메뉴 건너뛰기




Volumn 38, Issue 6, 2014, Pages 492-504

The DEKA Arm: Its features, functionality, and evolution during the veterans affairs study to optimize the DEKA Arm

Author keywords

Amputation; Assistive technology; Prosthetics; Upper limb

Indexed keywords

ARM MOVEMENT; ARM PROSTHESIS; ARTICLE; ASSISTIVE TECHNOLOGY; CONTROL; ENERGY RESOURCE; FOOT; HAND GRIP; HUMERUS; SHOULDER; VETERAN; WEIGHT; WRIST; ARM; COMPARATIVE STUDY; DISABLED PERSON; EVALUATION STUDY; GOVERNMENT; HUMAN; LIMB PROSTHESIS; MOVEMENT (PHYSIOLOGY); POWER SUPPLY; PROSTHESIS; RADIUS; REHABILITATION; SELF HELP DEVICE; SURGERY; TRENDS; UNITED STATES;

EID: 84921687999     PISSN: 03093646     EISSN: 17461553     Source Type: Journal    
DOI: 10.1177/0309364613506913     Document Type: Article
Times cited : (156)

References (56)
  • 1
    • 84905462700 scopus 로고    scopus 로고
    • Revolutionizing Prosthetics program accessed 21 December
    • The Defense Advanced Research Project Agency (DARPA). Revolutionizing Prosthetics program, http://www.darpa.mil/our-work/dso/programs/revolutionizing-prosthetics.aspx (accessed 21 December 2012
    • (2012) The Defense Advanced Research Project Agency (DARPA)
  • 3
    • 79960815322 scopus 로고    scopus 로고
    • Using virtual reality environment to facilitate training with advanced upper-limb prosthesis
    • Resnik L, Etter K, Klinger SL, et al. Using virtual reality environment to facilitate training with advanced upper-limb prosthesis. J Rehabil Res Dev 2011; 48(6): 707-718
    • (2011) J Rehabil Res Dev , vol.48 , Issue.6 , pp. 707-718
    • Resnik, L.1    Etter, K.2    Klinger, S.L.3
  • 4
    • 84901941656 scopus 로고    scopus 로고
    • Controlling a multidegree of freedom upper limb prosthesis using foot controls: User experience
    • Epub ahead of print 31 July
    • Resnik L, Klinger SL, Etter K, et al. Controlling a multidegree of freedom upper limb prosthesis using foot controls: user experience. Disabil Rehabil Assist Technol. Epub ahead of print 31 July 2013. DOI: 10.3109/17483107.2013.822024
    • (2013) Disabil Rehabil Assist Technol
    • Resnik, L.1    Klinger, S.L.2    Etter, K.3
  • 5
    • 84927151784 scopus 로고    scopus 로고
    • Touch Bionics accessed 22 May
    • Touch Bionics. http://www.touchbionics.com/products/ active-prostheses/i-limb-ultra/ accessed 22 May 2013
    • (2013)
  • 6
    • 84927151783 scopus 로고    scopus 로고
    • Michelangelo Hand, accessed 22 May
    • Michelangelo Hand. http://www.living-with-michelangelo. com/gb/home/ (accessed 22 May 2013)
    • (2013)
  • 7
    • 0028533940 scopus 로고
    • The Southampton Hand: An intelligent myoelectric prosthesis
    • Kyberd PJ. The Southampton Hand: an intelligent myoelectric prosthesis. J Rehabil Res Dev 1994; 31(4): 326-334
    • (1994) J Rehabil Res Dev , vol.31 , Issue.4 , pp. 326-334
    • Kyberd, P.J.1
  • 10
    • 0036613679 scopus 로고    scopus 로고
    • The development of a novel prosthetic hand-ongoing research and preliminary results
    • Carrozza MC, Massa B, Micera S, et al. The development of a novel prosthetic hand-ongoing research and preliminary results. IEEE/ASME T Mech 2002; 7(2): 108-114
    • (2002) IEEE/ASME T Mech , vol.7 , Issue.2 , pp. 108-114
    • Carrozza, M.C.1    Massa, B.2    Micera, S.3
  • 12
    • 1642635007 scopus 로고    scopus 로고
    • The SPRING Hand: Development of a self-Adaptive prosthesis for restoring natural grasping
    • Carrozza MC, Suppo C, Sebastiani F, et al. The SPRING Hand: development of a self-Adaptive prosthesis for restoring natural grasping. Auton Robot 2004; 16: 125-141
    • (2004) Auton Robot , vol.16 , pp. 125-141
    • Carrozza, M.C.1    Suppo, C.2    Sebastiani, F.3
  • 13
    • 70450252096 scopus 로고    scopus 로고
    • Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation
    • Dalley SA, Wiste TE, Withrow TJ, et al. Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation. IEEE/ASME T Mech 2009; 14: 699-706
    • (2009) IEEE/ASME T Mech , vol.14 , pp. 699-706
    • Dalley, S.A.1    Wiste, T.E.2    Withrow, T.J.3
  • 15
    • 0035479024 scopus 로고    scopus 로고
    • Multiple finger, passive adaptive grasp prosthetic hand
    • Dechev N, Cleghorn WL and Naumann S. Multiple finger, passive adaptive grasp prosthetic hand. Mech Mach Theory 2001; 36: 1157-1173
    • (2001) Mech Mach Theory , vol.36 , pp. 1157-1173
    • Dechev, N.1    Cleghorn, W.L.2    Naumann, S.3
  • 16
    • 48349139895 scopus 로고    scopus 로고
    • The SDM Hand as a prosthetic terminal device: A feasibility study
    • Noordwijk 12-15 June, New York: IEEE
    • Dollar AM and Howe RD. The SDM Hand as a prosthetic terminal device: a feasibility study. In: IEEE 10th international conference on rehabilitation robotics, Noordwijk, 12-15 June 2007, pp. 978-983. New York: IEEE
    • (2007) IEEE 10th International Conference on Rehabilitation Robotics , pp. 978-983
    • Dollar, A.M.1    Howe, R.D.2
  • 18
    • 11144305045 scopus 로고    scopus 로고
    • Progress in the development of a multifunctional hand prosthesis
    • Pylatiuk C, Mounier S, Kargov A, et al. Progress in the development of a multifunctional hand prosthesis. Conf Proc IEEE Eng Med Biol Soc 2004; 6: 4260-4263
    • (2004) Conf Proc IEEE Eng Med Biol Soc , vol.6 , pp. 4260-4263
    • Pylatiuk, C.1    Mounier, S.2    Kargov, A.3
  • 19
    • 15044364103 scopus 로고    scopus 로고
    • Two multiarticulated hydraulic hand prostheses
    • Pylatiuk C, Schulz S, Kargov A, et al. Two multiarticulated hydraulic hand prostheses. Artif Organs 2004; 28(11): 980-986
    • (2004) Artif Organs , vol.28 , Issue.11 , pp. 980-986
    • Pylatiuk, C.1    Schulz, S.2    Kargov, A.3
  • 20
    • 23144450614 scopus 로고    scopus 로고
    • Development of robotic hands with an adjustable power transmitting mechanism
    • Ishikawa Y, Yu W, Yokoi H, et al. Development of robotic hands with an adjustable power transmitting mechanism. Intell Eng Syst Neural Netw 2000; 10: 631-636
    • (2000) Intell Eng Syst Neural Netw , vol.10 , pp. 631-636
    • Ishikawa, Y.1    Yu, W.2    Yokoi, H.3
  • 21
    • 0034447915 scopus 로고    scopus 로고
    • Development of a lightweight and adaptable multiple-Axis hand prosthesis
    • Light CM and Chappell PH. Development of a lightweight and adaptable multiple-Axis hand prosthesis. Med Eng Phys 2000; 22(10): 679-684
    • (2000) Med Eng Phys , vol.22 , Issue.10 , pp. 679-684
    • Light, C.M.1    Chappell, P.H.2
  • 22
    • 1642588281 scopus 로고    scopus 로고
    • The MANUS-HAND dextrous robotics upper limb prosthesis: Mechanical and manipulation aspects
    • Pons JL, Rocon E, Ceres R, et al. The MANUS-HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects. Auton Robot 2004; 16: 143-163
    • (2004) Auton Robot , vol.16 , pp. 143-163
    • Pons, J.L.1    Rocon, E.2    Ceres, R.3
  • 23
    • 69549126266 scopus 로고    scopus 로고
    • Underactuated five-finger prosthetic hand inspired by grasping force distribution of humans
    • Nice 22-26 September,New York: IEEE
    • Kamikawa A and Maeno T. Underactuated five-finger prosthetic hand inspired by grasping force distribution of humans. In: IEEE/RSJ international conference on intelligent robots and systems, Nice, 22-26 September 2008, pp. 717-722. New York: IEEE
    • (2008) IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 717-722
    • Kamikawa, A.1    Maeno, T.2
  • 25
    • 33845682857 scopus 로고    scopus 로고
    • Design of a cybernetic hand for perception and action
    • Carrozza MC, Cappiello G, Micera S, et al. Design of a cybernetic hand for perception and action. Biol Cybern 2006; 95(6): 629-644
    • (2006) Biol Cybern , vol.95 , Issue.6 , pp. 629-644
    • Carrozza, M.C.1    Cappiello, G.2    Micera, S.3
  • 26
    • 0036660880 scopus 로고    scopus 로고
    • Intelligent multifunction myoelectric control of hand prostheses
    • Light CM, Chappell PH, Hudgins B, et al. Intelligent multifunction myoelectric control of hand prostheses. J Med Eng Technol 2002; 26(4): 139-146
    • (2002) J Med Eng Technol , vol.26 , Issue.4 , pp. 139-146
    • Light, C.M.1    Chappell, P.H.2    Hudgins, B.3
  • 27
    • 60249084509 scopus 로고    scopus 로고
    • Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms
    • Kuiken TA, Li G, Lock BA, et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 2009; 301(6): 619-628
    • (2009) JAMA , vol.301 , Issue.6 , pp. 619-628
    • Kuiken, T.A.1    Li, G.2    Lock, B.A.3
  • 28
    • 0042664129 scopus 로고    scopus 로고
    • A robust, real-time control scheme for multifunction myoelectric control
    • Englehart K and Hudgins B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng 2003; 50(7): 848-854
    • (2003) IEEE Trans Biomed Eng , vol.50 , Issue.7 , pp. 848-854
    • Englehart, K.1    Hudgins, B.2
  • 31
    • 79960833400 scopus 로고    scopus 로고
    • Target achievement control test: Evaluating real-time myoelectric patternrecognition control of multifunctional upper-limb prostheses
    • Simon AM, Hargrove LJ, Lock BA, et al. Target achievement control test: evaluating real-time myoelectric patternrecognition control of multifunctional upper-limb prostheses. J Rehabil Res Dev 2011; 48(6): 619-628
    • (2011) J Rehabil Res Dev , vol.48 , Issue.6 , pp. 619-628
    • Simon, A.M.1    Hargrove, L.J.2    Lock, B.A.3
  • 32
    • 0018196642 scopus 로고
    • Pattern recognition arm prosthesis: A historical perspective-A final report
    • Fall
    • Wirta R, Taylor D and Finley F. Pattern recognition arm prosthesis: a historical perspective-A final report. Bull Prosthet Res 1978; Fall: 28
    • (1978) Bull Prosthet Res , vol.28
    • Wirta, R.1    Taylor, D.2    Finley, F.3
  • 34
    • 0016098393 scopus 로고
    • Control of upper limb prostheses in several degrees of freedom
    • Fall
    • Graupe D. Control of upper limb prostheses in several degrees of freedom. Bull Prosthet Res 1972; Fall: 226-236
    • (1972) Bull Prosthet Res , pp. 226-236
    • Graupe, D.1
  • 35
    • 0017605780 scopus 로고
    • A multifunctional prosthesis control system based on time series identification of EMG signals using microprocessors
    • Graupe D, Beex AA, Monlux WJ, et al. A multifunctional prosthesis control system based on time series identification of EMG signals using microprocessors. Bull Prosthet Res 1977; 10(27): 4-16
    • (1977) Bull Prosthet Res , vol.10 , Issue.27 , pp. 4-16
    • Graupe, D.1    Beex, A.A.2    Monlux, W.J.3
  • 36
    • 0033732950 scopus 로고    scopus 로고
    • Controlling an artificial arm with foot movements
    • Luzzio CC. Controlling an artificial arm with foot movements. Neurorehabil Neural Repair 2000; 14(3): 207-212
    • (2000) Neurorehabil Neural Repair , vol.14 , Issue.3 , pp. 207-212
    • Luzzio, C.C.1
  • 38
    • 33947375201 scopus 로고    scopus 로고
    • A wearable biomechatronic interface for controlling robots with voluntary foot movements
    • Carrozza M, Persichetti A, Laschi C, et al. A wearable biomechatronic interface for controlling robots with voluntary foot movements. IEEE/ASME T Mech 2007; 12(1): 1-11
    • (2007) IEEE/ASME T Mech , vol.12 , Issue.1 , pp. 1-11
    • Carrozza, M.1    Persichetti, A.2    Laschi, C.3
  • 39
  • 41
    • 0028533940 scopus 로고
    • The Southampton Hand: An intelligent myoelectric prosthesis
    • Kyberd PJ and Chappell PH. The Southampton Hand: an intelligent myoelectric prosthesis. J Rehabil Res Dev 1994; 31(4): 326-334
    • (1994) J Rehabil Res Dev , vol.31 , Issue.4 , pp. 326-334
    • Kyberd, P.J.1    Chappell, P.H.2
  • 42
    • 40949129655 scopus 로고    scopus 로고
    • On the shared control of an EMG controlled prosthetic hand: Analysis of user-prosthesis interaction
    • Ciprani F, Zaccone F, Micera S, et al. On the shared control of an EMG controlled prosthetic hand: analysis of user-prosthesis interaction. IEEE Trans Robot 2008; 24(1): 170-184
    • (2008) IEEE Trans Robot , vol.24 , Issue.1 , pp. 170-184
    • Ciprani, F.1    Zaccone, F.2    Micera, S.3
  • 45
    • 33646361398 scopus 로고    scopus 로고
    • Experimental analysis of the proprioceptive and exteroceptive sensors of an underactuated prosthetic hand
    • Zecca M, Cappiello G, Sebastiani S, et al. Experimental analysis of the proprioceptive and exteroceptive sensors of an underactuated prosthetic hand. Adv Rehabil Robot 2004; 306: 233-242
    • (2004) Adv Rehabil Robot , vol.306 , pp. 233-242
    • Zecca, M.1    Cappiello, G.2    Sebastiani, S.3
  • 46
    • 77955784624 scopus 로고    scopus 로고
    • Cognitive vision system for control of dexterous prosthetic hands: Experimental evaluation
    • Dosen S, Cipriani C, Kostic M, et al. Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation. J Neuroeng Rehabil 2010; 7: 42
    • (2010) J Neuroeng Rehabil , vol.7 , pp. 42
    • Dosen, S.1    Cipriani, C.2    Kostic, M.3
  • 48
    • 84927151773 scopus 로고    scopus 로고
    • Shanghai Kesheng Prostheses Co. Ltd. accessed 21 May
    • Shanghai Kesheng Prostheses Co., Ltd. http://www.keshen. com/order-e.asp?key=Myoelectric%20Hands (accessed 21 May 2013)
    • (2013)
  • 49
    • 79960778435 scopus 로고    scopus 로고
    • Two-degree-offreedom powered prosthetic wrist
    • Kyberd PJ, Lemaire ED, Scheme E, et al. Two-degree-offreedom powered prosthetic wrist. J Rehabil Res Dev 2011; 48(6): 609-618
    • (2011) J Rehabil Res Dev , vol.48 , Issue.6 , pp. 609-618
    • Kyberd, P.J.1    Lemaire, E.D.2    Scheme, E.3
  • 50
    • 67349177847 scopus 로고    scopus 로고
    • Development of a prosthesis shoulder mechanism for upper limb amputees: Application of an original design methodology to optimize functionality and wearability
    • Troncossi M, Borghi C, Chiossi M, et al. Development of a prosthesis shoulder mechanism for upper limb amputees: application of an original design methodology to optimize functionality and wearability. Med Biol Eng Comput 2009; 47(5): 523-531
    • (2009) Med Biol Eng Comput , vol.47 , Issue.5 , pp. 523-531
    • Troncossi, M.1    Borghi, C.2    Chiossi, M.3
  • 51
    • 70349330397 scopus 로고    scopus 로고
    • A novel electromechanical shoulder articulation for upper-limb prostheses: From the design to the first clinical application
    • Troncossi M, Gruppioni E, Chiossi M, et al. A novel electromechanical shoulder articulation for upper-limb prostheses: from the design to the first clinical application. J Prosthet Orthot 2009; 21(2): 79-90
    • (2009) J Prosthet Orthot , vol.21 , Issue.2 , pp. 79-90
    • Troncossi, M.1    Gruppioni, E.2    Chiossi, M.3
  • 54
    • 79961142495 scopus 로고    scopus 로고
    • Determination of the design specifications of a powered humeral rotator for a myoelectric prosthesis
    • Troncossi M, Caminati R and Parenti-Castelli V. Determination of the design specifications of a powered humeral rotator for a myoelectric prosthesis. Proc IMechE, Part H: J Engineering in Medicine 2011; 225(5): 487-498
    • (2011) Proc IMechE, Part H: J Engineering in Medicine , vol.225 , Issue.5 , pp. 487-498
    • Troncossi, M.1    Caminati, R.2    Parenti-Castelli, V.3
  • 56
    • 79960761565 scopus 로고    scopus 로고
    • Evaluation of shoulder complex motion-based input strategies for endpoint prosthetic-limb control using dual-task paradigm
    • Losier Y, Englehart K and Hudgins B. Evaluation of shoulder complex motion-based input strategies for endpoint prosthetic- limb control using dual-task paradigm. J Rehabil Res Dev 2011; 48(6): 669-678.
    • (2011) J Rehabil Res Dev , vol.48 , Issue.6 , pp. 669-678
    • Losier, Y.1    Englehart, K.2    Hudgins, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.