메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Statistical Models of Spike Trains

Author keywords

Diffusion model; First passage time; Fokker Planck equation; Integrate and fire; Inverse gaussian; Renewal process; Spike triggered average; State space model

Indexed keywords


EID: 84920751793     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1093/acprof:oso/9780199235070.003.0010     Document Type: Chapter
Times cited : (4)

References (90)
  • 1
    • 77956893539 scopus 로고    scopus 로고
    • Efficient Markov chain Monte Carlo methods for decoding population spike trains
    • Ahmadian, Y., Pillow, J., and Paninski, L. (2008). Efficient Markov chain Monte Carlo methods for decoding population spike trains. Under review, Neural Computation.
    • (2008) Under review, Neural Computation
    • Ahmadian, Y.1    Pillow, J.2    Paninski, L.3
  • 2
    • 33748656095 scopus 로고    scopus 로고
    • Dependence of the spiketriggered average voltage on membrane response properties
    • Badel, L., Richardson, M. J. E., and Gerstner, W. (2006). Dependence of the spiketriggered average voltage on membrane response properties. Neurocomputing, 69, 1062-1065.
    • (2006) Neurocomputing , vol.69 , pp. 1062-1065
    • Badel, L.1    Richardson, M.J.E.2    Gerstner, W.3
  • 3
    • 0035970024 scopus 로고    scopus 로고
    • Construction and analysis of non-poisson stimulus-response models of neural spiking activity
    • Barbieri, R., Quirk, M., Frank, L., Wilson, M., and Brown, E. (2001). Construction and analysis of non-poisson stimulus-response models of neural spiking activity. Journal of Neuroscience Methods, 105, 25-37.
    • (2001) Journal of Neuroscience Methods , vol.105 , pp. 25-37
    • Barbieri, R.1    Quirk, M.2    Frank, L.3    Wilson, M.4    Brown, E.5
  • 4
    • 0023686914 scopus 로고
    • Maximum likelihood analysis of spike trains of interacting nerve cells
    • Brillinger, D. (1988). Maximum likelihood analysis of spike trains of interacting nerve cells. Biological Cybernetics, 59, 189-200.
    • (1988) Biological Cybernetics , vol.59 , pp. 189-200
    • Brillinger, D.1
  • 5
    • 0000059288 scopus 로고
    • Nerve cell spike train data analysis: a progression of technique
    • Brillinger, D. (1992). Nerve cell spike train data analysis: a progression of technique. Journal of the American Statistical Association, 87, 260-271.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 260-271
    • Brillinger, D.1
  • 6
    • 35348899125 scopus 로고    scopus 로고
    • The theory of point processes for neural systems
    • (C. Chow, B. Gutkin, D. Hansel, C. Meunier, and J. Dalibard), Elsevier, Amsterdam
    • Brown, E. (2005). The theory of point processes for neural systems. In Methods and Models in Neurophysics (ed. C. Chow, B. Gutkin, D. Hansel, C. Meunier, and J. Dalibard), Elsevier, Amsterdam, pp. 691-726.
    • (2005) Methods and Models in Neurophysics , pp. 691-726
    • Brown, E.1
  • 8
    • 0036482863 scopus 로고    scopus 로고
    • The time-rescaling theorem and its application to neural spike train data analysis
    • Brown, E., Barbieri, R., Ventura, V., Kass, R., and Frank, L. (2002). The time-rescaling theorem and its application to neural spike train data analysis. Neural Computation, 14, 325-346.
    • (2002) Neural Computation , vol.14 , pp. 325-346
    • Brown, E.1    Barbieri, R.2    Ventura, V.3    Kass, R.4    Frank, L.5
  • 9
    • 0032530363 scopus 로고    scopus 로고
    • A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells
    • Brown, E., Frank, L., Tang, D., Quirk, M., and Wilson, M. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience, 18, 7411-7425.
    • (1998) Journal of Neuroscience , vol.18 , pp. 7411-7425
    • Brown, E.1    Frank, L.2    Tang, D.3    Quirk, M.4    Wilson, M.5
  • 10
    • 2142765521 scopus 로고    scopus 로고
    • Multiple neural spike train data analysis: stateof- the-art and future challenges
    • Brown, E., Kass, R., and Mitra, P. (2004). Multiple neural spike train data analysis: stateof- the-art and future challenges. Nature Neuroscience, 7, 456-461.
    • (2004) Nature Neuroscience , vol.7 , pp. 456-461
    • Brown, E.1    Kass, R.2    Mitra, P.3
  • 11
    • 0035834128 scopus 로고    scopus 로고
    • An analysis of neural receptive field plasticity by point process adaptive filtering
    • Brown, E., Nguyen, D., Frank, L., Wilson, M., and Solo, V. (2001). An analysis of neural receptive field plasticity by point process adaptive filtering. PNAS, 98, 12261-12266.
    • (2001) PNAS , vol.98 , pp. 12261-12266
    • Brown, E.1    Nguyen, D.2    Frank, L.3    Wilson, M.4    Solo, V.5
  • 12
    • 0033210816 scopus 로고    scopus 로고
    • Fast global oscillations in networks of integrate-and-fire neurons with low firing rates
    • Brunel, N. and Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11, 1621-1671.
    • (1999) Neural Computation , vol.11 , pp. 1621-1671
    • Brunel, N.1    Hakim, V.2
  • 13
    • 0041360352 scopus 로고    scopus 로고
    • Firing rate of the noisy quadratic integrate-and-fire neuron
    • Brunel, N. and Latham, P. E. (2003). Firing rate of the noisy quadratic integrate-and-fire neuron. Neural Computation, 15, 2281-2306.
    • (2003) Neural Computation , vol.15 , pp. 2281-2306
    • Brunel, N.1    Latham, P.E.2
  • 14
    • 0001710327 scopus 로고
    • A new integral equation for the evaluation of first-passage-time probability densities
    • Buoncore, A., Nobile, A., and Ricciardi, L. (1987). A new integral equation for the evaluation of first-passage-time probability densities. Adv. Appl. Prob., 19, 784-800.
    • (1987) Adv. Appl. Prob. , vol.19 , pp. 784-800
    • Buoncore, A.1    Nobile, A.2    Ricciardi, L.3
  • 15
    • 0033561841 scopus 로고    scopus 로고
    • Analysis of integrate-and-fire neurons: synchronization of synaptic input and spike output
    • Burkitt, A. and Clark, G. (1999). Analysis of integrate-and-fire neurons: synchronization of synaptic input and spike output. Neural Computation, 11, 871-901.
    • (1999) Neural Computation , vol.11 , pp. 871-901
    • Burkitt, A.1    Clark, G.2
  • 16
    • 33745712258 scopus 로고    scopus 로고
    • A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input
    • Burkitt, A. N. (2006a). A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biological Cybernetics, 95, 1-19.
    • (2006) Biological Cybernetics , vol.95 , pp. 1-19
    • Burkitt, A.N.1
  • 17
    • 33745730999 scopus 로고    scopus 로고
    • A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties
    • Burkitt, A. N. (2006b). A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biological Cybernetics, 95, 27-12.
    • (2006) Biological Cybernetics , vol.95 , pp. 27-12
    • Burkitt, A.N.1
  • 19
    • 37549038604 scopus 로고    scopus 로고
    • Thalamic filtering of retinal spike trains by postsynaptic summation
    • Carandini, M., Horton, J., and Sincich, L. (2007). Thalamic filtering of retinal spike trains by postsynaptic summation. Journal of Vision, 7, 1-11.
    • (2007) Journal of Vision , vol.7 , pp. 1-11
    • Carandini, M.1    Horton, J.2    Sincich, L.3
  • 20
    • 0013028436 scopus 로고    scopus 로고
    • A simple white noise analysis of neuronal light responses
    • Chichilnisky, E. J. (2001). A simple white noise analysis of neuronal light responses. Network: Computation in Neural Systems, 12, 199-213.
    • (2001) Network: Computation in Neural Systems , vol.12 , pp. 199-213
    • Chichilnisky, E.J.1
  • 21
    • 0023688346 scopus 로고
    • Maximum likelihood identification of neural point process systems
    • Chornoboy, E., Schramm, L., and Karr, A. (1988). Maximum likelihood identification of neural point process systems. Biological Cybernetics, 59, 265-275.
    • (1988) Biological Cybernetics , vol.59 , pp. 265-275
    • Chornoboy, E.1    Schramm, L.2    Karr, A.3
  • 23
    • 84919505326 scopus 로고    scopus 로고
    • Expectation-Maximization (EM) estimation of an integrate-and-fire model with spike-frequency adaptation
    • presented at the Computational and Systems Neuroscience meeting, Cold Spring Harbor, NY, 2004.%
    • Czanner, G. and Iyengar, S. (2004). Expectation-Maximization (EM) estimation of an integrate-and-fire model with spike-frequency adaptation. COSYNE, presented at the Computational and Systems Neuroscience meeting, Cold Spring Harbor, NY, 2004.%
    • (2004) COSYNE
    • Czanner, G.1    Iyengar, S.2
  • 24
    • 0010762025 scopus 로고
    • Sequential tests contructed from images
    • Daniels, H. (1982). Sequential tests contructed from images. Annals of Statistics, 10, 394-400.
    • (1982) Annals of Statistics , vol.10 , pp. 394-400
    • Daniels, H.1
  • 25
    • 34547928124 scopus 로고    scopus 로고
    • Correlation between neural spike trains increases with firing rate
    • de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K., and Reyes, A. (2007). Correlation between neural spike trains increases with firing rate. Nature, 448, 802-806.
    • (2007) Nature , vol.448 , pp. 802-806
    • de la Rocha, J.1    Doiron, B.2    Shea-Brown, E.3    Josic, K.4    Reyes, A.5
  • 26
    • 0023740277 scopus 로고
    • Real-time performance of a movement-senstivive neuron in the blowfly visual system: coding and information transmission in short spike sequences
    • de Ruyter van Steveninck, R. and Bialek, W. (1988). Real-time performance of a movement-senstivive neuron in the blowfly visual system: coding and information transmission in short spike sequences. Proc. R. Soc. Lond. B, 234, 379-414.
    • (1988) Proc. R. Soc. Lond. B , vol.234 , pp. 379-414
    • de Ruyter van Steveninck, R.1    Bialek, W.2
  • 28
    • 0035360022 scopus 로고    scopus 로고
    • A computational approach to first-passage-time problems for Gauss-Markov processes
    • DiNardo, E., Nobile, A., Pirozzi, E., and Ricciardi, L. (2001). A computational approach to first-passage-time problems for Gauss-Markov processes. Advances in Applied Probability, 33, 453-482.
    • (2001) Advances in Applied Probability , vol.33 , pp. 453-482
    • DiNardo, E.1    Nobile, A.2    Pirozzi, E.3    Ricciardi, L.4
  • 29
    • 34748867201 scopus 로고    scopus 로고
    • Imaging large-scale neural activity with cellular resolution in awake, mobile mice
    • Oct
    • Dombeck, D. A, Khabbaz, A. N, Collman, F., Adelman, T. L., and Tank, D. W. (2007, Oct). Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron, 56(1), 43-57.
    • (2007) Neuron , vol.56 , Issue.1 , pp. 43-57
    • Dombeck, D.A.1    Khabbaz, A.N.2    Collman, F.3    Adelman, T.L.4    Tank, D.W.5
  • 30
    • 0022693272 scopus 로고
    • Parabolic bursting in an excitable system coupled with a slow oscillation
    • Ermentrout, G. and Kopell, N. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM Journal on Applied Math, 46, 233-253.
    • (1986) SIAM Journal on Applied Math , vol.46 , pp. 233-253
    • Ermentrout, G.1    Kopell, N.2
  • 31
    • 0036716145 scopus 로고    scopus 로고
    • Dynamics of the firing probability of noisy integrateand- fire neurons
    • Fourcaud, N. and Brunel, N. (2002). Dynamics of the firing probability of noisy integrateand- fire neurons. Neural Computation, 14, 2057-2110.
    • (2002) Neural Computation , vol.14 , pp. 2057-2110
    • Fourcaud, N.1    Brunel, N.2
  • 32
    • 0036581332 scopus 로고    scopus 로고
    • Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinal cortex: An adaptive filtering approach
    • Frank, L., Eden, U., Solo, V., Wilson, M., and Brown, E. (2002). Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinal cortex: An adaptive filtering approach. J. Neurosci., 22(9), 3817-3830.
    • (2002) J. Neurosci. , vol.22 , Issue.9 , pp. 3817-3830
    • Frank, L.1    Eden, U.2    Solo, V.3    Wilson, M.4    Brown, E.5
  • 33
    • 0002338948 scopus 로고
    • Random walk models for spike activity of a single neuron
    • Gerstein, G. and Mandelbrot, B. (1964). Random walk models for spike activity of a single neuron. Biophysical Journal, 4, 41-68.
    • (1964) Biophysical Journal , vol.4 , pp. 41-68
    • Gerstein, G.1    Mandelbrot, B.2
  • 35
    • 0042736230 scopus 로고    scopus 로고
    • Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size
    • Haskell, E., Nykamp, D. Q., and Tranchina, D. (2001). Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size. Network: Comput. Neural. Syst., 12, 141-174.
    • (2001) Network: Comput. Neural. Syst. , vol.12 , pp. 141-174
    • Haskell, E.1    Nykamp, D.Q.2    Tranchina, D.3
  • 36
    • 33746752672 scopus 로고    scopus 로고
    • Efficient estimation of detailed singleneuron models
    • Huys, Q., Ahrens, M., and Paninski, L. (2006). Efficient estimation of detailed singleneuron models. Journal of Neurophysiology, 96, 872-890.
    • (2006) Journal of Neurophysiology , vol.96 , pp. 872-890
    • Huys, Q.1    Ahrens, M.2    Paninski, L.3
  • 37
    • 67049095670 scopus 로고    scopus 로고
    • Smoothing of, and Parameter Estimation from, Noisy Biophysical Recordings
    • Huys, Q.J.M. and Paninski L. (2009). Smoothing of, and Parameter Estimation from, Noisy Biophysical Recordings. PLoS Comput Biol 5 (5): e1000379.
    • (2009) PLoS Comput Biol , vol.5 , Issue.5 , pp. e1000379
    • Huys, Q.J.M.1    Paninski, L.2
  • 38
    • 0022360955 scopus 로고
    • Hitting lines with two-dimensional Brownian motion
    • Iyengar, S. (1985). Hitting lines with two-dimensional Brownian motion. SIAM Journal on Applied Mathematics, 45, 983-989.
    • (1985) SIAM Journal on Applied Mathematics , vol.45 , pp. 983-989
    • Iyengar, S.1
  • 39
    • 0031253263 scopus 로고    scopus 로고
    • Modeling neural activity using the generalized inverse Gaussian distribution
    • Iyengar, S. and Liao, Q. (1997). Modeling neural activity using the generalized inverse Gaussian distribution. Biological Cybernetics, 77, 289-295.
    • (1997) Biological Cybernetics , vol.77 , pp. 289-295
    • Iyengar, S.1    Liao, Q.2
  • 41
    • 3142666109 scopus 로고    scopus 로고
    • Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy
    • Jolivet, R., Lewis, T., and Gerstner, W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of Neurophysiology, 92, 959-976.
    • (2004) Journal of Neurophysiology , vol.92 , pp. 959-976
    • Jolivet, R.1    Lewis, T.2    Gerstner, W.3
  • 43
    • 0035432526 scopus 로고    scopus 로고
    • A spike-train probability model
    • Kass, R. and Ventura, V. (2001). A spike-train probability model. Neural Comp., 13, 1713-1720.
    • (2001) Neural Comp. , vol.13 , pp. 1713-1720
    • Kass, R.1    Ventura, V.2
  • 44
    • 21544439557 scopus 로고    scopus 로고
    • Statistical issues in the analysis of neuronal data
    • Kass, R. E., Ventura, V., and Brown, E. N. (2005). Statistical issues in the analysis of neuronal data. J. Neurophysio., 94, 8-25.
    • (2005) J. Neurophysio. , vol.94 , pp. 8-25
    • Kass, R.E.1    Ventura, V.2    Brown, E.N.3
  • 45
    • 0034972776 scopus 로고    scopus 로고
    • Predicting every spike: a model for the responses of visual neurons
    • Keat, J., Reinagel, P., Reid, R., and Meister, M. (2001). Predicting every spike: a model for the responses of visual neurons. Neuron, 30, 803-817.
    • (2001) Neuron , vol.30 , pp. 803-817
    • Keat, J.1    Reinagel, P.2    Reid, R.3    Meister, M.4
  • 46
    • 0015357448 scopus 로고
    • Dynamics of encoding in a population of neurons
    • Knight, B. W. (1972). Dynamics of encoding in a population of neurons. Journal of General Physiology, 59, 734-766.
    • (1972) Journal of General Physiology , vol.59 , pp. 734-766
    • Knight, B.W.1
  • 47
    • 0034180383 scopus 로고    scopus 로고
    • The approach of a neuron population firing rate to a new equilibrium: an exact theoretical result
    • Knight, B. W., Omurtag, A., and Sirovich, L. (2000). The approach of a neuron population firing rate to a new equilibrium: an exact theoretical result. Neural Computation, 12, 1045-1055.
    • (2000) Neural Computation , vol.12 , pp. 1045-1055
    • Knight, B.W.1    Omurtag, A.2    Sirovich, L.3
  • 48
    • 47049086058 scopus 로고    scopus 로고
    • Spike train probability models for stimulus-driven leaky integrate-and-fire neurons
    • Koyama, S. and Kass, R. (2008). Spike train probability models for stimulus-driven leaky integrate-and-fire neurons. Neural Computation, 20(7), 1776-1795.
    • (2008) Neural Computation , vol.20 , Issue.7 , pp. 1776-1795
    • Koyama, S.1    Kass, R.2
  • 49
    • 84919505325 scopus 로고    scopus 로고
    • Efficient computation of the most likely path in integrate-and-fire and more general state-space models
    • Koyama, S., Kass, R., and Paninski, L. (2008). Efficient computation of the most likely path in integrate-and-fire and more general state-space models. COSYNE.
    • (2008) COSYNE
    • Koyama, S.1    Kass, R.2    Paninski, L.3
  • 50
  • 51
    • 33747272940 scopus 로고    scopus 로고
    • The parameters of the stochastic leaky integrateand- fire neuronal model
    • Lansky, P., Sanda, P., and He, J. (2006). The parameters of the stochastic leaky integrateand- fire neuronal model. Journal of Computational Neuroscience, 21, 211-223.
    • (2006) Journal of Computational Neuroscience , vol.21 , pp. 211-223
    • Lansky, P.1    Sanda, P.2    He, J.3
  • 52
    • 0029030249 scopus 로고
    • Reliability of spike timing in neocortical neurons
    • Mainen, Z. and Sejnowski, T. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503-1506.
    • (1995) Science , vol.268 , pp. 1503-1506
    • Mainen, Z.1    Sejnowski, T.2
  • 54
    • 41249095433 scopus 로고    scopus 로고
    • Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data
    • Mullowney, P. and Iyengar, S. (2007). Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data. Journal of Computational Neuroscience, 24, 179-194.
    • (2007) Journal of Computational Neuroscience , vol.24 , pp. 179-194
    • Mullowney, P.1    Iyengar, S.2
  • 55
    • 84919505324 scopus 로고    scopus 로고
    • An expectation-maximization Fokker-Planck algorithm for the noisy integrate-and-fire model
    • presented at the Computational and Systems Neuroscience meeting, Salt Lake City, UT 2007
    • Nikitchenko, M. and Paninski, L. (2007). An expectation-maximization Fokker-Planck algorithm for the noisy integrate-and-fire model. COSYNE, presented at the Computational and Systems Neuroscience meeting, Salt Lake City, UT 2007.
    • (2007) COSYNE
    • Nikitchenko, M.1    Paninski, L.2
  • 56
    • 0034076273 scopus 로고    scopus 로고
    • A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning
    • Nykamp, D. Q. and Tranchina, D. (2000). A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning. Journal of Computational Neuroscience, 8, 19-50.
    • (2000) Journal of Computational Neuroscience , vol.8 , pp. 19-50
    • Nykamp, D.Q.1    Tranchina, D.2
  • 57
    • 23044490853 scopus 로고    scopus 로고
    • Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity
    • Okatan, M., Wilson, M., and Brown, E. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Computation, 17, 1927-1961.
    • (2005) Neural Computation , vol.17 , pp. 1927-1961
    • Okatan, M.1    Wilson, M.2    Brown, E.3
  • 58
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point-process neural encoding models
    • Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243-262.
    • (2004) Network: Computation in Neural Systems , vol.15 , pp. 243-262
    • Paninski, L.1
  • 59
    • 84899012151 scopus 로고    scopus 로고
    • Log-concavity results on Gaussian process methods for supervised and unsupervised learning
    • Paninski, L. (2005). Log-concavity results on Gaussian process methods for supervised and unsupervised learning. Advances in Neural Information Processing Systems, 17.
    • (2005) Advances in Neural Information Processing Systems , pp. 17
    • Paninski, L.1
  • 60
    • 33745863997 scopus 로고    scopus 로고
    • The most likely voltage path and large deviations approximations for integrate-and-fire neurons
    • Paninski, L. (2006a). The most likely voltage path and large deviations approximations for integrate-and-fire neurons. Journal of Computational Neuroscience, 21, 71-87.
    • (2006) Journal of Computational Neuroscience , vol.21 , pp. 71-87
    • Paninski, L.1
  • 61
    • 33750583238 scopus 로고    scopus 로고
    • The spike-triggered average of the integrate-and-fire cell driven by Gaussian white noise
    • Paninski, L. (2006b). The spike-triggered average of the integrate-and-fire cell driven by Gaussian white noise. Neural Computation, 18, 2592-2616.
    • (2006) Neural Computation , vol.18 , pp. 2592-2616
    • Paninski, L.1
  • 62
    • 4744360960 scopus 로고    scopus 로고
    • Superlinear population encoding of dynamic hand trajectory in primary motor cortex
    • Paninski, L., Fellows, M., Shoham, S., Hatsopoulos, N., and Donoghue, J. (2004). Superlinear population encoding of dynamic hand trajectory in primary motor cortex. J. Neurosci., 24, 8551-8561.
    • (2004) J. Neurosci. , vol.24 , pp. 8551-8561
    • Paninski, L.1    Fellows, M.2    Shoham, S.3    Hatsopoulos, N.4    Donoghue, J.5
  • 63
    • 38549175663 scopus 로고    scopus 로고
    • Integral equation methods for computing likelihoods and their derivatives in the stochastic integrate-and-fire model
    • Paninski, L., Haith, A., and Szirtes, G. (2008). Integral equation methods for computing likelihoods and their derivatives in the stochastic integrate-and-fire model. Journal of Computational Neuroscience, 24, 69-79.
    • (2008) Journal of Computational Neuroscience , vol.24 , pp. 69-79
    • Paninski, L.1    Haith, A.2    Szirtes, G.3
  • 64
    • 34848820532 scopus 로고    scopus 로고
    • Statistical models for neural encoding, decoding, and optimal stimulus design
    • (P. Cisek, T. Drew, and J. Kalaska). Elsevier, Amsterdam
    • Paninski, L., Pillow, J., and Lewi, J. (2007). Statistical models for neural encoding, decoding, and optimal stimulus design. In Computational Neuroscience: Progress in Brain Research (ed. P. Cisek, T. Drew, and J. Kalaska). Elsevier, Amsterdam.
    • (2007) Computational Neuroscience: Progress in Brain Research
    • Paninski, L.1    Pillow, J.2    Lewi, J.3
  • 65
    • 18144381247 scopus 로고    scopus 로고
    • Comparing integrate-and-fire models estimated using intracellular and extracellular data
    • Paninski, L., Pillow, J., and Simoncelli, E. (2004a). Comparing integrate-and-fire models estimated using intracellular and extracellular data. Neurocomputing, 65, 379-385.
    • (2004) Neurocomputing , vol.65 , pp. 379-385
    • Paninski, L.1    Pillow, J.2    Simoncelli, E.3
  • 66
    • 9744239998 scopus 로고    scopus 로고
    • Maximum likelihood estimation of a stochastic integrate-and-fire neural model
    • Paninski, L., Pillow, J., and Simoncelli, E. (2004b). Maximum likelihood estimation of a stochastic integrate-and-fire neural model. Neural Computation, 16, 2533-2561.
    • (2004) Neural Computation , vol.16 , pp. 2533-2561
    • Paninski, L.1    Pillow, J.2    Simoncelli, E.3
  • 67
    • 84919505323 scopus 로고    scopus 로고
    • Model-based decoding, information estimation, and change-point detection in multi-neuron spike trains
    • Pillow, J. and Paninski, L. (2007). Model-based decoding, information estimation, and change-point detection in multi-neuron spike trains. Under review, Neural Computation.
    • (2007) Under review, Neural Computation
    • Pillow, J.1    Paninski, L.2
  • 68
    • 28044458279 scopus 로고    scopus 로고
    • Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model
    • Pillow, J., Paninski, L., Uzzell, V., Simoncelli, E., and Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11003-11013.
    • (2005) Journal of Neuroscience , vol.25 , pp. 11003-11013
    • Pillow, J.1    Paninski, L.2    Uzzell, V.3    Simoncelli, E.4    Chichilnisky, E.J.5
  • 70
    • 0039176271 scopus 로고    scopus 로고
    • Stochastic resonance in a model neuron with reset
    • Plesser, H. and Tanaka, S. (1997). Stochastic resonance in a model neuron with reset. Physics Letters A, 225, 228-234.
    • (1997) Physics Letters A , vol.225 , pp. 228-234
    • Plesser, H.1    Tanaka, S.2
  • 72
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77, 257-286.
    • (1989) Proceedings of the IEEE , vol.77 , pp. 257-286
    • Rabiner, L.1
  • 73
    • 0032402153 scopus 로고    scopus 로고
    • The power ratio and the interval map: Spiking models and extracellular recordings
    • Reich, D., Victor, J., and Knight, B. (1998). The power ratio and the interval map: Spiking models and extracellular recordings. The Journal of Neuroscience, 18, 10090-10104.
    • (1998) The Journal of Neuroscience , vol.18 , pp. 10090-10104
    • Reich, D.1    Victor, J.2    Knight, B.3
  • 77
    • 0037421736 scopus 로고    scopus 로고
    • Multineuronal firing patterns in the signal from eye to brain
    • Schnitzer, M. and Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37, 499-511.
    • (2003) Neuron , vol.37 , pp. 499-511
    • Schnitzer, M.1    Meister, M.2
  • 79
    • 36149019489 scopus 로고
    • On the first passage time probability problem
    • Siegert, A. (1951). On the first passage time probability problem. Physical Review, 81, 617-623.
    • (1951) Physical Review , vol.81 , pp. 617-623
    • Siegert, A.1
  • 80
    • 2542438416 scopus 로고    scopus 로고
    • Characterization of neural responses with stochastic stimuli
    • (3rd edn) (ed. M. Gazzaniga). MIT Press, Cambridge, MA
    • Simoncelli, E., Paninski, L., Pillow, J., and Schwartz, O. (2004). Characterization of neural responses with stochastic stimuli. In The Cognitive Neurosciences (3rd edn) (ed. M. Gazzaniga). MIT Press, Cambridge, MA.
    • (2004) The Cognitive Neurosciences
    • Simoncelli, E.1    Paninski, L.2    Pillow, J.3    Schwartz, O.4
  • 81
    • 0038605051 scopus 로고    scopus 로고
    • Estimating a state-space model from point process observations
    • Smith, A. and Brown, E. (2003). Estimating a state-space model from point process observations. Neural Computation, 15, 965-991.
    • (2003) Neural Computation , vol.15 , pp. 965-991
    • Smith, A.1    Brown, E.2
  • 83
    • 33749446319 scopus 로고    scopus 로고
    • A state-space analysis for reconstruction of goal-directed movements using neural signals
    • Srinivasan, L., Eden, U., Willsky, A., and Brown, E. (2006). A state-space analysis for reconstruction of goal-directed movements using neural signals. Neural Computation, 18, 2465-2494.
    • (2006) Neural Computation , vol.18 , pp. 2465-2494
    • Srinivasan, L.1    Eden, U.2    Willsky, A.3    Brown, E.4
  • 84
    • 11844290435 scopus 로고
    • A theoretical analysis of neuronal variability
    • Stein, R. (1965). A theoretical analysis of neuronal variability. Biophysical Journal, 5, 173-194.
    • (1965) Biophysical Journal , vol.5 , pp. 173-194
    • Stein, R.1
  • 86
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects
    • Truccolo, W., Eden, U., Fellows, M., Donoghue, J., and Brown, E. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074-1089.
    • (2005) Journal of Neurophysiology , vol.93 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.2    Fellows, M.3    Donoghue, J.4    Brown, E.5
  • 88
    • 24944547377 scopus 로고    scopus 로고
    • Trial-to-trial variability and its effect on timevarying dependence between two neurons
    • Ventura, V., Cai, C., and Kass, R. (2005). Trial-to-trial variability and its effect on timevarying dependence between two neurons. Journal of Neurophysiology, 94, 2928-2939.
    • (2005) Journal of Neurophysiology , vol.94 , pp. 2928-2939
    • Ventura, V.1    Cai, C.2    Kass, R.3
  • 89
    • 77956895315 scopus 로고    scopus 로고
    • Model-based optimal inference of spike times and calcium dynamics given noisy and intermittent calcium-fluorescence imaging
    • press
    • Vogelstein, J. and Paninski, L. (2009). Model-based optimal inference of spike times and calcium dynamics given noisy and intermittent calcium-fluorescence imaging. Biophysical Journal, in press.
    • (2009) Biophysical Journal
    • Vogelstein, J.1    Paninski, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.