메뉴 건너뛰기




Volumn 1849, Issue 3, 2015, Pages 309-316

Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA

Author keywords

DNA methylase; HDACi; HDACs; MyomiRs

Indexed keywords

HISTONE; HISTONE DEACETYLASE INHIBITOR; MICRORNA; HISTONES; MICRORNAS;

EID: 84921927758     PISSN: 18749399     EISSN: 18764320     Source Type: Journal    
DOI: 10.1016/j.bbagrm.2015.01.002     Document Type: Review
Times cited : (49)

References (120)
  • 2
    • 34249279527 scopus 로고    scopus 로고
    • Stability and flexibility of epigenetic gene regulation in mammalian development
    • Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007, 447:425-432.
    • (2007) Nature , vol.447 , pp. 425-432
    • Reik, W.1
  • 3
    • 84928494154 scopus 로고    scopus 로고
    • Epigenetic control of adult skeletal muscle stem cell functions
    • Segales J., Perdiguero E., Munoz-Canoves P. Epigenetic control of adult skeletal muscle stem cell functions. FEBS J. 2014, 10.1111/febs.13065.
    • (2014) FEBS J.
    • Segales, J.1    Perdiguero, E.2    Munoz-Canoves, P.3
  • 4
    • 0035966319 scopus 로고    scopus 로고
    • MicroRNAs: tiny regulators with great potential
    • Ambros V. microRNAs: tiny regulators with great potential. Cell 2001, 107:823-826.
    • (2001) Cell , vol.107 , pp. 823-826
    • Ambros, V.1
  • 7
    • 84921896205 scopus 로고    scopus 로고
    • Mammalian non-CpG methylation: stem cells and beyond
    • Pinney S.E. Mammalian non-CpG methylation: stem cells and beyond. Biology (Basel) 2014, 3:739-751.
    • (2014) Biology (Basel) , vol.3 , pp. 739-751
    • Pinney, S.E.1
  • 9
    • 0025958320 scopus 로고
    • Genomic imprinting in mammalian development: a parental tug-of-war
    • Moore T., Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 1991, 7:45-49.
    • (1991) Trends Genet. , vol.7 , pp. 45-49
    • Moore, T.1    Haig, D.2
  • 10
    • 0031934058 scopus 로고    scopus 로고
    • Genetic conflicts, multiple paternity and the evolution of genomic imprinting
    • Spencer H.G., Feldman M.W., Clark A.G. Genetic conflicts, multiple paternity and the evolution of genomic imprinting. Genetics 1998, 148:893-904.
    • (1998) Genetics , vol.148 , pp. 893-904
    • Spencer, H.G.1    Feldman, M.W.2    Clark, A.G.3
  • 11
    • 84866902177 scopus 로고    scopus 로고
    • Stem cells in the hood: the skeletal muscle niche
    • Pannerec A., Marazzi G., Sassoon D. Stem cells in the hood: the skeletal muscle niche. Trends Mol. Med. 2012, 18:599-606.
    • (2012) Trends Mol. Med. , vol.18 , pp. 599-606
    • Pannerec, A.1    Marazzi, G.2    Sassoon, D.3
  • 13
    • 50649122364 scopus 로고    scopus 로고
    • An imprinted gene network that controls mammalian somatic growth is down-regulated during postnatal growth deceleration in multiple organs
    • Lui J.C., Finkielstain G.P., Barnes K.M., Baron J. An imprinted gene network that controls mammalian somatic growth is down-regulated during postnatal growth deceleration in multiple organs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295:R189-R196.
    • (2008) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.295 , pp. R189-R196
    • Lui, J.C.1    Finkielstain, G.P.2    Barnes, K.M.3    Baron, J.4
  • 16
    • 19344370533 scopus 로고    scopus 로고
    • Embryonic deregulation of muscle stress signaling pathways leads to altered postnatal stem cell behavior and a failure in postnatal muscle growth
    • Nicolas N., Marazzi G., Kelley K., Sassoon D. Embryonic deregulation of muscle stress signaling pathways leads to altered postnatal stem cell behavior and a failure in postnatal muscle growth. Dev. Biol. 2005, 281:171-183.
    • (2005) Dev. Biol. , vol.281 , pp. 171-183
    • Nicolas, N.1    Marazzi, G.2    Kelley, K.3    Sassoon, D.4
  • 17
    • 0031906851 scopus 로고    scopus 로고
    • Peg3/Pw1 is an imprinted gene involved in the TNF-NFkappaB signal transduction pathway
    • Relaix F., Wei X.J., Wu X., Sassoon D.A. Peg3/Pw1 is an imprinted gene involved in the TNF-NFkappaB signal transduction pathway. Nat. Genet. 1998, 18:287-291.
    • (1998) Nat. Genet. , vol.18 , pp. 287-291
    • Relaix, F.1    Wei, X.J.2    Wu, X.3    Sassoon, D.A.4
  • 18
    • 33845697226 scopus 로고    scopus 로고
    • Muscle cachexia is regulated by a p53-PW1/Peg3-dependent pathway
    • Schwarzkopf M., Coletti D., Sassoon D., Marazzi G. Muscle cachexia is regulated by a p53-PW1/Peg3-dependent pathway. Genes Dev. 2006, 20:3440-3452.
    • (2006) Genes Dev. , vol.20 , pp. 3440-3452
    • Schwarzkopf, M.1    Coletti, D.2    Sassoon, D.3    Marazzi, G.4
  • 22
    • 0028229910 scopus 로고
    • Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma
    • Zhan S., Shapiro D.N., Helman L.J. Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J. Clin. Invest. 1994, 94:445-448.
    • (1994) J. Clin. Invest. , vol.94 , pp. 445-448
    • Zhan, S.1    Shapiro, D.N.2    Helman, L.J.3
  • 26
    • 84883779808 scopus 로고    scopus 로고
    • Core promoter analysis of porcine Six1 gene and its regulation of the promoter activity by CpG methylation
    • Wu W., Ren Z., Liu H., Wang L., Huang R., Chen J., Zhang L., Li P., Xiong Y. Core promoter analysis of porcine Six1 gene and its regulation of the promoter activity by CpG methylation. Gene 2013, 529:238-244.
    • (2013) Gene , vol.529 , pp. 238-244
    • Wu, W.1    Ren, Z.2    Liu, H.3    Wang, L.4    Huang, R.5    Chen, J.6    Zhang, L.7    Li, P.8    Xiong, Y.9
  • 28
    • 84899128768 scopus 로고    scopus 로고
    • Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1alpha gene and age-dependent metabolic dysfunction in the offspring
    • Laker R.C., Lillard T.S., Okutsu M., Zhang M., Hoehn K.L., Connelly J.J., Yan Z. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1alpha gene and age-dependent metabolic dysfunction in the offspring. Diabetes 2014, 63:1605-1611.
    • (2014) Diabetes , vol.63 , pp. 1605-1611
    • Laker, R.C.1    Lillard, T.S.2    Okutsu, M.3    Zhang, M.4    Hoehn, K.L.5    Connelly, J.J.6    Yan, Z.7
  • 29
  • 33
    • 84899883236 scopus 로고    scopus 로고
    • Myogenic enhancers regulate expression of the facioscapulohumeral muscular dystrophy-associated DUX4 gene
    • Himeda C.L., Debarnot C., Homma S., Beermann M.L., Miller J.B., Jones P.L., Jones T.I. Myogenic enhancers regulate expression of the facioscapulohumeral muscular dystrophy-associated DUX4 gene. Mol. Cell. Biol. 2014, 34:1942-1955.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 1942-1955
    • Himeda, C.L.1    Debarnot, C.2    Homma, S.3    Beermann, M.L.4    Miller, J.B.5    Jones, P.L.6    Jones, T.I.7
  • 34
    • 84891533924 scopus 로고    scopus 로고
    • Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS
    • Wong M., Gertz B., Chestnut B.A., Martin L.J. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front. Cell. Neurosci. 2013, 7:279.
    • (2013) Front. Cell. Neurosci. , vol.7 , pp. 279
    • Wong, M.1    Gertz, B.2    Chestnut, B.A.3    Martin, L.J.4
  • 35
    • 51649129596 scopus 로고    scopus 로고
    • Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors
    • Mohn F., Weber M., Rebhan M., Roloff T.C., Richter J., Stadler M.B., Bibel M., Schubeler D. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 2008, 30:755-766.
    • (2008) Mol. Cell , vol.30 , pp. 755-766
    • Mohn, F.1    Weber, M.2    Rebhan, M.3    Roloff, T.C.4    Richter, J.5    Stadler, M.B.6    Bibel, M.7    Schubeler, D.8
  • 38
    • 40849106789 scopus 로고    scopus 로고
    • Histone ubiquitination: triggering gene activity
    • Weake V.M., Workman J.L. Histone ubiquitination: triggering gene activity. Mol. Cell 2008, 29:653-663.
    • (2008) Mol. Cell , vol.29 , pp. 653-663
    • Weake, V.M.1    Workman, J.L.2
  • 41
    • 0014349655 scopus 로고
    • Histone phosphorylation: stimulation by adenosine 3',5'-monophosphate
    • Langan T.A. Histone phosphorylation: stimulation by adenosine 3',5'-monophosphate. Science 1968, 162:579-580.
    • (1968) Science , vol.162 , pp. 579-580
    • Langan, T.A.1
  • 42
    • 0015246490 scopus 로고
    • Cyclic AMP and histone phosphorylation
    • Langan T.A. Cyclic AMP and histone phosphorylation. Ann. N. Y. Acad. Sci. 1971, 185:166-180.
    • (1971) Ann. N. Y. Acad. Sci. , vol.185 , pp. 166-180
    • Langan, T.A.1
  • 43
    • 0344824404 scopus 로고    scopus 로고
    • Histone sumoylation is associated with transcriptional repression
    • Shiio Y., Eisenman R.N. Histone sumoylation is associated with transcriptional repression. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:13225-13230.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 13225-13230
    • Shiio, Y.1    Eisenman, R.N.2
  • 44
    • 84864003593 scopus 로고    scopus 로고
    • Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes
    • Martinez-Zamudio R., Ha H.C. Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. Mol. Cell. Biol. 2012, 32:2490-2502.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 2490-2502
    • Martinez-Zamudio, R.1    Ha, H.C.2
  • 45
    • 84904395159 scopus 로고    scopus 로고
    • PARP1 enhances inflammatory cytokine expression by alteration of promoter chromatin structure in microglia
    • Martinez-Zamudio R.I., Ha H.C. PARP1 enhances inflammatory cytokine expression by alteration of promoter chromatin structure in microglia. Brain Behav. 2014, 4:552-565.
    • (2014) Brain Behav. , vol.4 , pp. 552-565
    • Martinez-Zamudio, R.I.1    Ha, H.C.2
  • 46
    • 80052172007 scopus 로고    scopus 로고
    • Histone ADP-ribosylation in DNA repair, replication and transcription
    • Messner S., Hottiger M.O. Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol. 2011, 21:534-542.
    • (2011) Trends Cell Biol. , vol.21 , pp. 534-542
    • Messner, S.1    Hottiger, M.O.2
  • 48
    • 0033848849 scopus 로고    scopus 로고
    • Histone acetylation and an epigenetic code
    • Turner B.M. Histone acetylation and an epigenetic code. Bioessays 2000, 22:836-845.
    • (2000) Bioessays , vol.22 , pp. 836-845
    • Turner, B.M.1
  • 49
    • 57749170458 scopus 로고    scopus 로고
    • The many roles of histone deacetylases in development and physiology: implications for disease and therapy
    • Haberland M., Montgomery R.L., Olson E.N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 2009, 10:32-42.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 32-42
    • Haberland, M.1    Montgomery, R.L.2    Olson, E.N.3
  • 50
    • 0032030770 scopus 로고    scopus 로고
    • Histone acetylation and transcriptional regulatory mechanisms
    • Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998, 12:599-606.
    • (1998) Genes Dev. , vol.12 , pp. 599-606
    • Struhl, K.1
  • 51
    • 0036161439 scopus 로고    scopus 로고
    • Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR
    • Fischle W., Dequiedt F., Hendzel M.J., Guenther M.G., Lazar M.A., Voelter W., Verdin E. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell 2002, 9:45-57.
    • (2002) Mol. Cell , vol.9 , pp. 45-57
    • Fischle, W.1    Dequiedt, F.2    Hendzel, M.J.3    Guenther, M.G.4    Lazar, M.A.5    Voelter, W.6    Verdin, E.7
  • 54
    • 0035794552 scopus 로고    scopus 로고
    • A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program
    • Mal A., Sturniolo M., Schiltz R.L., Ghosh M.K., Harter M.L. A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J. 2001, 20:1739-1753.
    • (2001) EMBO J. , vol.20 , pp. 1739-1753
    • Mal, A.1    Sturniolo, M.2    Schiltz, R.L.3    Ghosh, M.K.4    Harter, M.L.5
  • 59
    • 0033635242 scopus 로고    scopus 로고
    • Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases
    • Lu J., McKinsey T.A., Zhang C.L., Olson E.N. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol. Cell 2000, 6:233-244.
    • (2000) Mol. Cell , vol.6 , pp. 233-244
    • Lu, J.1    McKinsey, T.A.2    Zhang, C.L.3    Olson, E.N.4
  • 71
    • 79961028733 scopus 로고    scopus 로고
    • Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis
    • Yoo Y.E., Ko C.P. Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 2011, 231:147-159.
    • (2011) Exp. Neurol. , vol.231 , pp. 147-159
    • Yoo, Y.E.1    Ko, C.P.2
  • 73
    • 84883788666 scopus 로고    scopus 로고
    • Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease?
    • Harrison I.F., Dexter D.T. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease?. Pharmacol. Ther. 2013, 140:34-52.
    • (2013) Pharmacol. Ther. , vol.140 , pp. 34-52
    • Harrison, I.F.1    Dexter, D.T.2
  • 75
    • 84905679330 scopus 로고    scopus 로고
    • Disruption of autophagy by the histone deacetylase inhibitor MGCD0103 and its therapeutic implication in B-cell chronic lymphocytic leukemia
    • El-Khoury V., Pierson S., Szwarcbart E., Brons N.H., Roland O., Cherrier-De W.S., Plawny L., Van D.E., Berchem G. Disruption of autophagy by the histone deacetylase inhibitor MGCD0103 and its therapeutic implication in B-cell chronic lymphocytic leukemia. Leukemia 2014, 28:1636-1646.
    • (2014) Leukemia , vol.28 , pp. 1636-1646
    • El-Khoury, V.1    Pierson, S.2    Szwarcbart, E.3    Brons, N.H.4    Roland, O.5    Cherrier-De, W.S.6    Plawny, L.7    Van, D.E.8    Berchem, G.9
  • 76
    • 34547864236 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors: molecular mechanisms of action
    • Xu W.S., Parmigiani R.B., Marks P.A. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007, 26:5541-5552.
    • (2007) Oncogene , vol.26 , pp. 5541-5552
    • Xu, W.S.1    Parmigiani, R.B.2    Marks, P.A.3
  • 77
    • 84895920790 scopus 로고    scopus 로고
    • Targeting autophagy for the therapeutic application of histone deacetylase inhibitors in ischemia/reperfusion heart injury
    • Zhang Y., Ren J. Targeting autophagy for the therapeutic application of histone deacetylase inhibitors in ischemia/reperfusion heart injury. Circulation 2014, 129:1088-1091.
    • (2014) Circulation , vol.129 , pp. 1088-1091
    • Zhang, Y.1    Ren, J.2
  • 81
    • 84910144945 scopus 로고    scopus 로고
    • HDAC4 promotes Pax7-dependent satellite cell activation and muscle regeneration
    • Choi M.C., Ryu S., Hao R., Wang B., Kapur M., Fan C.M., Yao T.P. HDAC4 promotes Pax7-dependent satellite cell activation and muscle regeneration. EMBO Rep. 2014, 15:1175-1183.
    • (2014) EMBO Rep. , vol.15 , pp. 1175-1183
    • Choi, M.C.1    Ryu, S.2    Hao, R.3    Wang, B.4    Kapur, M.5    Fan, C.M.6    Yao, T.P.7
  • 82
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: genomics, biogenesis, mechanism, and function
    • Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 85
    • 84901310774 scopus 로고    scopus 로고
    • The potential of microRNAs as biofluid markers of neurodegenerative diseases - a systematic review
    • Danborg P.B., Simonsen A.H., Waldemar G., Heegaard N.H. The potential of microRNAs as biofluid markers of neurodegenerative diseases - a systematic review. Biomarkers 2014, 19:259-268.
    • (2014) Biomarkers , vol.19 , pp. 259-268
    • Danborg, P.B.1    Simonsen, A.H.2    Waldemar, G.3    Heegaard, N.H.4
  • 87
    • 84908318087 scopus 로고    scopus 로고
    • Genetic variation in the non-coding genome: involvement of micro-RNAs and long non-coding RNAs in disease
    • Hrdlickova B., de Almeida R.C., Borek Z., Withoff S. Genetic variation in the non-coding genome: involvement of micro-RNAs and long non-coding RNAs in disease. Biochim. Biophys. Acta 2014, 1842:1910-1922.
    • (2014) Biochim. Biophys. Acta , vol.1842 , pp. 1910-1922
    • Hrdlickova, B.1    de Almeida, R.C.2    Borek, Z.3    Withoff, S.4
  • 88
    • 84907809960 scopus 로고    scopus 로고
    • The validity of circulating microRNAs in oncology: five years of challenges and contradictions
    • Jarry J., Schadendorf D., Greenwood C., Spatz A., van Kempen L.C. The validity of circulating microRNAs in oncology: five years of challenges and contradictions. Mol. Oncol. 2014, 8:819-829.
    • (2014) Mol. Oncol. , vol.8 , pp. 819-829
    • Jarry, J.1    Schadendorf, D.2    Greenwood, C.3    Spatz, A.4    van Kempen, L.C.5
  • 90
    • 55249117284 scopus 로고    scopus 로고
    • MicroRNA-206: the skeletal muscle-specific myomiR
    • McCarthy J.J. MicroRNA-206: the skeletal muscle-specific myomiR. Biochim. Biophys. Acta 2008, 1779:682-691.
    • (2008) Biochim. Biophys. Acta , vol.1779 , pp. 682-691
    • McCarthy, J.J.1
  • 92
    • 34247589595 scopus 로고    scopus 로고
    • Control of stress-dependent cardiac growth and gene expression by a microRNA
    • van R.E., Sutherland L.B., Qi X., Richardson J.A., Hill J., Olson E.N. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007, 316:575-579.
    • (2007) Science , vol.316 , pp. 575-579
    • van, R.E.1    Sutherland, L.B.2    Qi, X.3    Richardson, J.A.4    Hill, J.5    Olson, E.N.6
  • 95
    • 84863012238 scopus 로고    scopus 로고
    • A Novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network
    • Lu L., Zhou L., Chen E.Z., Sun K., Jiang P., Wang L., Su X., Sun H., Wang H. A Novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS One 2012, 7:e27596.
    • (2012) PLoS One , vol.7 , pp. e27596
    • Lu, L.1    Zhou, L.2    Chen, E.Z.3    Sun, K.4    Jiang, P.5    Wang, L.6    Su, X.7    Sun, H.8    Wang, H.9
  • 97
    • 84863623509 scopus 로고    scopus 로고
    • Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules
    • Crist C.G., Montarras D., Buckingham M. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 2012, 11:118-126.
    • (2012) Cell Stem Cell , vol.11 , pp. 118-126
    • Crist, C.G.1    Montarras, D.2    Buckingham, M.3
  • 101
    • 79957630860 scopus 로고    scopus 로고
    • Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation: regulation of proliferation by miR-682
    • Chen Y., Gelfond J., McManus L.M., Shireman P.K. Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation: regulation of proliferation by miR-682. Physiol. Genomics 2011, 43:621-630.
    • (2011) Physiol. Genomics , vol.43 , pp. 621-630
    • Chen, Y.1    Gelfond, J.2    McManus, L.M.3    Shireman, P.K.4
  • 103
    • 84867363983 scopus 로고    scopus 로고
    • Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation
    • Goljanek-Whysall K., Pais H., Rathjen T., Sweetman D., Dalmay T., Munsterberg A. Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation. J. Cell Sci. 2012, 125:3590-3600.
    • (2012) J. Cell Sci. , vol.125 , pp. 3590-3600
    • Goljanek-Whysall, K.1    Pais, H.2    Rathjen, T.3    Sweetman, D.4    Dalmay, T.5    Munsterberg, A.6
  • 106
    • 79954623314 scopus 로고    scopus 로고
    • TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4
    • Winbanks C.E., Wang B., Beyer C., Koh P., White L., Kantharidis P., Gregorevic P. TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. J. Biol. Chem. 2011, 286:13805-13814.
    • (2011) J. Biol. Chem. , vol.286 , pp. 13805-13814
    • Winbanks, C.E.1    Wang, B.2    Beyer, C.3    Koh, P.4    White, L.5    Kantharidis, P.6    Gregorevic, P.7
  • 107
    • 84867170366 scopus 로고    scopus 로고
    • MiR-26a is required for skeletal muscle differentiation and regeneration in mice
    • Dey B.K., Gagan J., Yan Z., Dutta A. miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev. 2012, 26:2180-2191.
    • (2012) Genes Dev. , vol.26 , pp. 2180-2191
    • Dey, B.K.1    Gagan, J.2    Yan, Z.3    Dutta, A.4
  • 108
    • 77956370863 scopus 로고    scopus 로고
    • MicroRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7
    • Chen J.F., Tao Y., Li J., Deng Z., Yan Z., Xiao X., Wang D.Z. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell Biol. 2010, 190:867-879.
    • (2010) J. Cell Biol. , vol.190 , pp. 867-879
    • Chen, J.F.1    Tao, Y.2    Li, J.3    Deng, Z.4    Yan, Z.5    Xiao, X.6    Wang, D.Z.7
  • 110
    • 84906952850 scopus 로고    scopus 로고
    • Role of the mTORC1 complex in satellite cell activation by RNA-induced mitochondrial restoration: dual control of cyclin D1 through microRNAs
    • Jash S., Dhar G., Ghosh U., Adhya S. Role of the mTORC1 complex in satellite cell activation by RNA-induced mitochondrial restoration: dual control of cyclin D1 through microRNAs. Mol. Cell. Biol. 2014, 34:3594-3606.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 3594-3606
    • Jash, S.1    Dhar, G.2    Ghosh, U.3    Adhya, S.4
  • 111
    • 84889579981 scopus 로고    scopus 로고
    • A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation
    • Feng Y., Niu L.L., Wei W., Zhang W.Y., Li X.Y., Cao J.H., Zhao S.H. A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis. 2013, 4:e934.
    • (2013) Cell Death Dis. , vol.4 , pp. e934
    • Feng, Y.1    Niu, L.L.2    Wei, W.3    Zhang, W.Y.4    Li, X.Y.5    Cao, J.H.6    Zhao, S.H.7
  • 112
    • 70349764482 scopus 로고    scopus 로고
    • Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells
    • Juan A.H., Kumar R.M., Marx J.G., Young R.A., Sartorelli V. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol. Cell 2009, 36:61-74.
    • (2009) Mol. Cell , vol.36 , pp. 61-74
    • Juan, A.H.1    Kumar, R.M.2    Marx, J.G.3    Young, R.A.4    Sartorelli, V.5
  • 113
    • 44349086037 scopus 로고    scopus 로고
    • MicroRNA-26a targets the histone methyltransferase enhancer of Zeste homolog 2 during myogenesis
    • Wong C.F., Tellam R.L. MicroRNA-26a targets the histone methyltransferase enhancer of Zeste homolog 2 during myogenesis. J. Biol. Chem. 2008, 283:9836-9843.
    • (2008) J. Biol. Chem. , vol.283 , pp. 9836-9843
    • Wong, C.F.1    Tellam, R.L.2
  • 115
    • 83455168935 scopus 로고    scopus 로고
    • Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis
    • Huang M.B., Xu H., Xie S.J., Zhou H., Qu L.H. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One 2011, 6:e29173.
    • (2011) PLoS One , vol.6 , pp. e29173
    • Huang, M.B.1    Xu, H.2    Xie, S.J.3    Zhou, H.4    Qu, L.H.5
  • 119
    • 41149117385 scopus 로고    scopus 로고
    • MicroRNAs flex their muscles
    • van R.E., Liu N., Olson E.N. MicroRNAs flex their muscles. Trends Genet. 2008, 24:159-166.
    • (2008) Trends Genet. , vol.24 , pp. 159-166
    • van, R.E.1    Liu, N.2    Olson, E.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.