메뉴 건너뛰기




Volumn 35, Issue 4, 2015, Pages 737-746

TORC1 inhibition induces lipid droplet replenishment in yeast

Author keywords

[No Author keywords available]

Indexed keywords

FAT DROPLET; GAT1P TRANSCRIPTION FACTOR; GLN3P TRANSCRIPTION FACTOR; MAMMALIAN TARGET OF RAPAMYCIN INHIBITOR; NITROGEN; PHOSPHATASE; REGULATOR PROTEIN; RTG1P TRANSCRIPTION FACTOR; RTG3P TRANSCRIPTION FACTOR; SIT4P PHOSPHATASE; TAP42P REGULATORY PROTEIN; TRANSCRIPTION FACTOR; TRIACYLGLYCEROL; UNCLASSIFIED DRUG; BASIC HELIX LOOP HELIX LEUCINE ZIPPER TRANSCRIPTION FACTOR; CHOLESTEROL ESTER; GAT1 PROTEIN, S CEREVISIAE; GLN3 PROTEIN, S CEREVISIAE; PHOSPHATIDYLINOSITOL 3 KINASE; PHOSPHOPROTEIN PHOSPHATASE 2; RAPAMYCIN; RTG1 PROTEIN, S CEREVISIAE; RTG3 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN; SIGNAL TRANSDUCING ADAPTOR PROTEIN; SIT4 PROTEIN, S CEREVISIAE; SORBITOL; TAP42 PROTEIN, S CEREVISIAE; TOR1 PROTEIN, S CEREVISIAE; TORC1 PROTEIN COMPLEX, S CEREVISIAE; TRANSCRIPTION FACTOR GATA;

EID: 84921773677     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.01314-14     Document Type: Article
Times cited : (60)

References (66)
  • 1
    • 0016207496 scopus 로고
    • Isolation of lipid particles from baker's yeast
    • Clausen MK, Christiansen K, Jensen PK, Behnke O. 1974. Isolation of lipid particles from baker's yeast. FEBS Lett 43:176-179. http://dx.doi.org/10.1016/0014-5793(74)80994-4.
    • (1974) FEBS Lett , vol.43 , pp. 176-179
    • Clausen, M.K.1    Christiansen, K.2    Jensen, P.K.3    Behnke, O.4
  • 2
    • 0028081336 scopus 로고
    • Characterization of lipid particles of the yeast, Saccharomyces cerevisiae
    • Leber R, Zinser E, Paltauf F, Daum G, Zellnig G. 1994. Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10:1421-1428. http://dx.doi.org/10.1002/yea.320101105.
    • (1994) Yeast , vol.10 , pp. 1421-1428
    • Leber, R.1    Zinser, E.2    Paltauf, F.3    Daum, G.4    Zellnig, G.5
  • 3
    • 0034903123 scopus 로고    scopus 로고
    • The biogenesis and functions of lipid bodies in animals, plants and microorganisms
    • Murphy DJ. 2001. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325-438. http://dx.doi.org/10.1016/S0163-7827(01)00013-3.
    • (2001) Prog Lipid Res , vol.40 , pp. 325-438
    • Murphy, D.J.1
  • 4
    • 48749110651 scopus 로고    scopus 로고
    • Lipid droplets: a classic organelle with new outfits
    • Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y. 2008. Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 130: 263-279. http://dx.doi.org/10.1007/s00418-008-0449-0.
    • (2008) Histochem Cell Biol , vol.130 , pp. 263-279
    • Fujimoto, T.1    Ohsaki, Y.2    Cheng, J.3    Suzuki, M.4    Shinohara, Y.5
  • 5
    • 56849110119 scopus 로고    scopus 로고
    • COPI complex is a regulator of lipid homeostasis
    • Beller M, Sztalryd C, Southall N, Bell M. 2008. COPI complex is a regulator of lipid homeostasis. PLoS Biol 6:e292. http://dx.doi.org/10.1371/journal.pbio.0060292.
    • (2008) PLoS Biol , vol.6
    • Beller, M.1    Sztalryd, C.2    Southall, N.3    Bell, M.4
  • 6
    • 84880036446 scopus 로고    scopus 로고
    • Balancing the fat: lipid droplets and human disease
    • Krahmer N, Farese RV, Walther TC. 2013. Balancing the fat: lipid droplets and human disease. EMBO Mol Med 5:905-915. http://dx.doi.org/10.1002/emmm.201100671.
    • (2013) EMBO Mol Med , vol.5 , pp. 905-915
    • Krahmer, N.1    Farese, R.V.2    Walther, T.C.3
  • 8
    • 0037155197 scopus 로고    scopus 로고
    • Lipid droplet binding and oligomerization properties of the Parkinson's disease protein alpha-synuclein
    • Cole NB, Murphy DD, Grider T, Rueter S, Brasaemle D, Nussbaum RL. 2002. Lipid droplet binding and oligomerization properties of the Parkinson's disease protein alpha-synuclein. J Biol Chem 277:6344-6352. http://dx.doi.org/10.1074/jbc. M108414200.
    • (2002) J Biol Chem , vol.277 , pp. 6344-6352
    • Cole, N.B.1    Murphy, D.D.2    Grider, T.3    Rueter, S.4    Brasaemle, D.5    Nussbaum, R.L.6
  • 11
    • 78149440688 scopus 로고    scopus 로고
    • A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism
    • Bozaquel-Morais BL, Madeira JB, Maya-Monteiro CM, Masuda CA, Montero-Lomeli M. 2010. A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism. PLoS One 5:e13692. http://dx.doi.org/10.1371/journal.pone.0013692.
    • (2010) PLoS One , vol.5
    • Bozaquel-Morais, B.L.1    Madeira, J.B.2    Maya-Monteiro, C.M.3    Masuda, C.A.4    Montero-Lomeli, M.5
  • 13
    • 0036359804 scopus 로고    scopus 로고
    • The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms
    • Ratledge C, Wynn JP. 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1-51. http://dx.doi.org/10.1016/S0065-2164(02)51000-5.
    • (2002) Adv Appl Microbiol , vol.51 , pp. 1-51
    • Ratledge, C.1    Wynn, J.P.2
  • 14
    • 0009587714 scopus 로고
    • Effects of nitrogen limitation on the growth and composition of unicellular algae in continuous culture
    • Richardson B, Orcutt DM, Schwertner HA, Martinez CL, Wickline HE. 1969. Effects of nitrogen limitation on the growth and composition of unicellular algae in continuous culture. Appl Microbiol 18:245-250.
    • (1969) Appl Microbiol , vol.18 , pp. 245-250
    • Richardson, B.1    Orcutt, D.M.2    Schwertner, H.A.3    Martinez, C.L.4    Wickline, H.E.5
  • 15
    • 0033540030 scopus 로고    scopus 로고
    • The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
    • Beck T, Hall M. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 3:689-692.
    • (1999) Nature , vol.3 , pp. 689-692
    • Beck, T.1    Hall, M.2
  • 16
    • 0033573016 scopus 로고    scopus 로고
    • The TOR signaling cascade regulates gene expression in response to nutrients
    • Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J. 1999. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13:3271-3279. http://dx.doi.org/10.1101/gad.13.24.3271.
    • (1999) Genes Dev , vol.13 , pp. 3271-3279
    • Cardenas, M.E.1    Cutler, N.S.2    Lorenz, M.C.3    Di Como, C.J.4    Heitman, J.5
  • 17
    • 33646538482 scopus 로고    scopus 로고
    • The TOR signalling network from yeast to man
    • De Virgilio C, Loewith R. 2006. The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38:1476-1481. http://dx.doi.org/10.1016/j.biocel.2006.02.013.
    • (2006) Int J Biochem Cell Biol , vol.38 , pp. 1476-1481
    • De Virgilio, C.1    Loewith, R.2
  • 18
    • 0025776523 scopus 로고
    • Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
    • Heitman J, Movva NR, Hall MN. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905-909. http://dx.doi.org/10.1126/science.1715094.
    • (1991) Science , vol.253 , pp. 905-909
    • Heitman, J.1    Movva, N.R.2    Hall, M.N.3
  • 20
    • 83455177213 scopus 로고    scopus 로고
    • Target of rapamycin (TOR) in nutrient signaling and growth control
    • Loewith R, Hall MN. 2011. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177-1201. http://dx.doi.org/10.1534/genetics.111.133363.
    • (2011) Genetics , vol.189 , pp. 1177-1201
    • Loewith, R.1    Hall, M.N.2
  • 21
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger S, Loewith R, Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124:4714-4784. http://dx.doi.org/10.1016/j.cell.2006.01.016.
    • (2006) Cell , vol.124 , pp. 4714-4784
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 23
    • 0029808294 scopus 로고    scopus 로고
    • Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases
    • Di Como CJ, Arndt KT. 1996. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10:1904-1916. http://dx.doi.org/10.1101/gad.10.15.1904.
    • (1996) Genes Dev , vol.10 , pp. 1904-1916
    • Di Como, C.J.1    Arndt, K.T.2
  • 24
    • 33747626107 scopus 로고    scopus 로고
    • Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1
    • Yan G, Shen X, Jiang Y. 2006. Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. EMBO J 25:3546-3555. http://dx.doi.org/10.1038/sj.emboj.7601239.
    • (2006) EMBO J , vol.25 , pp. 3546-3555
    • Yan, G.1    Shen, X.2    Jiang, Y.3
  • 25
    • 77952934628 scopus 로고    scopus 로고
    • Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae
    • Tate JJ, Georis I, Dubois E, Cooper TG. 2010. Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae. J Biol Chem 285:17880-17895. http://dx.doi.org/10.1074/jbc. M109.085712.
    • (2010) J Biol Chem , vol.285 , pp. 17880-17895
    • Tate, J.J.1    Georis, I.2    Dubois, E.3    Cooper, T.G.4
  • 26
    • 17344381954 scopus 로고    scopus 로고
    • Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast
    • Düvel K, Santhanam A, Garrett S, Schneper L, Broach JR. 2003. Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol Cell 11:1467-1478. http://dx.doi.org/10.1016/S1097-2765(03)00228-4.
    • (2003) Mol Cell , vol.11 , pp. 1467-1478
    • Düvel, K.1    Santhanam, A.2    Garrett, S.3    Schneper, L.4    Broach, J.R.5
  • 27
    • 0037076314 scopus 로고    scopus 로고
    • The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine
    • Crespo L, Powers T, Fowler B, Hall MN. 2002. The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci USA 99:6784-6789. http://dx.doi.org/10.1073/pnas.102687599.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 6784-6789
    • Crespo, L.1    Powers, T.2    Fowler, B.3    Hall, M.N.4
  • 28
    • 70450204007 scopus 로고    scopus 로고
    • An emerging role of mTOR in lipid biosynthesis
    • Laplante M, Sabatini DM. 2009. An emerging role of mTOR in lipid biosynthesis. Curr Biol 19:R1046-R1052. http://dx.doi.org/10.1016/j.cub.2009.09.058.
    • (2009) Curr Biol , vol.19 , pp. R1046-R1052
    • Laplante, M.1    Sabatini, D.M.2
  • 29
    • 38349174747 scopus 로고    scopus 로고
    • Leptin induces macrophage lipid body formation by a phosphatidylinositol 3-kinase-and mammalian target of rapamycin-dependent mechanism
    • Maya-Monteiro CM, Almeida PE, D'Avila H, Martins AS, Rezende AP, Castro-Faria-Neto H, Bozza PT. 2008. Leptin induces macrophage lipid body formation by a phosphatidylinositol 3-kinase-and mammalian target of rapamycin-dependent mechanism. J Biol Chem 283:2203-2210. http://dx.doi.org/10.1074/jbc. M706706200.
    • (2008) J Biol Chem , vol.283 , pp. 2203-2210
    • Maya-Monteiro, C.M.1    Almeida, P.E.2    D'Avila, H.3    Martins, A.S.4    Rezende, A.P.5    Castro-Faria-Neto, H.6    Bozza, P.T.7
  • 30
    • 77951166692 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage
    • Chakrabarti P, English T, Shi J, Smas CM, Kandror KV. 2010. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 59:775-781. http://dx.doi.org/10.2337/db09-1602.
    • (2010) Diabetes , vol.59 , pp. 775-781
    • Chakrabarti, P.1    English, T.2    Shi, J.3    Smas, C.M.4    Kandror, K.V.5
  • 31
    • 80355138506 scopus 로고    scopus 로고
    • A quantitative assessment of the yeast lipidome using electrospray ionization mass spectrometry
    • Bourque SD, Titorenko VI. 2009. A quantitative assessment of the yeast lipidome using electrospray ionization mass spectrometry. J Vis Exp 2009: 1513. http://dx.doi.org/10.3791/1513.
    • (2009) J Vis Exp , vol.2009 , pp. 1513
    • Bourque, S.D.1    Titorenko, V.I.2
  • 32
    • 84884947695 scopus 로고    scopus 로고
    • Analysis of yeast lipid droplet proteome and lipidome
    • Schmidt C, Ploier B, Koch B, Daum G. 2013. Analysis of yeast lipid droplet proteome and lipidome. Methods Cell Biol 116:15-37. http://dx.doi.org/10.1016/B978-0-12-408051-5.00002-4.
    • (2013) Methods Cell Biol , vol.116 , pp. 15-37
    • Schmidt, C.1    Ploier, B.2    Koch, B.3    Daum, G.4
  • 33
    • 33845261493 scopus 로고
    • A rapid method of total lipid extraction and purification
    • Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911-917. http://dx.doi.org/10.1139/o59-099.
    • (1959) Can J Biochem Physiol , vol.37 , pp. 911-917
    • Bligh, E.G.1    Dyer, W.J.2
  • 34
    • 58149308056 scopus 로고    scopus 로고
    • Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression
    • Kurat CF, Wolinski H, Petschnigg J, Kaluarachchi S, Andrews B, Natter K, Kohlwein SD. 2009. Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell 33:53-63. http://dx.doi.org/10.1016/j.molcel.2008.12.019.
    • (2009) Mol Cell , vol.33 , pp. 53-63
    • Kurat, C.F.1    Wolinski, H.2    Petschnigg, J.3    Kaluarachchi, S.4    Andrews, B.5    Natter, K.6    Kohlwein, S.D.7
  • 35
    • 0025362399 scopus 로고
    • A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae
    • Schmitt ME, Brown TA, Trumpower BL. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18:3091-3092. http://dx.doi.org/10.1093/nar/18.10.3091.
    • (1990) Nucleic Acids Res , vol.18 , pp. 3091-3092
    • Schmitt, M.E.1    Brown, T.A.2    Trumpower, B.L.3
  • 36
    • 73449103514 scopus 로고    scopus 로고
    • Gene expression analysis during dengue virus infection in HepG2 cells reveals virus control of innate immune response
    • Conceição TM, El-Bacha T, Villas-Bôas CSA, Coello G, Ramírez J, Montero-Lomeli M, Da Poian AT. 2010. Gene expression analysis during dengue virus infection in HepG2 cells reveals virus control of innate immune response. J Infect 60:65-75. http://dx.doi.org/10.1016/j.jinf.2009.10.003.
    • (2010) J Infect , vol.60 , pp. 65-75
    • Conceição, T.M.1    El-Bacha, T.2    Villas-Bôas, C.S.A.3    Coello, G.4    Ramírez, J.5    Montero-Lomeli, M.6    Da Poian, A.T.7
  • 37
    • 0035710746 scopus 로고    scopus 로고
    • Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method
    • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods 25:402-408. http://dx.doi.org/10.1006/meth.2001.1262.
    • (2001) Methods , vol.25 , pp. 402-408
    • Livak, K.J.1    Schmittgen, T.D.2
  • 38
    • 0028137771 scopus 로고
    • TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast
    • Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN. 1994. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 5:105-118. http://dx.doi.org/10.1091/mbc.5.1.105.
    • (1994) Mol Biol Cell , vol.5 , pp. 105-118
    • Helliwell, S.B.1    Wagner, P.2    Kunz, J.3    Deuter-Reinhard, M.4    Henriquez, R.5    Hall, M.N.6
  • 39
    • 0028825698 scopus 로고
    • TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin
    • Lorenz MC, Heitman J. 1995. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem 270:27531-275317. http://dx.doi.org/10.1074/jbc.270.46.27531.
    • (1995) J Biol Chem , vol.270 , pp. 27531-275317
    • Lorenz, M.C.1    Heitman, J.2
  • 40
    • 0025247671 scopus 로고
    • Citrate synthase encoded by the CIT2 gene of Saccharomyces cerevisiae is peroxisomal
    • Lewin A, Hines V, Small G. 1990. Citrate synthase encoded by the CIT2 gene of Saccharomyces cerevisiae is peroxisomal. Mol Cell Biol 10:1399-1405.
    • (1990) Mol Cell Biol , vol.10 , pp. 1399-1405
    • Lewin, A.1    Hines, V.2    Small, G.3
  • 41
    • 0034645038 scopus 로고    scopus 로고
    • Mechanism of metabolic control target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors
    • Komeili A, Wedaman K. 2000. Mechanism of metabolic control target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J Cell Biol 151:863-878. http://dx.doi.org/10.1083/jcb.151.4.863.
    • (2000) J Cell Biol , vol.151 , pp. 863-878
    • Komeili, A.1    Wedaman, K.2
  • 42
    • 79955560245 scopus 로고    scopus 로고
    • An overview of lipid metabolism in yeasts and its impact on biotechnological processes
    • Beopoulos A, Nicaud J-M, Gaillardin C. 2011. An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193-1206. http://dx.doi.org/10.1007/s00253-011-3212-8.
    • (2011) Appl Microbiol Biotechnol , vol.90 , pp. 1193-1206
    • Beopoulos, A.1    Nicaud, J.-M.2    Gaillardin, C.3
  • 43
    • 64249131483 scopus 로고    scopus 로고
    • Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches
    • Courchesne NMD, Parisien A, Wang B, Lan CQ. 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31-41. http://dx.doi.org/10.1016/j.jbiotec.2009.02.018.
    • (2009) J Biotechnol , vol.141 , pp. 31-41
    • Courchesne, N.M.D.1    Parisien, A.2    Wang, B.3    Lan, C.Q.4
  • 45
    • 0028070457 scopus 로고
    • Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo
    • Woods A, Mundays MR, Scott J, Yango X, Carlson M, Carling D. 1994. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 269: 19509-19515.
    • (1994) J Biol Chem , vol.269 , pp. 19509-19515
    • Woods, A.1    Mundays, M.R.2    Scott, J.3    Yango, X.4    Carlson, M.5    Carling, D.6
  • 46
    • 33947286240 scopus 로고    scopus 로고
    • Fatty acid synthesis and elongation in yeast
    • Tehlivets O, Scheuringer K, Kohlwein SD. 2007. Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771:255-270. http://dx.doi.org/10.1016/j.bbalip.2006.07.004.
    • (2007) Biochim Biophys Acta , vol.1771 , pp. 255-270
    • Tehlivets, O.1    Scheuringer, K.2    Kohlwein, S.D.3
  • 47
    • 0032750741 scopus 로고    scopus 로고
    • Nitrogen catabolite repression in Saccharomyces cerevisiae
    • Hofman-Bang J. 1999. Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12:35-39. http://dx.doi.org/10.1385/MB:12:1:35.
    • (1999) Mol Biotechnol , vol.12 , pp. 35-39
    • Hofman-Bang, J.1
  • 48
    • 6344237317 scopus 로고    scopus 로고
    • PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p
    • Santhanam A, Hartley A, Düvel K, James R, Garrett S, Du K, Broach JR. 2004. PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p. Eukaryot Cell 3:1261-1271. http://dx.doi.org/10.1128/EC.3.5.1261-1271.2004.
    • (2004) Eukaryot Cell , vol.3 , pp. 1261-1271
    • Santhanam, A.1    Hartley, A.2    Düvel, K.3    James, R.4    Garrett, S.5    Du, K.6    Broach, J.R.7
  • 49
    • 0028801010 scopus 로고
    • Genetic evidence for Gln3pindependent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae
    • Coffman JA, Rai R, Cooper TG. 1995. Genetic evidence for Gln3pindependent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae. J Bacteriol 177:6910-6918.
    • (1995) J Bacteriol , vol.177 , pp. 6910-6918
    • Coffman, J.A.1    Rai, R.2    Cooper, T.G.3
  • 50
    • 0030028431 scopus 로고    scopus 로고
    • Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogencatabolic genes in Saccharomyces cerevisiae
    • Coffman JA, Rai R, Cunningham T, Svetlov V, Cooper TG. 1996. Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogencatabolic genes in Saccharomyces cerevisiae. Mol Cell Biol 16:847-858.
    • (1996) Mol Cell Biol , vol.16 , pp. 847-858
    • Coffman, J.A.1    Rai, R.2    Cunningham, T.3    Svetlov, V.4    Cooper, T.G.5
  • 52
    • 54849422418 scopus 로고    scopus 로고
    • Quantitative modeling of triacylglycerol homeostasis in yeast-metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growth
    • Zanghellini J, Natter K, Jungreuthmayer C, Thalhammer A, Kurat CF, Gogg-Fassolter G, Kohlwein SD, von Grünberg H-H. 2008. Quantitative modeling of triacylglycerol homeostasis in yeast-metabolic requirement for lipolysis to promote membrane lipid synthesis and cellular growth. FEBS J 275:5552-5563. http://dx.doi.org/10.1111/j.1742-4658.2008.06681.x.
    • (2008) FEBS J , vol.275 , pp. 5552-5563
    • Zanghellini, J.1    Natter, K.2    Jungreuthmayer, C.3    Thalhammer, A.4    Kurat, C.F.5    Gogg-Fassolter, G.6    Kohlwein, S.D.7    von Grünberg, H.-H.8
  • 53
    • 34648828532 scopus 로고    scopus 로고
    • AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy
    • Hardie DG. 2007. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev 8:774-785. http://dx.doi.org/10.1038/nrm2249.
    • (2007) Nat Rev , vol.8 , pp. 774-785
    • Hardie, D.G.1
  • 54
    • 79953193036 scopus 로고    scopus 로고
    • Sensing of energy and nutrients by AMP-activated protein kinase
    • Hardie DG. 2011. Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr 93:891-896. http://dx.doi.org/10.3945/ajcn.110.001925.
    • (2011) Am J Clin Nutr , vol.93 , pp. 891-896
    • Hardie, D.G.1
  • 55
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K, Zhu T, Guan K. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577-590. http://dx.doi.org/10.1016/S0092-8674(03)00929-2.
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.3
  • 58
    • 84908031923 scopus 로고    scopus 로고
    • State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae
    • Hallett J, Luo X, Capaldi A. 2014. State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae. Genetics 198:773-786. http://dx.doi.org/10.1534/genetics.114.168369.
    • (2014) Genetics , vol.198 , pp. 773-786
    • Hallett, J.1    Luo, X.2    Capaldi, A.3
  • 59
    • 79955588701 scopus 로고    scopus 로고
    • Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase
    • Ruiz A, Xu X, Carlson M. 2011. Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase. Proc Natl Acad Sci USA 108:6349-6354. http://dx.doi.org/10.1073/pnas.1102758108.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 6349-6354
    • Ruiz, A.1    Xu, X.2    Carlson, M.3
  • 60
    • 84861899883 scopus 로고    scopus 로고
    • Heterotrimer-independent regulation of activation-loop phosphorylation of Snf1 protein kinase involves two protein phosphatases
    • Ruiz A, Liu Y, Xu X, Carlson M. 2012. Heterotrimer-independent regulation of activation-loop phosphorylation of Snf1 protein kinase involves two protein phosphatases. Proc Natl Acad Sci USA 109:8652-8657. http://dx.doi.org/10.1073/pnas.1206280109.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 8652-8657
    • Ruiz, A.1    Liu, Y.2    Xu, X.3    Carlson, M.4
  • 61
    • 78651067054 scopus 로고    scopus 로고
    • mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes
    • Soliman GA, Acosta-Jaquez HA, Fingar DC. 2010. mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes. Lipids 45:1089-1100. http://dx.doi.org/10.1007/s11745-010-3488-y.
    • (2010) Lipids , vol.45 , pp. 1089-1100
    • Soliman, G.A.1    Acosta-Jaquez, H.A.2    Fingar, D.C.3
  • 62
    • 71449102613 scopus 로고    scopus 로고
    • Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast
    • Petschnigg J, Wolinski H, Kolb D, Zellnig G, Kurat CF, Natter K, Kohlwein SD. 2009. Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. J Biol Chem 284:30981-30993. http://dx.doi.org/10.1074/jbc. M109.024752.
    • (2009) J Biol Chem , vol.284 , pp. 30981-30993
    • Petschnigg, J.1    Wolinski, H.2    Kolb, D.3    Zellnig, G.4    Kurat, C.F.5    Natter, K.6    Kohlwein, S.D.7
  • 64
    • 84867654401 scopus 로고    scopus 로고
    • Emerging roles for lipid droplets in immunity and host-pathogen interactions
    • Saka HA, Valdivia R. 2012. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu Rev Cell Dev Biol 28:411-437. http://dx.doi.org/10.1146/annurev-cellbio-092910-153958.
    • (2012) Annu Rev Cell Dev Biol , vol.28 , pp. 411-437
    • Saka, H.A.1    Valdivia, R.2
  • 66
    • 0035161939 scopus 로고    scopus 로고
    • Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae
    • François J, Parrou JL. 2006. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125-145. http://dx.doi.org/10.1111/j.1574-6976.2001.tb00574.x.
    • (2006) FEMS Microbiol Rev , vol.25 , pp. 125-145
    • François, J.1    Parrou, J.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.