메뉴 건너뛰기




Volumn , Issue , 2005, Pages

Log-concavity results on Gaussian process methods for supervised and unsupervised learning

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); IMPORTANCE SAMPLING; OPTIMIZATION;

EID: 84899012151     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (23)
  • 19
    • 0004220749 scopus 로고    scopus 로고
    • Monte Carlo implementation of Gaussian process models for Bayesian regression and classification
    • R. Neal, Monte Carlo implementation of Gaussian process models for Bayesian regression and classification, Tech. Rep. 9702, University of Toronto (1997).
    • (1997) Tech. Rep. 9702, University of Toronto
    • Neal, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.