메뉴 건너뛰기




Volumn 46, Issue 1, 2014, Pages

Genomic prediction based on data from three layer lines using non-linear regression models

Author keywords

[No Author keywords available]

Indexed keywords

GAMEBIRD; GENOMICS; GENOTYPE; HETEROGENEITY; PHENOTYPE; PREDICTION; REGRESSION ANALYSIS; REPRODUCTIVE SUCCESS;

EID: 84920754081     PISSN: 0999193X     EISSN: 12979686     Source Type: Journal    
DOI: 10.1186/s12711-014-0075-3     Document Type: Article
Times cited : (4)

References (43)
  • 2
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic value using genome-wide dense marker maps
    • Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157:1819-1829.
    • (2001) Genetics , vol.157 , pp. 1819-1829
    • Meuwissen, T.H.E.1    Hayes, B.J.2    Goddard, M.E.3
  • 3
    • 54449097329 scopus 로고    scopus 로고
    • Accuracy of predicting the genetic risk of disease using a genome-wide approach
    • Daetwyler HD, Villanueva B, Woolliams JA: Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 2008, 3:e3395.
    • (2008) PLoS ONE , vol.3
    • Daetwyler, H.D.1    Villanueva, B.2    Woolliams, J.A.3
  • 6
    • 84920771795 scopus 로고    scopus 로고
    • A comparison of principal component regression and genomic REML for genomic prediction across populations
    • Dadousis C, Veerkamp RF, Heringstad B, Pszczola M., Calus MPL: A comparison of principal component regression and genomic REML for genomic prediction across populations. Genet Sel Evol, 46:60.
    • Genet Sel Evol , vol.46 , pp. 60
    • Dadousis, C.1    Veerkamp, R.F.2    Heringstad, B.3    Pszczola, M.4    Calus, M.P.L.5
  • 9
    • 84868651956 scopus 로고    scopus 로고
    • Accuracy of pedigree and genomic predictions of carcass and novel meat quality traits in multi-breed sheep data assessed by cross-validation
    • Daetwyler HD, Swan AA, van der Werf JHJ, Hayes BJ: Accuracy of pedigree and genomic predictions of carcass and novel meat quality traits in multi-breed sheep data assessed by cross-validation. Genet Sel Evol 2012, 44:33.
    • (2012) Genet Sel Evol , vol.44 , pp. 33
    • Daetwyler, H.D.1    Swan, A.A.2    Van Der Werf, J.H.J.3    Hayes, B.J.4
  • 11
    • 84862511727 scopus 로고    scopus 로고
    • Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels
    • Erbe M, Hayes BJ, Matukumalli L.K., Goswami S., Bowman PJ, Reich CM, Mason BA, Goddard ME: Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J Dairy Sci 2012, 95:4114-4129.
    • (2012) J Dairy Sci , vol.95 , pp. 4114-4129
    • Erbe, M.1    Hayes, B.J.2    Matukumalli, L.K.3    Goswami, S.4    Bowman, P.J.5    Reich, C.M.6    Mason, B.A.7    Goddard, M.E.8
  • 12
    • 71549118527 scopus 로고    scopus 로고
    • Reliability of genomic predictions across multiple populations
    • De Roos APW, Hayes BJ, Goddard ME: Reliability of genomic predictions across multiple populations. Genetics 2009, 183:1545-1553.
    • (2009) Genetics , vol.183 , pp. 1545-1553
    • De Roos, A.P.W.1    Hayes, B.J.2    Goddard, M.E.3
  • 13
    • 35248821683 scopus 로고    scopus 로고
    • A short introduction to learning with kernels
    • Edited by Bousquet O, Rätsch G. Berlin: Springer-Verlag
    • Schölkopf B, Smola AJ: A short introduction to learning with kernels. In Advanced Lectures on Machine Learning. Edited by Bousquet O, Rätsch G. Berlin: Springer-Verlag; 2003:41-64.
    • (2003) Advanced Lectures on Machine Learning , pp. 41-64
    • Schölkopf, B.1    Smola, A.J.2
  • 14
    • 84872554275 scopus 로고    scopus 로고
    • Joint genomic evaluation of french dairy cattle breeds using multiple-trait models
    • Karoui S, Carabano MJ, Diaz C, Legarra A: Joint genomic evaluation of French dairy cattle breeds using multiple-trait models. Genet Sel Evol 2012, 44:39.
    • (2012) Genet Sel Evol , vol.44 , pp. 39
    • Karoui, S.1    Carabano, M.J.2    Diaz, C.3    Legarra, A.4
  • 16
    • 84865312313 scopus 로고    scopus 로고
    • Multibreed genomic evaluations using purebred holsteins, jerseys, and brown swiss
    • Olson KM, VanRaden PM, Tooker ME: Multibreed genomic evaluations using purebred Holsteins, Jerseys, and Brown Swiss. J Dairy Sci 2012, 95:5378-5383.
    • (2012) J Dairy Sci , vol.95 , pp. 5378-5383
    • Olson, K.M.1    Vanraden, P.M.2    Tooker, M.E.3
  • 17
    • 45849117254 scopus 로고    scopus 로고
    • Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits
    • Gianola D, van Kaam JBCHM: Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 2008, 178:2289-2303.
    • (2008) Genetics , vol.178 , pp. 2289-2303
    • Gianola, D.1    Van Kaam, J.B.C.H.M.2
  • 18
    • 84878817787 scopus 로고    scopus 로고
    • Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data
    • Morota G, Koyama M, Rosa GJM, Weigel KA, Gianola D: Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data. Genet Sel Evol 2013, 45:17.
    • (2013) Genet Sel Evol , vol.45 , pp. 17
    • Morota, G.1    Koyama, M.2    Rosa, G.J.M.3    Weigel, K.A.4    Gianola, D.5
  • 19
    • 77952554018 scopus 로고    scopus 로고
    • Supervised learning of local projection kernels
    • Gönen M, Alpaydin E: Supervised learning of local projection kernels. Neurocomputing 2010, 73:1694-1703.
    • (2010) Neurocomputing , vol.73 , pp. 1694-1703
    • Gönen, M.1    Alpaydin, E.2
  • 20
    • 84870238770 scopus 로고    scopus 로고
    • Localized algorithms for multiple kernel learning
    • Gönen M, Alpaydin E: Localized algorithms for multiple kernel learning. Pattern Recogn 2013, 46:795-807.
    • (2013) Pattern Recogn , vol.46 , pp. 795-807
    • Gönen, M.1    Alpaydin, E.2
  • 21
    • 77955397866 scopus 로고    scopus 로고
    • Local-learning-based feature selection for high-dimensional data analysis
    • Sun Y, Todorovic S, Goodison S: Local-learning-based feature selection for high-dimensional data analysis. IEEE Trans Pattern Anal Mach Intell 2010, 32:1610-1626.
    • (2010) IEEE Trans Pattern Anal Mach Intell , vol.32 , pp. 1610-1626
    • Sun, Y.1    Todorovic, S.2    Goodison, S.3
  • 24
    • 84876361750 scopus 로고    scopus 로고
    • Genomic prediction in animals and plants: Simulation of data, validation, reporting, and benchmarking
    • Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM: Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 2013, 193:347-365.
    • (2013) Genetics , vol.193 , pp. 347-365
    • Daetwyler, H.D.1    Calus, M.P.L.2    Pong-Wong, R.3    De Los Campos, G.4    Hickey, J.M.5
  • 26
    • 55849133422 scopus 로고    scopus 로고
    • Efficient methods to compute genomic predictions
    • VanRaden PM: Efficient methods to compute genomic predictions. J Dairy Sci 2008, 91:4414-4423.
    • (2008) J Dairy Sci , vol.91 , pp. 4414-4423
    • Vanraden, P.M.1
  • 28
    • 77949293856 scopus 로고    scopus 로고
    • Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of holstein final score
    • Aguilar I, Misztal I, Johnson D.L., Legarra A., Tsuruta S, Lawlor TJ: Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci 2010, 93:743-752.
    • (2010) J Dairy Sci , vol.93 , pp. 743-752
    • Aguilar, I.1    Misztal, I.2    Johnson, D.L.3    Legarra, A.4    Tsuruta, S.5    Lawlor, T.J.6
  • 29
    • 78951477718 scopus 로고    scopus 로고
    • Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel hilbert spaces methods
    • de los Campos G, Gianola D, Rosa GJM, Weigel KA, Crossa J: Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res 2010, 92:295-308.
    • (2010) Genet Res , vol.92 , pp. 295-308
    • De Los Campos, G.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4    Crossa, J.5
  • 30
    • 59149094598 scopus 로고    scopus 로고
    • Selection of Gaussian kernel parameter for SVM based on convex estimation
    • Men CQ, Wang WJ: Selection of Gaussian Kernel Parameter for SVM Based on Convex Estimation. Lect Notes Comput Sci 2008, 5263:709-714.
    • (2008) Lect Notes Comput Sci , vol.5263 , pp. 709-714
    • Men, C.Q.1    Wang, W.J.2
  • 31
    • 62349101435 scopus 로고    scopus 로고
    • Gaussian kernel optimization for pattern classification
    • Wang J, Lu H, Plataniotis K.N., Lu JW: Gaussian kernel optimization for pattern classification. Pattern Recogn 2009, 42:1237-1247.
    • (2009) Pattern Recogn , vol.42 , pp. 1237-1247
    • Wang, J.1    Lu, H.2    Plataniotis, K.N.3    Lu, J.W.4
  • 32
    • 84874616535 scopus 로고    scopus 로고
    • A practical use of regularization for supervised learning with kernel methods
    • Prato M, Zanni L: A practical use of regularization for supervised learning with kernel methods. Pattern Recogn Lett 2013, 34:610-618.
    • (2013) Pattern Recogn Lett , vol.34 , pp. 610-618
    • Prato, M.1    Zanni, L.2
  • 33
    • 0024856897 scopus 로고
    • The laplacian-of-Gaussian kernel: A formal analysis and design procedure for fast, accurate convolution and full-frame output
    • Sotak GE Jr, Boyer KL: The Laplacian-of-Gaussian kernel: a formal analysis and design procedure for fast, accurate convolution and full-frame output. Comput Vision Graph 1989, 48:147-189.
    • (1989) Comput Vision Graph , vol.48 , pp. 147-189
    • Sotak, G.E.1    Boyer, K.L.2
  • 35
    • 51049096780 scopus 로고    scopus 로고
    • Kernel methods in machine learning
    • Hofmann T, Schölkopf B, Smola AJ: Kernel methods in machine learning. Ann Stat 2008, 36:1171-1220.
    • (2008) Ann Stat , vol.36 , pp. 1171-1220
    • Hofmann, T.1    Schölkopf, B.2    Smola, A.J.3
  • 38
    • 79955083587 scopus 로고    scopus 로고
    • Interbull validation test for genomic evaluations
    • Mäntysaari E, Liu Z, VanRaden P: Interbull validation test for genomic evaluations. Interbull Bull 2010, 41:17-22.
    • (2010) Interbull Bull , vol.41 , pp. 17-22
    • Mäntysaari, E.1    Liu, Z.2    Vanraden, P.3
  • 39
    • 53449098071 scopus 로고    scopus 로고
    • Dimensionality reduction for heterogeneous dataset in rushes editing
    • Liu Y, Liu Y, Chan KCC: Dimensionality reduction for heterogeneous dataset in rushes editing. Pattern Recogn 2009, 42:229-242.
    • (2009) Pattern Recogn , vol.42 , pp. 229-242
    • Liu, Y.1    Liu, Y.2    Chan, K.C.C.3
  • 40
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L: Bagging predictors. Mach Learn 1996, 24:123-140.
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 42
    • 82955176938 scopus 로고    scopus 로고
    • Genomic selection in plant breeding: A comparison of models
    • Heslot N, Yang H-P, Sorrells ME, Jannink J-L: Genomic selection in plant breeding: a comparison of models. Crop Sci 2012, 52:146-160.
    • (2012) Crop Sci , vol.52 , pp. 146-160
    • Heslot, N.1    Yang, H.-P.2    Sorrells, M.E.3    Jannink, J.-L.4
  • 43
    • 84876393058 scopus 로고    scopus 로고
    • The effect of linkage disequilibrium and family relationships on the reliability of genomic prediction
    • Wientjes YCJ, Veerkamp RF, Calus MPL: The effect of linkage disequilibrium and family relationships on the reliability of genomic prediction. Genetics 2013, 193:621-631.
    • (2013) Genetics , vol.193 , pp. 621-631
    • Wientjes, Y.C.J.1    Veerkamp, R.F.2    Calus, M.P.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.