-
1
-
-
0033593306
-
Molecular bases for circadian clocks
-
Dunlap, J. C. (1999) Molecular bases for circadian clocks. Cell 96, 271-290
-
(1999)
Cell
, vol.96
, pp. 271-290
-
-
Dunlap, J.C.1
-
2
-
-
0037184977
-
A web of circadian pacemakers
-
Schibler, U., and Sassone-Corsi, P. (2002) A web of circadian pacemakers. Cell 111, 919-922
-
(2002)
Cell
, vol.111
, pp. 919-922
-
-
Schibler, U.1
Sassone-Corsi, P.2
-
3
-
-
0032486330
-
Role of the CLOCK protein in the mammalian circadian mechanism
-
Gekakis, N., Staknis, D., Nguyen, H. B., Davis, F. C., Wilsbacher, L. D., King, D. P., Takahashi, J. S., and Weitz, C. J. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564-1569
-
(1998)
Science
, vol.280
, pp. 1564-1569
-
-
Gekakis, N.1
Staknis, D.2
Nguyen, H.B.3
Davis, F.C.4
Wilsbacher, L.D.5
King, D.P.6
Takahashi, J.S.7
Weitz, C.J.8
-
4
-
-
0032510778
-
The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors
-
Hogenesch, J. B., Gu, Y. Z., Jain, S., and Bradfield, C. A. (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. U.S.A. 95, 5474-5479
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 5474-5479
-
-
Hogenesch, J.B.1
Gu, Y.Z.2
Jain, S.3
Bradfield, C.A.4
-
5
-
-
0035853525
-
Molecular mechanisms of the biological clock in cultured fibroblasts
-
Yagita, K., Tamanini, F., van Der Horst, G. T., and Okamura, H. (2001) Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292, 278-281
-
(2001)
Science
, vol.292
, pp. 278-281
-
-
Yagita, K.1
Tamanini, F.2
Van Der Horst, G.T.3
Okamura, H.4
-
6
-
-
0033637383
-
Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
-
Damiola, F., Le Minh, N., Preitner, N., Kornmann, B., Fleury-Olela, F., and Schibler, U. (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950-2961
-
(2000)
Genes Dev.
, vol.14
, pp. 2950-2961
-
-
Damiola, F.1
Le Minh, N.2
Preitner, N.3
Kornmann, B.4
Fleury-Olela, F.5
Schibler, U.6
-
7
-
-
0035910387
-
Entrainment of the circadian clock in the liver by feeding
-
Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y., and Menaker, M. (2001) Entrainment of the circadian clock in the liver by feeding. Science 291, 490-493
-
(2001)
Science
, vol.291
, pp. 490-493
-
-
Stokkan, K.A.1
Yamazaki, S.2
Tei, H.3
Sakaki, Y.4
Menaker, M.5
-
8
-
-
75849136095
-
Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression
-
Vollmers, C., Gill, S., DiTacchio, L., Pulivarthy, S. R., Le, H. D., and Panda, S. (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl. Acad. Sci. U.S.A. 106, 21453-21458
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 21453-21458
-
-
Vollmers, C.1
Gill, S.2
DiTacchio, L.3
Pulivarthy, S.R.4
Le, H.D.5
Panda, S.6
-
9
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda, S., Antoch, M. P., Miller, B. H., Su, A. I., Schook, A. B., Straume, M., Schultz, P. G., Kay, S. A., Takahashi, J. S., and Hogenesch, J. B. (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307-320
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
Antoch, M.P.2
Miller, B.H.3
Su, A.I.4
Schook, A.B.5
Straume, M.6
Schultz, P.G.7
Kay, S.A.8
Takahashi, J.S.9
Hogenesch, J.B.10
-
10
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
Storch, K. F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F. C., Wong, W. H., and Weitz, C. J. (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78-83
-
(2002)
Nature
, vol.417
, pp. 78-83
-
-
Storch, K.F.1
Lipan, O.2
Leykin, I.3
Viswanathan, N.4
Davis, F.C.5
Wong, W.H.6
Weitz, C.J.7
-
11
-
-
0036682099
-
A transcription factor response element for gene expression during circadian night
-
Ueda, H. R., Chen, W., Adachi, A., Wakamatsu, H., Hayashi, S., Takasugi, T., Nagano, M., Nakahama, K., Suzuki, Y., Sugano, S., Iino, M., Shigeyoshi, Y., and Hashimoto, S. (2002) A transcription factor response element for gene expression during circadian night. Nature 418, 534-539
-
(2002)
Nature
, vol.418
, pp. 534-539
-
-
Ueda, H.R.1
Chen, W.2
Adachi, A.3
Wakamatsu, H.4
Hayashi, S.5
Takasugi, T.6
Nagano, M.7
Nakahama, K.8
Suzuki, Y.9
Sugano, S.10
Iino, M.11
Shigeyoshi, Y.12
Hashimoto, S.13
-
12
-
-
4544362674
-
Mammalian circadian biology: Elucidating genome-wide levels of temporal organization
-
Lowrey, P. L., and Takahashi, J. S. (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407-441
-
(2004)
Annu. Rev. Genomics Hum. Genet.
, vol.5
, pp. 407-441
-
-
Lowrey, P.L.1
Takahashi, J.S.2
-
13
-
-
33845611615
-
Interplay of circadian clocks and metabolic rhythms
-
Wijnen, H., and Young, M. W. (2006) Interplay of circadian clocks and metabolic rhythms. Annu. Rev. Genet. 40, 409-448
-
(2006)
Annu. Rev. Genet.
, vol.40
, pp. 409-448
-
-
Wijnen, H.1
Young, M.W.2
-
14
-
-
14044264801
-
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
-
Rudic, R. D., McNamara, P., Curtis, A. M., Boston, R. C., Panda, S., Hogenesch, J. B., and Fitzgerald, G. A. (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2, e377
-
(2004)
PLoS Biol.
, vol.2
, pp. e377
-
-
Rudic, R.D.1
McNamara, P.2
Curtis, A.M.3
Boston, R.C.4
Panda, S.5
Hogenesch, J.B.6
Fitzgerald, G.A.7
-
15
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant mice
-
Turek, F. W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., McDearmon, E., Laposky, A., Losee-Olson, S., Easton, A., Jensen, D. R., Eckel, R. H., Takahashi, J. S., and Bass, J. (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308, 1043-1045
-
(2005)
Science
, vol.308
, pp. 1043-1045
-
-
Turek, F.W.1
Joshu, C.2
Kohsaka, A.3
Lin, E.4
Ivanova, G.5
McDearmon, E.6
Laposky, A.7
Losee-Olson, S.8
Easton, A.9
Jensen, D.R.10
Eckel, R.H.11
Takahashi, J.S.12
Bass, J.13
-
16
-
-
84860510820
-
Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes
-
Wang, Y., Li, G., Goode, J., Paz, J. C., Ouyang, K., Screaton, R., Fischer, W. H., Chen, J., Tabas, I., and Montminy, M. (2012) Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature 485, 128-132
-
(2012)
Nature
, vol.485
, pp. 128-132
-
-
Wang, Y.1
Li, G.2
Goode, J.3
Paz, J.C.4
Ouyang, K.5
Screaton, R.6
Fischer, W.H.7
Chen, J.8
Tabas, I.9
Montminy, M.10
-
17
-
-
78049292405
-
Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis
-
Yoon, Y. S., Lee, M. W., Ryu, D., Kim, J. H., Ma, H., Seo, W. Y., Kim, Y. N., Kim, S. S., Lee, C. H., Hunter, T., Choi, C. S., Montminy, M. R., and Koo, S. H. (2010) Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis. Proc. Natl. Acad. Sci. U.S.A. 107, 17704-17709
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 17704-17709
-
-
Yoon, Y.S.1
Lee, M.W.2
Ryu, D.3
Kim, J.H.4
Ma, H.5
Seo, W.Y.6
Kim, Y.N.7
Kim, S.S.8
Lee, C.H.9
Hunter, T.10
Choi, C.S.11
Montminy, M.R.12
Koo, S.H.13
-
18
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo, S. H., Flechner, L., Qi, L., Zhang, X., Screaton, R. A., Jeffries, S., Hedrick, S., Xu, W., Boussouar, F., Brindle, P., Takemori, H., and Montminy, M. (2005) The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109-1111
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
Flechner, L.2
Qi, L.3
Zhang, X.4
Screaton, R.A.5
Jeffries, S.6
Hedrick, S.7
Xu, W.8
Boussouar, F.9
Brindle, P.10
Takemori, H.11
Montminy, M.12
-
19
-
-
34548831102
-
Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2
-
Dentin, R., Liu, Y., Koo, S. H., Hedrick, S., Vargas, T., Heredia, J., Yates, J., 3rd, and Montminy, M. (2007) Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449, 366-369
-
(2007)
Nature
, vol.449
, pp. 366-369
-
-
Dentin, R.1
Liu, Y.2
Koo, S.H.3
Hedrick, S.4
Vargas, T.5
Heredia, J.6
Yates 3rd, J.7
Montminy, M.8
-
20
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., and Cantley, L. C. (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646
-
(2005)
Science
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
Lamia, K.A.2
Vasquez, D.3
Koo, S.H.4
Bardeesy, N.5
Depinho, R.A.6
Montminy, M.7
Cantley, L.C.8
-
21
-
-
5344228270
-
The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector
-
Screaton, R. A., Conkright, M. D., Katoh, Y., Best, J. L., Canettieri, G., Jeffries, S., Guzman, E., Niessen, S., Yates, J. R., 3rd, Takemori, H., Okamoto, M., and Montminy, M. (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61-74
-
(2004)
Cell
, vol.119
, pp. 61-74
-
-
Screaton, R.A.1
Conkright, M.D.2
Katoh, Y.3
Best, J.L.4
Canettieri, G.5
Jeffries, S.6
Guzman, E.7
Niessen, S.8
Yates 3rd, J.R.9
Takemori, H.10
Okamoto, M.11
Montminy, M.12
-
22
-
-
67649657842
-
CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis
-
Le Lay, J., Tuteja, G., White, P., Dhir, R., Ahima, R., and Kaestner, K. H. (2009) CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis. Cell Metab. 10, 55-62
-
(2009)
Cell Metab.
, vol.10
, pp. 55-62
-
-
Le Lay, J.1
Tuteja, G.2
White, P.3
Dhir, R.4
Ahima, R.5
Kaestner, K.H.6
-
23
-
-
60649114293
-
TORC2 regulates hepatic insulin signaling via a mammalian phosphatidic acid phosphatase, LIPIN1
-
Ryu, D., Oh, K. J., Jo, H. Y., Hedrick, S., Kim, Y. N., Hwang, Y. J., Park, T. S., Han, J. S., Choi, C. S., Montminy, M., and Koo, S. H. (2009) TORC2 regulates hepatic insulin signaling via a mammalian phosphatidic acid phosphatase, LIPIN1. Cell Metab. 9, 240-251
-
(2009)
Cell Metab.
, vol.9
, pp. 240-251
-
-
Ryu, D.1
Oh, K.J.2
Jo, H.Y.3
Hedrick, S.4
Kim, Y.N.5
Hwang, Y.J.6
Park, T.S.7
Han, J.S.8
Choi, C.S.9
Montminy, M.10
Koo, S.H.11
-
24
-
-
56249100986
-
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
-
Liu, Y., Dentin, R., Chen, D., Hedrick, S., Ravnskjaer, K., Schenk, S., Milne, J., Meyers, D. J., Cole, P., Yates, J., 3rd, Olefsky, J., Guarente, L., and Montminy, M. (2008) A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269-273
-
(2008)
Nature
, vol.456
, pp. 269-273
-
-
Liu, Y.1
Dentin, R.2
Chen, D.3
Hedrick, S.4
Ravnskjaer, K.5
Schenk, S.6
Milne, J.7
Meyers, D.J.8
Cole, P.9
Yates 3rd, J.10
Olefsky, J.11
Guarente, L.12
Montminy, M.13
-
25
-
-
0034730493
-
Resetting of circadian time in peripheral tissues by glucocorticoid signaling
-
Balsalobre, A., Brown, S. A., Marcacci, L., Tronche, F., Kellendonk, C., Reichardt, H. M., Schütz, G., and Schibler, U. (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344-2347
-
(2000)
Science
, vol.289
, pp. 2344-2347
-
-
Balsalobre, A.1
Brown, S.A.2
Marcacci, L.3
Tronche, F.4
Kellendonk, C.5
Reichardt, H.M.6
Schütz, G.7
Schibler, U.8
-
26
-
-
33750682662
-
Effects of fasting and re-feeding on the expression of Dec1, Per1, and other clock-related genes
-
Kawamoto, T., Noshiro, M., Furukawa, M., Honda, K. K., Nakashima, A., Ueshima, T., Usui, E., Katsura, Y., Fujimoto, K., Honma, S., Honma, K., Hamada, T., and Kato, Y. (2006) Effects of fasting and re-feeding on the expression of Dec1, Per1, and other clock-related genes. J. Biochem. 140, 401-408
-
(2006)
J. Biochem.
, vol.140
, pp. 401-408
-
-
Kawamoto, T.1
Noshiro, M.2
Furukawa, M.3
Honda, K.K.4
Nakashima, A.5
Ueshima, T.6
Usui, E.7
Katsura, Y.8
Fujimoto, K.9
Honma, S.10
Honma, K.11
Hamada, T.12
Kato, Y.13
-
27
-
-
59049085486
-
Effect of intermittent fasting on circadian rhythms in mice depends on feeding time
-
Froy, O., Chapnik, N., and Miskin, R. (2009) Effect of intermittent fasting on circadian rhythms in mice depends on feeding time. Mech. Ageing Dev. 130, 154-160
-
(2009)
Mech. Ageing Dev.
, vol.130
, pp. 154-160
-
-
Froy, O.1
Chapnik, N.2
Miskin, R.3
-
28
-
-
80052048021
-
Feeding cues and injected nutrients induce acute expression of multiple clock genes in the mouse liver
-
Oike, H., Nagai, K., Fukushima, T., Ishida, N., and Kobori, M. (2011) Feeding cues and injected nutrients induce acute expression of multiple clock genes in the mouse liver. PLoS One 6, e23709
-
(2011)
PLoS One
, vol.6
-
-
Oike, H.1
Nagai, K.2
Fukushima, T.3
Ishida, N.4
Kobori, M.5
-
29
-
-
58149464684
-
High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver
-
Barnea, M., Madar, Z., and Froy, O. (2009) High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology 150, 161-168
-
(2009)
Endocrinology
, vol.150
, pp. 161-168
-
-
Barnea, M.1
Madar, Z.2
Froy, O.3
-
30
-
-
79957950576
-
Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erbα with shifts in the liver cloc
-
Tahara, Y., Otsuka, M., Fuse, Y., Hirao, A., and Shibata, S. (2011) Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erbα with shifts in the liver clock. J. Biol. Rhythms 26, 230-240
-
(2011)
J. Biol. Rhythms
, vol.26
, pp. 230-240
-
-
Tahara, Y.1
Otsuka, M.2
Fuse, Y.3
Hirao, A.4
Shibata, S.5
-
31
-
-
0037178787
-
The orphan nuclear receptor REVERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., Albrecht, U., and Schibler, U. (2002) The orphan nuclear receptor REVERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251-260
-
(2002)
Cell
, vol.110
, pp. 251-260
-
-
Preitner, N.1
Damiola, F.2
Lopez-Molina, L.3
Zakany, J.4
Duboule, D.5
Albrecht, U.6
Schibler, U.7
-
32
-
-
34047245459
-
Glucocorticoid signaling synchronizes the liver circadian transcriptome
-
Reddy, A. B., Maywood, E. S., Karp, N. A., King, V. M., Inoue, Y., Gonzalez, F. J., Lilley, K. S., Kyriacou, C. P., and Hastings, M. H. (2007) Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology 45, 1478-1488
-
(2007)
Hepatology
, vol.45
, pp. 1478-1488
-
-
Reddy, A.B.1
Maywood, E.S.2
Karp, N.A.3
King, V.M.4
Inoue, Y.5
Gonzalez, F.J.6
Lilley, K.S.7
Kyriacou, C.P.8
Hastings, M.H.9
-
33
-
-
28144439406
-
The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements
-
Vander Kooi, B. T., Onuma, H., Oeser, J. K., Svitek, C. A., Allen, S. R., Vander Kooi, C. W., Chazin, W. J., and O'Brien, R. M. (2005) The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements. Mol. Endocrinol. 19, 3001-3022
-
(2005)
Mol. Endocrinol.
, vol.19
, pp. 3001-3022
-
-
Vander Kooi, B.T.1
Onuma, H.2
Oeser, J.K.3
Svitek, C.A.4
Allen, S.R.5
Vander Kooi, C.W.6
Chazin, W.J.7
O'Brien, R.M.8
-
34
-
-
78149245166
-
Characterization of the core mammalian clock component, NPAS2, as a REVERBα/RORα target gene
-
Crumbley, C., Wang, Y., Kojetin, D. J., and Burris, T. P. (2010) Characterization of the core mammalian clock component, NPAS2, as a REVERBα/RORα target gene. J. Biol. Chem. 285, 35386-35392
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 35386-35392
-
-
Crumbley, C.1
Wang, Y.2
Kojetin, D.J.3
Burris, T.P.4
-
35
-
-
34249275727
-
Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism
-
Liu, C., Li, S., Liu, T., Borjigin, J., and Lin, J. D. (2007) Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 447, 477-481
-
(2007)
Nature
, vol.447
, pp. 477-481
-
-
Liu, C.1
Li, S.2
Liu, T.3
Borjigin, J.4
Lin, J.D.5
|