메뉴 건너뛰기




Volumn 33, Issue 2, 2001, Pages 453-482

A computational approach to first-passage-time problems for Gauss-Markov processes

Author keywords

Brownian bridge; Daniels boundary; Varying boundaries; Volterra integral equations

Indexed keywords

BROWNIAN MOVEMENT; COMPUTATIONAL METHODS; INTEGRAL EQUATIONS; MARKOV PROCESSES; PROBLEM SOLVING;

EID: 0035360022     PISSN: 00018678     EISSN: None     Source Type: Journal    
DOI: 10.1239/aap/999188324     Document Type: Article
Times cited : (96)

References (22)
  • 5
    • 0001456827 scopus 로고
    • The minimum of a stationary Markov process superimposed on a U-shaped trend
    • (1969) J. Appl. Prob. , vol.6 , pp. 399-408
    • Daniels, H.E.1
  • 6
    • 0001010784 scopus 로고    scopus 로고
    • Approximating the first crossing-time density for a curved boundary
    • (1996) Bernoulli , vol.2 , pp. 133-143
    • Daniels, H.E.1
  • 10
    • 0001208970 scopus 로고
    • Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test
    • (1971) J. Appl. Prob. , vol.8 , pp. 431-453
    • Durbin, J.1
  • 11
    • 0022023075 scopus 로고
    • The first-passage density of a continuous Gaussian process to a general boundary
    • (1985) J. Appl. Prob. , vol.22 , pp. 99-122
    • Durbin, J.1
  • 12
    • 0001003734 scopus 로고
    • The first-passage density of the Brownian motion process to a curved boundary
    • (1992) J. Appl. Prob. , vol.29 , pp. 291-304
    • Durbin, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.