-
1
-
-
0016207496
-
Isolation of lipid particles from baker's yeast
-
Clausen MK, Christiansen K, Jensen PK, Behnke O. 1974. Isolation of lipid particles from baker's yeast. FEBS Lett 43:176-179. http://dx.doi.org/10.1016/0014-5793(74)80994-4.
-
(1974)
FEBS Lett
, vol.43
, pp. 176-179
-
-
Clausen, M.K.1
Christiansen, K.2
Jensen, P.K.3
Behnke, O.4
-
2
-
-
0028081336
-
Characterization of lipid particles of the yeast, Saccharomyces cerevisiae
-
Leber R, Zinser E, Paltauf F, Daum G, Zellnig G. 1994. Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10:1421-1428. http://dx.doi.org/10.1002/yea.320101105.
-
(1994)
Yeast
, vol.10
, pp. 1421-1428
-
-
Leber, R.1
Zinser, E.2
Paltauf, F.3
Daum, G.4
Zellnig, G.5
-
3
-
-
0034903123
-
The biogenesis and functions of lipid bodies in animals, plants and microorganisms
-
Murphy DJ. 2001. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325-438. http://dx.doi.org/10.1016/S0163-7827(01)00013-3.
-
(2001)
Prog Lipid Res
, vol.40
, pp. 325-438
-
-
Murphy, D.J.1
-
4
-
-
48749110651
-
Lipid droplets: a classic organelle with new outfits
-
Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y. 2008. Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 130: 263-279. http://dx.doi.org/10.1007/s00418-008-0449-0.
-
(2008)
Histochem Cell Biol
, vol.130
, pp. 263-279
-
-
Fujimoto, T.1
Ohsaki, Y.2
Cheng, J.3
Suzuki, M.4
Shinohara, Y.5
-
5
-
-
56849110119
-
COPI complex is a regulator of lipid homeostasis
-
Beller M, Sztalryd C, Southall N, Bell M. 2008. COPI complex is a regulator of lipid homeostasis. PLoS Biol 6:e292. http://dx.doi.org/10.1371/journal.pbio.0060292.
-
(2008)
PLoS Biol
, vol.6
-
-
Beller, M.1
Sztalryd, C.2
Southall, N.3
Bell, M.4
-
6
-
-
84880036446
-
Balancing the fat: lipid droplets and human disease
-
Krahmer N, Farese RV, Walther TC. 2013. Balancing the fat: lipid droplets and human disease. EMBO Mol Med 5:905-915. http://dx.doi.org/10.1002/emmm.201100671.
-
(2013)
EMBO Mol Med
, vol.5
, pp. 905-915
-
-
Krahmer, N.1
Farese, R.V.2
Walther, T.C.3
-
8
-
-
0037155197
-
Lipid droplet binding and oligomerization properties of the Parkinson's disease protein alpha-synuclein
-
Cole NB, Murphy DD, Grider T, Rueter S, Brasaemle D, Nussbaum RL. 2002. Lipid droplet binding and oligomerization properties of the Parkinson's disease protein alpha-synuclein. J Biol Chem 277:6344-6352. http://dx.doi.org/10.1074/jbc. M108414200.
-
(2002)
J Biol Chem
, vol.277
, pp. 6344-6352
-
-
Cole, N.B.1
Murphy, D.D.2
Grider, T.3
Rueter, S.4
Brasaemle, D.5
Nussbaum, R.L.6
-
9
-
-
70350205608
-
Yarrowia lipolytica as a model for bio-oil production
-
Beopoulos A, Cescut J, Haddouche R, Uribelarrea J-L, Molina-Jouve C, Nicaud J-M. 2009. Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375-387. http://dx.doi.org/10.1016/j.plipres.2009.08.005.
-
(2009)
Prog Lipid Res
, vol.48
, pp. 375-387
-
-
Beopoulos, A.1
Cescut, J.2
Haddouche, R.3
Uribelarrea, J.-L.4
Molina-Jouve, C.5
Nicaud, J.-M.6
-
10
-
-
33644853354
-
Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast
-
Kurat CF, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, Zimmermann R, Leber R, Zechner R, Kohlwein SD. 2006. Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 281:491-500. http://dx.doi.org/10.1074/jbc. M508414200.
-
(2006)
J Biol Chem
, vol.281
, pp. 491-500
-
-
Kurat, C.F.1
Natter, K.2
Petschnigg, J.3
Wolinski, H.4
Scheuringer, K.5
Scholz, H.6
Zimmermann, R.7
Leber, R.8
Zechner, R.9
Kohlwein, S.D.10
-
11
-
-
78149440688
-
A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism
-
Bozaquel-Morais BL, Madeira JB, Maya-Monteiro CM, Masuda CA, Montero-Lomeli M. 2010. A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism. PLoS One 5:e13692. http://dx.doi.org/10.1371/journal.pone.0013692.
-
(2010)
PLoS One
, vol.5
-
-
Bozaquel-Morais, B.L.1
Madeira, J.B.2
Maya-Monteiro, C.M.3
Masuda, C.A.4
Montero-Lomeli, M.5
-
12
-
-
2942584864
-
"Sleeping beauty": quiescence in Saccharomyces cerevisiae
-
Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M. 2004. "Sleeping beauty": quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol 68:187-206. http://dx.doi.org/10.1128/MMBR.68.2.187-206.2004.
-
(2004)
Microbiol Mol Biol
, vol.68
, pp. 187-206
-
-
Gray, J.V.1
Petsko, G.A.2
Johnston, G.C.3
Ringe, D.4
Singer, R.A.5
Werner-Washburne, M.6
-
13
-
-
0036359804
-
The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms
-
Ratledge C, Wynn JP. 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1-51. http://dx.doi.org/10.1016/S0065-2164(02)51000-5.
-
(2002)
Adv Appl Microbiol
, vol.51
, pp. 1-51
-
-
Ratledge, C.1
Wynn, J.P.2
-
14
-
-
0009587714
-
Effects of nitrogen limitation on the growth and composition of unicellular algae in continuous culture
-
Richardson B, Orcutt DM, Schwertner HA, Martinez CL, Wickline HE. 1969. Effects of nitrogen limitation on the growth and composition of unicellular algae in continuous culture. Appl Microbiol 18:245-250.
-
(1969)
Appl Microbiol
, vol.18
, pp. 245-250
-
-
Richardson, B.1
Orcutt, D.M.2
Schwertner, H.A.3
Martinez, C.L.4
Wickline, H.E.5
-
15
-
-
0033540030
-
The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
-
Beck T, Hall M. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 3:689-692.
-
(1999)
Nature
, vol.3
, pp. 689-692
-
-
Beck, T.1
Hall, M.2
-
16
-
-
0033573016
-
The TOR signaling cascade regulates gene expression in response to nutrients
-
Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J. 1999. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13:3271-3279. http://dx.doi.org/10.1101/gad.13.24.3271.
-
(1999)
Genes Dev
, vol.13
, pp. 3271-3279
-
-
Cardenas, M.E.1
Cutler, N.S.2
Lorenz, M.C.3
Di Como, C.J.4
Heitman, J.5
-
17
-
-
33646538482
-
The TOR signalling network from yeast to man
-
De Virgilio C, Loewith R. 2006. The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38:1476-1481. http://dx.doi.org/10.1016/j.biocel.2006.02.013.
-
(2006)
Int J Biochem Cell Biol
, vol.38
, pp. 1476-1481
-
-
De Virgilio, C.1
Loewith, R.2
-
18
-
-
0025776523
-
Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
-
Heitman J, Movva NR, Hall MN. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905-909. http://dx.doi.org/10.1126/science.1715094.
-
(1991)
Science
, vol.253
, pp. 905-909
-
-
Heitman, J.1
Movva, N.R.2
Hall, M.N.3
-
19
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. 2002. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457-468. http://dx.doi.org/10.1016/S1097-2765(02)00636-6.
-
(2002)
Mol Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
Lorberg, A.4
Crespo, J.L.5
Bonenfant, D.6
Oppliger, W.7
Jenoe, P.8
Hall, M.N.9
-
20
-
-
83455177213
-
Target of rapamycin (TOR) in nutrient signaling and growth control
-
Loewith R, Hall MN. 2011. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177-1201. http://dx.doi.org/10.1534/genetics.111.133363.
-
(2011)
Genetics
, vol.189
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
21
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S, Loewith R, Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124:4714-4784. http://dx.doi.org/10.1016/j.cell.2006.01.016.
-
(2006)
Cell
, vol.124
, pp. 4714-4784
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
22
-
-
34249813098
-
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae
-
Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, Loewith R. 2007. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663-674. http://dx.doi.org/10.1016/j.molcel.2007.04.020.
-
(2007)
Mol Cell
, vol.26
, pp. 663-674
-
-
Urban, J.1
Soulard, A.2
Huber, A.3
Lippman, S.4
Mukhopadhyay, D.5
Deloche, O.6
Wanke, V.7
Anrather, D.8
Ammerer, G.9
Riezman, H.10
Broach, J.R.11
De Virgilio, C.12
Hall, M.N.13
Loewith, R.14
-
23
-
-
0029808294
-
Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases
-
Di Como CJ, Arndt KT. 1996. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10:1904-1916. http://dx.doi.org/10.1101/gad.10.15.1904.
-
(1996)
Genes Dev
, vol.10
, pp. 1904-1916
-
-
Di Como, C.J.1
Arndt, K.T.2
-
24
-
-
33747626107
-
Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1
-
Yan G, Shen X, Jiang Y. 2006. Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. EMBO J 25:3546-3555. http://dx.doi.org/10.1038/sj.emboj.7601239.
-
(2006)
EMBO J
, vol.25
, pp. 3546-3555
-
-
Yan, G.1
Shen, X.2
Jiang, Y.3
-
25
-
-
77952934628
-
Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae
-
Tate JJ, Georis I, Dubois E, Cooper TG. 2010. Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae. J Biol Chem 285:17880-17895. http://dx.doi.org/10.1074/jbc. M109.085712.
-
(2010)
J Biol Chem
, vol.285
, pp. 17880-17895
-
-
Tate, J.J.1
Georis, I.2
Dubois, E.3
Cooper, T.G.4
-
26
-
-
17344381954
-
Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast
-
Düvel K, Santhanam A, Garrett S, Schneper L, Broach JR. 2003. Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol Cell 11:1467-1478. http://dx.doi.org/10.1016/S1097-2765(03)00228-4.
-
(2003)
Mol Cell
, vol.11
, pp. 1467-1478
-
-
Düvel, K.1
Santhanam, A.2
Garrett, S.3
Schneper, L.4
Broach, J.R.5
-
27
-
-
0037076314
-
The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine
-
Crespo L, Powers T, Fowler B, Hall MN. 2002. The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci USA 99:6784-6789. http://dx.doi.org/10.1073/pnas.102687599.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 6784-6789
-
-
Crespo, L.1
Powers, T.2
Fowler, B.3
Hall, M.N.4
-
28
-
-
70450204007
-
An emerging role of mTOR in lipid biosynthesis
-
Laplante M, Sabatini DM. 2009. An emerging role of mTOR in lipid biosynthesis. Curr Biol 19:R1046-R1052. http://dx.doi.org/10.1016/j.cub.2009.09.058.
-
(2009)
Curr Biol
, vol.19
, pp. R1046-R1052
-
-
Laplante, M.1
Sabatini, D.M.2
-
29
-
-
38349174747
-
Leptin induces macrophage lipid body formation by a phosphatidylinositol 3-kinase-and mammalian target of rapamycin-dependent mechanism
-
Maya-Monteiro CM, Almeida PE, D'Avila H, Martins AS, Rezende AP, Castro-Faria-Neto H, Bozza PT. 2008. Leptin induces macrophage lipid body formation by a phosphatidylinositol 3-kinase-and mammalian target of rapamycin-dependent mechanism. J Biol Chem 283:2203-2210. http://dx.doi.org/10.1074/jbc. M706706200.
-
(2008)
J Biol Chem
, vol.283
, pp. 2203-2210
-
-
Maya-Monteiro, C.M.1
Almeida, P.E.2
D'Avila, H.3
Martins, A.S.4
Rezende, A.P.5
Castro-Faria-Neto, H.6
Bozza, P.T.7
-
30
-
-
77951166692
-
Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage
-
Chakrabarti P, English T, Shi J, Smas CM, Kandror KV. 2010. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 59:775-781. http://dx.doi.org/10.2337/db09-1602.
-
(2010)
Diabetes
, vol.59
, pp. 775-781
-
-
Chakrabarti, P.1
English, T.2
Shi, J.3
Smas, C.M.4
Kandror, K.V.5
-
31
-
-
80355138506
-
A quantitative assessment of the yeast lipidome using electrospray ionization mass spectrometry
-
Bourque SD, Titorenko VI. 2009. A quantitative assessment of the yeast lipidome using electrospray ionization mass spectrometry. J Vis Exp 2009: 1513. http://dx.doi.org/10.3791/1513.
-
(2009)
J Vis Exp
, vol.2009
, pp. 1513
-
-
Bourque, S.D.1
Titorenko, V.I.2
-
32
-
-
84884947695
-
Analysis of yeast lipid droplet proteome and lipidome
-
Schmidt C, Ploier B, Koch B, Daum G. 2013. Analysis of yeast lipid droplet proteome and lipidome. Methods Cell Biol 116:15-37. http://dx.doi.org/10.1016/B978-0-12-408051-5.00002-4.
-
(2013)
Methods Cell Biol
, vol.116
, pp. 15-37
-
-
Schmidt, C.1
Ploier, B.2
Koch, B.3
Daum, G.4
-
33
-
-
33845261493
-
A rapid method of total lipid extraction and purification
-
Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911-917. http://dx.doi.org/10.1139/o59-099.
-
(1959)
Can J Biochem Physiol
, vol.37
, pp. 911-917
-
-
Bligh, E.G.1
Dyer, W.J.2
-
34
-
-
58149308056
-
Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression
-
Kurat CF, Wolinski H, Petschnigg J, Kaluarachchi S, Andrews B, Natter K, Kohlwein SD. 2009. Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell 33:53-63. http://dx.doi.org/10.1016/j.molcel.2008.12.019.
-
(2009)
Mol Cell
, vol.33
, pp. 53-63
-
-
Kurat, C.F.1
Wolinski, H.2
Petschnigg, J.3
Kaluarachchi, S.4
Andrews, B.5
Natter, K.6
Kohlwein, S.D.7
-
35
-
-
0025362399
-
A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae
-
Schmitt ME, Brown TA, Trumpower BL. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18:3091-3092. http://dx.doi.org/10.1093/nar/18.10.3091.
-
(1990)
Nucleic Acids Res
, vol.18
, pp. 3091-3092
-
-
Schmitt, M.E.1
Brown, T.A.2
Trumpower, B.L.3
-
36
-
-
73449103514
-
Gene expression analysis during dengue virus infection in HepG2 cells reveals virus control of innate immune response
-
Conceição TM, El-Bacha T, Villas-Bôas CSA, Coello G, Ramírez J, Montero-Lomeli M, Da Poian AT. 2010. Gene expression analysis during dengue virus infection in HepG2 cells reveals virus control of innate immune response. J Infect 60:65-75. http://dx.doi.org/10.1016/j.jinf.2009.10.003.
-
(2010)
J Infect
, vol.60
, pp. 65-75
-
-
Conceição, T.M.1
El-Bacha, T.2
Villas-Bôas, C.S.A.3
Coello, G.4
Ramírez, J.5
Montero-Lomeli, M.6
Da Poian, A.T.7
-
37
-
-
0035710746
-
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method
-
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods 25:402-408. http://dx.doi.org/10.1006/meth.2001.1262.
-
(2001)
Methods
, vol.25
, pp. 402-408
-
-
Livak, K.J.1
Schmittgen, T.D.2
-
38
-
-
0028137771
-
TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast
-
Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN. 1994. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 5:105-118. http://dx.doi.org/10.1091/mbc.5.1.105.
-
(1994)
Mol Biol Cell
, vol.5
, pp. 105-118
-
-
Helliwell, S.B.1
Wagner, P.2
Kunz, J.3
Deuter-Reinhard, M.4
Henriquez, R.5
Hall, M.N.6
-
39
-
-
0028825698
-
TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin
-
Lorenz MC, Heitman J. 1995. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem 270:27531-275317. http://dx.doi.org/10.1074/jbc.270.46.27531.
-
(1995)
J Biol Chem
, vol.270
, pp. 27531-275317
-
-
Lorenz, M.C.1
Heitman, J.2
-
40
-
-
0025247671
-
Citrate synthase encoded by the CIT2 gene of Saccharomyces cerevisiae is peroxisomal
-
Lewin A, Hines V, Small G. 1990. Citrate synthase encoded by the CIT2 gene of Saccharomyces cerevisiae is peroxisomal. Mol Cell Biol 10:1399-1405.
-
(1990)
Mol Cell Biol
, vol.10
, pp. 1399-1405
-
-
Lewin, A.1
Hines, V.2
Small, G.3
-
41
-
-
0034645038
-
Mechanism of metabolic control target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors
-
Komeili A, Wedaman K. 2000. Mechanism of metabolic control target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J Cell Biol 151:863-878. http://dx.doi.org/10.1083/jcb.151.4.863.
-
(2000)
J Cell Biol
, vol.151
, pp. 863-878
-
-
Komeili, A.1
Wedaman, K.2
-
42
-
-
79955560245
-
An overview of lipid metabolism in yeasts and its impact on biotechnological processes
-
Beopoulos A, Nicaud J-M, Gaillardin C. 2011. An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193-1206. http://dx.doi.org/10.1007/s00253-011-3212-8.
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, pp. 1193-1206
-
-
Beopoulos, A.1
Nicaud, J.-M.2
Gaillardin, C.3
-
43
-
-
64249131483
-
Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches
-
Courchesne NMD, Parisien A, Wang B, Lan CQ. 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31-41. http://dx.doi.org/10.1016/j.jbiotec.2009.02.018.
-
(2009)
J Biotechnol
, vol.141
, pp. 31-41
-
-
Courchesne, N.M.D.1
Parisien, A.2
Wang, B.3
Lan, C.Q.4
-
44
-
-
0030021524
-
TOR controls translation initiation and early G1 progression in yeast
-
Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN. 1996. TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7:25-42. http://dx.doi.org/10.1091/mbc.7.1.25.
-
(1996)
Mol Biol Cell
, vol.7
, pp. 25-42
-
-
Barbet, N.C.1
Schneider, U.2
Helliwell, S.B.3
Stansfield, I.4
Tuite, M.F.5
Hall, M.N.6
-
45
-
-
0028070457
-
Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo
-
Woods A, Mundays MR, Scott J, Yango X, Carlson M, Carling D. 1994. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 269: 19509-19515.
-
(1994)
J Biol Chem
, vol.269
, pp. 19509-19515
-
-
Woods, A.1
Mundays, M.R.2
Scott, J.3
Yango, X.4
Carlson, M.5
Carling, D.6
-
46
-
-
33947286240
-
Fatty acid synthesis and elongation in yeast
-
Tehlivets O, Scheuringer K, Kohlwein SD. 2007. Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771:255-270. http://dx.doi.org/10.1016/j.bbalip.2006.07.004.
-
(2007)
Biochim Biophys Acta
, vol.1771
, pp. 255-270
-
-
Tehlivets, O.1
Scheuringer, K.2
Kohlwein, S.D.3
-
47
-
-
0032750741
-
Nitrogen catabolite repression in Saccharomyces cerevisiae
-
Hofman-Bang J. 1999. Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12:35-39. http://dx.doi.org/10.1385/MB:12:1:35.
-
(1999)
Mol Biotechnol
, vol.12
, pp. 35-39
-
-
Hofman-Bang, J.1
-
48
-
-
6344237317
-
PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p
-
Santhanam A, Hartley A, Düvel K, James R, Garrett S, Du K, Broach JR. 2004. PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p. Eukaryot Cell 3:1261-1271. http://dx.doi.org/10.1128/EC.3.5.1261-1271.2004.
-
(2004)
Eukaryot Cell
, vol.3
, pp. 1261-1271
-
-
Santhanam, A.1
Hartley, A.2
Düvel, K.3
James, R.4
Garrett, S.5
Du, K.6
Broach, J.R.7
-
49
-
-
0028801010
-
Genetic evidence for Gln3pindependent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae
-
Coffman JA, Rai R, Cooper TG. 1995. Genetic evidence for Gln3pindependent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae. J Bacteriol 177:6910-6918.
-
(1995)
J Bacteriol
, vol.177
, pp. 6910-6918
-
-
Coffman, J.A.1
Rai, R.2
Cooper, T.G.3
-
50
-
-
0030028431
-
Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogencatabolic genes in Saccharomyces cerevisiae
-
Coffman JA, Rai R, Cunningham T, Svetlov V, Cooper TG. 1996. Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogencatabolic genes in Saccharomyces cerevisiae. Mol Cell Biol 16:847-858.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 847-858
-
-
Coffman, J.A.1
Rai, R.2
Cunningham, T.3
Svetlov, V.4
Cooper, T.G.5
-
51
-
-
77649185634
-
LC3, a microtubule-associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation
-
Shibata M, Yoshimura K, Tamura H, Ueno T, Nishimura T, Inoue T, Sasaki M, Koike M, Arai H, Kominami E, Uchiyama Y. 2010. LC3, a microtubule-associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation. Biochem Biophys Res Commun 393:274-279. http://dx.doi.org/10.1016/j.bbrc.2010.01.121.
-
(2010)
Biochem Biophys Res Commun
, vol.393
, pp. 274-279
-
-
Shibata, M.1
Yoshimura, K.2
Tamura, H.3
Ueno, T.4
Nishimura, T.5
Inoue, T.6
Sasaki, M.7
Koike, M.8
Arai, H.9
Kominami, E.10
Uchiyama, Y.11
-
52
-
-
54849422418
-
Quantitative modeling of triacylglycerol homeostasis in yeast-metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growth
-
Zanghellini J, Natter K, Jungreuthmayer C, Thalhammer A, Kurat CF, Gogg-Fassolter G, Kohlwein SD, von Grünberg H-H. 2008. Quantitative modeling of triacylglycerol homeostasis in yeast-metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growth. FEBS J 275:5552-5563. http://dx.doi.org/10.1111/j.1742-4658.2008.06681.x.
-
(2008)
FEBS J
, vol.275
, pp. 5552-5563
-
-
Zanghellini, J.1
Natter, K.2
Jungreuthmayer, C.3
Thalhammer, A.4
Kurat, C.F.5
Gogg-Fassolter, G.6
Kohlwein, S.D.7
von Grünberg, H.-H.8
-
53
-
-
34648828532
-
AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy
-
Hardie DG. 2007. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev 8:774-785. http://dx.doi.org/10.1038/nrm2249.
-
(2007)
Nat Rev
, vol.8
, pp. 774-785
-
-
Hardie, D.G.1
-
54
-
-
79953193036
-
Sensing of energy and nutrients by AMP-activated protein kinase
-
Hardie DG. 2011. Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr 93:891-896. http://dx.doi.org/10.3945/ajcn.110.001925.
-
(2011)
Am J Clin Nutr
, vol.93
, pp. 891-896
-
-
Hardie, D.G.1
-
55
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan K. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577-590. http://dx.doi.org/10.1016/S0092-8674(03)00929-2.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.3
-
56
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214-226. http://dx.doi.org/10.1016/j.molcel.2008.03.003.
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
57
-
-
80855128291
-
Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae
-
Zhang J, Vaga S, Chumnanpuen P, Kumar R, Vemuri GN, Aebersold R, Nielsen J. 2011. Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol 7:1-11. http://dx.doi.org/10.1038/msb.2011.80.
-
(2011)
Mol Syst Biol
, vol.7
, pp. 1-11
-
-
Zhang, J.1
Vaga, S.2
Chumnanpuen, P.3
Kumar, R.4
Vemuri, G.N.5
Aebersold, R.6
Nielsen, J.7
-
58
-
-
84908031923
-
State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae
-
Hallett J, Luo X, Capaldi A. 2014. State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae. Genetics 198:773-786. http://dx.doi.org/10.1534/genetics.114.168369.
-
(2014)
Genetics
, vol.198
, pp. 773-786
-
-
Hallett, J.1
Luo, X.2
Capaldi, A.3
-
59
-
-
79955588701
-
Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase
-
Ruiz A, Xu X, Carlson M. 2011. Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase. Proc Natl Acad Sci USA 108:6349-6354. http://dx.doi.org/10.1073/pnas.1102758108.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 6349-6354
-
-
Ruiz, A.1
Xu, X.2
Carlson, M.3
-
60
-
-
84861899883
-
Heterotrimer-independent regulation of activation-loop phosphorylation of Snf1 protein kinase involves two protein phosphatases
-
Ruiz A, Liu Y, Xu X, Carlson M. 2012. Heterotrimer-independent regulation of activation-loop phosphorylation of Snf1 protein kinase involves two protein phosphatases. Proc Natl Acad Sci USA 109:8652-8657. http://dx.doi.org/10.1073/pnas.1206280109.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 8652-8657
-
-
Ruiz, A.1
Liu, Y.2
Xu, X.3
Carlson, M.4
-
61
-
-
78651067054
-
mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes
-
Soliman GA, Acosta-Jaquez HA, Fingar DC. 2010. mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes. Lipids 45:1089-1100. http://dx.doi.org/10.1007/s11745-010-3488-y.
-
(2010)
Lipids
, vol.45
, pp. 1089-1100
-
-
Soliman, G.A.1
Acosta-Jaquez, H.A.2
Fingar, D.C.3
-
62
-
-
71449102613
-
Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast
-
Petschnigg J, Wolinski H, Kolb D, Zellnig G, Kurat CF, Natter K, Kohlwein SD. 2009. Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. J Biol Chem 284:30981-30993. http://dx.doi.org/10.1074/jbc. M109.024752.
-
(2009)
J Biol Chem
, vol.284
, pp. 30981-30993
-
-
Petschnigg, J.1
Wolinski, H.2
Kolb, D.3
Zellnig, G.4
Kurat, C.F.5
Natter, K.6
Kohlwein, S.D.7
-
63
-
-
0037453056
-
Triglyceride accumulation protects against fatty acid-induced lipotoxicity
-
Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Ory DS, Schaffer JE. 2003. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100:3077-3082. http://dx.doi.org/10.1073/pnas.0630588100.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 3077-3082
-
-
Listenberger, L.L.1
Han, X.2
Lewis, S.E.3
Cases, S.4
Farese, R.V.5
Ory, D.S.6
Schaffer, J.E.7
-
64
-
-
84867654401
-
Emerging roles for lipid droplets in immunity and host-pathogen interactions
-
Saka HA, Valdivia R. 2012. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu Rev Cell Dev Biol 28:411-437. http://dx.doi.org/10.1146/annurev-cellbio-092910-153958.
-
(2012)
Annu Rev Cell Dev Biol
, vol.28
, pp. 411-437
-
-
Saka, H.A.1
Valdivia, R.2
-
65
-
-
70349994637
-
Hepatitis C virus utilizes lipid droplet for production of infectious virus
-
Ogawa K, Hishiki T, Shimizu Y, Funami K, Sugiyama K, Miyanari Y, Shimotohno K. 2009. Hepatitis C virus utilizes lipid droplet for production of infectious virus. Proc Jpn Acad 85:217-228. http://dx.doi.org/10.2183/pjab.85.217.
-
(2009)
Proc Jpn Acad
, vol.85
, pp. 217-228
-
-
Ogawa, K.1
Hishiki, T.2
Shimizu, Y.3
Funami, K.4
Sugiyama, K.5
Miyanari, Y.6
Shimotohno, K.7
-
66
-
-
0035161939
-
Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae
-
François J, Parrou JL. 2006. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125-145. http://dx.doi.org/10.1111/j.1574-6976.2001.tb00574.x.
-
(2006)
FEMS Microbiol Rev
, vol.25
, pp. 125-145
-
-
François, J.1
Parrou, J.L.2
|