadian rhythm by integrating various omics data
    • Wang Y., Zhang X.-S., Chen L. A network biology study on circadian rhythm by integrating various omics data. OMICS: J. Integr. Biol. 2009, 13:313-324.
    • (2009) OMICS: J. Integr. Biol. , vol.13 , pp. 313-324
    • Wang, Y.1    Zhang, X.-S.2    Chen, L.3
  • 129
    • 70350690683 scopus 로고    scopus 로고
    • Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data
    • Wang Y., Zhang X.-S., Xia Y. Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucl. Acids Res. 2009, 37:5943-5958.
    • (2009) Nucl. Acids Res. , vol.37 , pp. 5943-5958
    • Wang, Y.1    Zhang, X.-S.2    Xia, Y.3
  • 132
    • 30044444291 scopus 로고    scopus 로고
    • Low-order conditional independence graphs for inferring genetic networks
    • Wille A., Bühlmann P. Low-order conditional independence graphs for inferring genetic networks. Stat. Appl. Genetics Mol. Biol. 2006, 5:1.
    • (2006) Stat. Appl. Genetics Mol. Biol. , vol.5 , pp. 1
    • Wille, A.1    Bühlmann, P.2
  • 135
    • 25444476441 scopus 로고    scopus 로고
    • Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks
    • Wolfe C.J., Kohane I.S., Butte A.J. Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks. BMC Bioinformat. 2005, 6:227.
    • (2005) BMC Bioinformat. , vol.6 , pp. 227
    • Wolfe, C.J.1    Kohane, I.S.2    Butte, A.J.3
  • 136
    • 84856557856 scopus 로고    scopus 로고
    • Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets
    • Xiong Q., Ancona N., Hauser E.R., Mukherjee S., Furey T.S. Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets. Genome Res. 2012, 22:386-397.
    • (2012) Genome Res. , vol.22 , pp. 386-397
    • Xiong, Q.1    Ancona, N.2    Hauser, E.R.3    Mukherjee, S.4    Furey, T.S.5
  • 137
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung K.Y., Fraley C., Murua A., Raftery A.E., Ruzzo W.L. Model-based clustering and data transformations for gene expression data. Bioinformatics 2001, 17:977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 138
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • Yeung M.K., Tegnér J., Collins J.J. Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. 2002, 99:6163-6168.
    • (2002) Proc. Natl. Acad. Sci. , vol.99 , pp. 6163-6168
    • Yeung, M.K.1    Tegnér, J.2    Collins, J.J.3
  • 139
    • 58349093930 scopus 로고    scopus 로고
    • Training set expansion. an approach to improving the reconstruction of biological networks from limited and uneven reliable interactions
    • Yip K.Y., Gerstein M. Training set expansion. an approach to improving the reconstruction of biological networks from limited and uneven reliable interactions. Bioinformatics 2009, 25:243-250.
    • (2009) Bioinformatics , vol.25 , pp. 243-250
    • Yip, K.Y.1    Gerstein, M.2
  • 140
    • 77954197778 scopus 로고    scopus 로고
    • Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
    • Yizhak K., Benyamini T., Liebermeister W., Ruppin E., Shlomi T. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics 2010, 26:i255-i260.
    • (2010) Bioinformatics , vol.26 , pp. i255-i260
    • Yizhak, K.1    Benyamini, T.2    Liebermeister, W.3    Ruppin, E.4    Shlomi, T.5
  • 141
    • 0036358442 scopus 로고    scopus 로고
    • Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data
    • Yoo, C., Thorsson, V., Cooper, G., 2002. Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data. In: Pacific Symposium on Biocomputing. pp. 498-509.
    • (2002) Pacific Symposium on Biocomputing , pp. 498-509
    • Yoo, C.1    Thorsson, V.2    Cooper, G.3
  • 143
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu J., Smith V.A., Wang P.P., Hartemink A.J., Jarvis E.D. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 2004, 20:3594-3603.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 144
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • Yuan M., Lin Y. Model selection and estimation in the Gaussian graphical model. Biometrika 2007, 94:19-35.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 145
    • 23944458138 scopus 로고    scopus 로고
    • A general framework for weighted gene co-expression network analysis
    • Zhang B., Horvath S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genetics Mol. Biol. 2005, 4:17.
    • (2005) Stat. Appl. Genetics Mol. Biol. , vol.4 , pp. 17
    • Zhang, B.1    Horvath, S.2
  • 146
    • 80555145308 scopus 로고    scopus 로고
    • High-dimensional covariance estimation based on Gaussian graphical models
    • Zhou S., Rütimann P., Xu M., Bühlmann P. High-dimensional covariance estimation based on Gaussian graphical models. J. Mach. Learn. Res. 2011, 12:2975-3026.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2975-3026
    • Zhou, S.1    Rütimann, P.2    Xu, M.3    Bühlmann, P.4
  • 148
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou M., Conzen S.D. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 2005, 21:71-79.
    • (2005) Bioinformatics , vol.21 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.