-
1
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
M. A. Aizerman, É. M. Braverman, and L. I. Rozonoér. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821-837, 1964.
-
(1964)
Automation and Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.A.1
Braverman, É.M.2
Rozonoér, L.I.3
-
2
-
-
0031176507
-
Scale-sensitive dimensions, uniform convergence, and learnability
-
Noga Alon, Shai Ben-David, Nicolo Cesa-Bianchi, and David Haussler. Scale-sensitive dimensions, uniform convergence, and learnability. Journal of the ACM, 44(4):615-631, 1997.
-
(1997)
Journal of the ACM
, vol.44
, Issue.4
, pp. 615-631
-
-
Alon, N.1
Ben-David, S.2
Cesa-Bianchi, N.3
Haussler, D.4
-
4
-
-
0002094343
-
Generalization performance of support vector machines and other pattern classifiers
-
B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA, MIT Press
-
P. L. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines and other pattern classifiers. In B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 43-54, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 43-54
-
-
Bartlett, P.L.1
Shawe-Taylor, J.2
-
7
-
-
84902205493
-
Comparison of view-based object recognition algorithms using realistic 3D models
-
C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Artificial Neural Networks ICANN'96, Berlin, Springer
-
V. Blanz, B. Schölkopf, H. Bülthoff, C. Burges, V. Vapnik, and T. Vetter. Comparison of view-based object recognition algorithms using realistic 3D models. In C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Artificial Neural Networks ICANN'96, pages 251-256, Berlin, 1996. Springer Lecture Notes in Computer Science, Vol. 1112.
-
(1996)
Lecture Notes in Computer Science
, vol.1112
, pp. 251-256
-
-
Blanz, V.1
Schölkopf, B.2
Bülthoff, H.3
Burges, C.4
Vapnik, V.5
Vetter, T.6
-
8
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler, editor, Pittsburgh, PA, July ACM Press
-
B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In D. Haussler, editor, Proceedings of the Annual Conference on Computational Learning Theory, pages 144-152, Pittsburgh, PA, July 1992. ACM Press.
-
(1992)
Proceedings of the Annual Conference on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
9
-
-
84898957872
-
Improving the accuracy and speed of support vector learning machines
-
M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Cambridge, MA, MIT Press
-
C. J. C. Burges and B. Schölkopf. Improving the accuracy and speed of support vector learning machines. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 375-381, Cambridge, MA, 1997. MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 375-381
-
-
Burges, C.J.C.1
Schölkopf, B.2
-
10
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
11
-
-
0036161034
-
Training invariant support vector machines
-
Accepted for publication. Also: Technical Report JPL-MLTR-00-1, Jet Propulsion Laboratory, Pasadena, CA, 2000
-
D. DeCoste and B. Schölkopf. Training invariant support vector machines. Machine Learning, 2002. Accepted for publication. Also: Technical Report JPL-MLTR-00-1, Jet Propulsion Laboratory, Pasadena, CA, 2000.
-
(2002)
Machine Learning
-
-
DeCoste, D.1
Schölkopf, B.2
-
12
-
-
0008267184
-
-
Technical Report UCSC-CRL-99-10, Computer Science Department, UC Santa Cruz
-
D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-CRL-99-10, Computer Science Department, UC Santa Cruz, 1999.
-
(1999)
Convolutional Kernels on Discrete Structures
-
-
Haussler, D.1
-
13
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London, A 209:415-446, 1909.
-
(1909)
Philosophical Transactions of the Royal Society, London, A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
14
-
-
0031334889
-
An improved training algorithm for support vector machines
-
J. Principe, L. Gile, N. Morgan, and E. Wilson, editors, New York, IEEE
-
E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector machines. In J. Principe, L. Gile, N. Morgan, and E. Wilson, editors, Neural Networks for Signal Processing VII - Proceedings of the 1997 IEEE Workshop, pages 276-285, New York, 1997. IEEE.
-
(1997)
Neural Networks for Signal Processing VII - Proceedings of the 1997 IEEE Workshop
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
15
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA, MIT Press
-
J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 185-208, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
16
-
-
0016765357
-
On optimal nonlinear associative recall
-
T. Poggio. On optimal nonlinear associative recall. Biological Cybernetics, 19:201-209, 1975.
-
(1975)
Biological Cybernetics
, vol.19
, pp. 201-209
-
-
Poggio, T.1
-
17
-
-
0003893955
-
-
R. Oldenbourg Verlag, München, Doktorarbeit, TU Berlin. Download
-
B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, München, 1997. Doktorarbeit, TU Berlin. Download: http://www.kernel-machines.org.
-
(1997)
Support Vector Learning
-
-
Schölkopf, B.1
-
18
-
-
85118436573
-
Extracting support data for a given task
-
U. M. Fayyad and R. Uthurusamy, editors, Menlo Park, AAAI Press
-
B. Schölkopf, C. Burges, and V. Vapnik. Extracting support data for a given task. In U. M. Fayyad and R. Uthurusamy, editors, Proceedings, First International Conference on Knowledge Discovery & Data Mining, Menlo Park, 1995. AAAI Press.
-
(1995)
Proceedings, First International Conference on Knowledge Discovery & Data Mining
-
-
Schölkopf, B.1
Burges, C.2
Vapnik, V.3
-
19
-
-
0003798627
-
-
MIT Press, Cambridge, MA
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola. Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, MA, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
-
-
Schölkopf, B.1
Burges, C.J.C.2
Smola, A.J.3
-
20
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13(7), 2001.
-
Neural Computation
, vol.13
, Issue.7
, pp. 2001
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
21
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
22
-
-
17444438778
-
New support vector algorithms
-
B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms. Neural Computation, 12:1207-1245, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.2
Williamson, R.C.3
Bartlett, P.L.4
-
24
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
A. Smola, B. Schölkopf, and K.-R. Müller. The connection between regularization operators and support vector kernels. Neural Networks, 11:637-649, 1998.
-
(1998)
Neural Networks
, vol.11
, pp. 637-649
-
-
Smola, A.1
Schölkopf, B.2
Müller, K.-R.3
-
25
-
-
0003652453
-
-
MIT Press, Cambridge, MA
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans. Advances in Large Margin Classifiers. MIT Press, Cambridge, MA, 2000.
-
(2000)
Advances in Large Margin Classifiers
-
-
Smola, A.J.1
Bartlett, P.L.2
Schölkopf, B.3
Schuurmans, D.4
-
26
-
-
84898955546
-
Regularization with dot-product kernels
-
T. K. Leen, T. G. Dietterich, and V. Tresp, editors, MIT Press
-
A. J. Smola, Z. L. Óvári, and R. C. Williamson. Regularization with dot-product kernels. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 308-314. MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 308-314
-
-
Smola, A.J.1
Óvári, Z.L.2
Williamson, R.C.3
-
27
-
-
24044515976
-
On a kernel-based method for pattern recognition, regression, approximation and operator inversion
-
A. J. Smola and B. Schölkopf. On a kernel-based method for pattern recognition, regression, approximation and operator inversion. Algorithmica, 22:211-231, 1998.
-
(1998)
Algorithmica
, vol.22
, pp. 211-231
-
-
Smola, A.J.1
Schölkopf, B.2
-
30
-
-
0004272441
-
-
Nauka, Moscow, German Translation: W. Wapnik & A. Tscherwonenkis, Theorie der Zeichenerkennung, Akademie-Verlag, Berlin, 1979
-
V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition [in Russian]. Nauka, Moscow, 1974. (German Translation: W. Wapnik & A. Tscherwonenkis, Theorie der Zeichenerkennung, Akademie-Verlag, Berlin, 1979).
-
(1974)
Theory of Pattern Recognition [in Russian]
-
-
Vapnik, V.1
Chervonenkis, A.2
-
31
-
-
0010864753
-
Pattern recognition using generalized portrait method
-
V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method. Automation and Remote Control, 24:774-780, 1963.
-
(1963)
Automation and Remote Control
, vol.24
, pp. 774-780
-
-
Vapnik, V.1
Lerner, A.2
-
33
-
-
0002531715
-
Dynamic alignment kernels
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
-
C. Watkins. Dynamic alignment kernels. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 39-50, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 39-50
-
-
Watkins, C.1
-
34
-
-
35248873196
-
-
Technical Report 98, Max Planck Institute for Biological Cybernetics
-
J. Weston, O. Chapelle, A. Elisseeff, B. Schölkopf, and V. Vapnik. Kernel dependency estimation. Technical Report 98, Max Planck Institute for Biological Cybernetics, 2002.
-
(2002)
Kernel Dependency Estimation
-
-
Weston, J.1
Chapelle, O.2
Elisseeff, A.3
Schölkopf, B.4
Vapnik, V.5
-
35
-
-
0035441827
-
Generalization bounds for regularization networks and support vector machines via entropy numbers of compact operators
-
R. C. Williamson, A. J. Smola, and B. Schölkopf. Generalization bounds for regularization networks and support vector machines via entropy numbers of compact operators. IEEE Transaction on Information Theory, 2001.
-
(2001)
IEEE Transaction on Information Theory
-
-
Williamson, R.C.1
Smola, A.J.2
Schölkopf, B.3
|