메뉴 건너뛰기




Volumn 24, Issue 1, 2008, Pages 69-79

Integral equation methods for computing likelihoods and their derivatives in the stochastic integrate-and-fire model

Author keywords

Large deviations approximation; Markov process; Volterra integral equation

Indexed keywords

INTEGRAL EQUATIONS; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 38549175663     PISSN: 09295313     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10827-007-0042-x     Document Type: Article
Times cited : (15)

References (29)
  • 2
    • 0001710327 scopus 로고
    • A new integral equation for the evaluation of first-passage-time probability densities
    • Buoncore, A., Nobile, A., & Ricciardi, L. (1987). A new integral equation for the evaluation of first-passage-time probability densities. Advances in Applied Probability, 19, 784-800.
    • (1987) Advances in Applied Probability , vol.19 , pp. 784-800
    • Buoncore, A.1    Nobile, A.2    Ricciardi, L.3
  • 3
    • 0033561841 scopus 로고    scopus 로고
    • Analysis of integrate-and-fire neurons: Synchronization of synaptic input and spike output
    • Burkitt, A., & Clark, G. (1999). Analysis of integrate-and-fire neurons: Synchronization of synaptic input and spike output. Neural Computation, 11, 871-901.
    • (1999) Neural Computation , vol.11 , pp. 871-901
    • Burkitt, A.1    Clark, G.2
  • 5
    • 0035360022 scopus 로고    scopus 로고
    • A computational approach to first-passage-time problems for Gauss-Markov processes
    • DiNardo, E., Nobile, A., Pirozzi, E., & Ricciardi, L. (2001). A computational approach to first-passage-time problems for Gauss-Markov processes. Advances in Applied Probability, 33, 453-482.
    • (2001) Advances in Applied Probability , vol.33 , pp. 453-482
    • DiNardo, E.1    Nobile, A.2    Pirozzi, E.3    Ricciardi, L.4
  • 7
    • 0001341675 scopus 로고
    • Numerical computation of multivariate normal probabilities
    • Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1, 141-149.
    • (1992) Journal of Computational and Graphical Statistics , vol.1 , pp. 141-149
    • Genz, A.1
  • 8
    • 38549164550 scopus 로고    scopus 로고
    • Estimating the parameters of a stochastic integrate-and-fire neural model
    • Master's thesis, University of Edinburgh
    • Haith, A. (2004). Estimating the parameters of a stochastic integrate-and-fire neural model. Master's thesis, University of Edinburgh.
    • (2004)
    • Haith, A.1
  • 9
    • 0042736230 scopus 로고    scopus 로고
    • Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics
    • Haskell, E., Nykamp, D., & Tranchina, D. (2001). Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics. Network: Computation in Neural Systems, 12, 141-174.
    • (2001) Network: Computation in Neural Systems , vol.12 , pp. 141-174
    • Haskell, E.1    Nykamp, D.2    Tranchina, D.3
  • 10
    • 0031253263 scopus 로고    scopus 로고
    • Modeling neural activity using the generalized inverse Gaussian distribution
    • Iyengar, S., & Liao, Q. (1997). Modeling neural activity using the generalized inverse Gaussian distribution. Biological Cybernetics, 77, 289-295.
    • (1997) Biological Cybernetics , vol.77 , pp. 289-295
    • Iyengar, S.1    Liao, Q.2
  • 11
    • 3142666109 scopus 로고    scopus 로고
    • Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy
    • Jolivet, R., Lewis, T., & Gerstner, W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of Neurophysiology, 92, 959-976.
    • (2004) Journal of Neurophysiology , vol.92 , pp. 959-976
    • Jolivet, R.1    Lewis, T.2    Gerstner, W.3
  • 14
    • 0034180383 scopus 로고    scopus 로고
    • The approach of a neuron population firing rate to a new equilibrium: An exact theoretical result
    • Knight, B., Omurtag, A., & Sirovich, L. (2000). The approach of a neuron population firing rate to a new equilibrium: An exact theoretical result. Neural Computation, 12, 1045-1055.
    • (2000) Neural Computation , vol.12 , pp. 1045-1055
    • Knight, B.1    Omurtag, A.2    Sirovich, L.3
  • 15
    • 0002629564 scopus 로고    scopus 로고
    • A survey of regularization methods for first-kind Volterra equations
    • In Berlin Heidelberg New York: Springer
    • Lamm, P. (2000). A survey of regularization methods for first-kind Volterra equations. In Surveys on solution methods for inverse problems (pp. 53-82). Berlin Heidelberg New York: Springer.
    • (2000) Surveys on Solution Methods for Inverse Problems , pp. 53-82
    • Lamm, P.1
  • 16
    • 0029030249 scopus 로고
    • Reliability of spike timing in neocortical neurons
    • Mainen, Z., & Sejnowski, T. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503-1506.
    • (1995) Science , vol.268 , pp. 1503-1506
    • Mainen, Z.1    Sejnowski, T.2
  • 17
    • 33745863997 scopus 로고    scopus 로고
    • The most likely voltage path and large deviations approximations for integrate-and-fire neurons
    • Paninski, L. (2006). The most likely voltage path and large deviations approximations for integrate-and-fire neurons. Journal of Computational Neuroscience, 21, 71-87.
    • (2006) Journal of Computational Neuroscience , vol.21 , pp. 71-87
    • Paninski, L.1
  • 18
    • 18144381247 scopus 로고    scopus 로고
    • Comparing integrate-and-fire-like models estimated using intracellular and extracellular data
    • Paninski, L., Pillow, J., & Simoncelli, E. (2004a). Comparing integrate-and-fire-like models estimated using intracellular and extracellular data. Neurocomputing, 65, 379-385.
    • (2004) Neurocomputing , vol.65 , pp. 379-385
    • Paninski, L.1    Pillow, J.2    Simoncelli, E.3
  • 19
    • 9744239998 scopus 로고    scopus 로고
    • Maximum likelihood estimation of a stochastic integrate-and-fire neural model
    • Paninski, L., Pillow, J., & Simoncelli, E. (2004b). Maximum likelihood estimation of a stochastic integrate-and-fire neural model. Neural Computation, 16, 2533-2561.
    • (2004) Neural Computation , vol.16 , pp. 2533-2561
    • Paninski, L.1    Pillow, J.2    Simoncelli, E.3
  • 20
    • 28044458279 scopus 로고    scopus 로고
    • Accounting for timing and variability of retinal ganglion cell light responses with a stochastic integrate-and-fire model
    • Pillow, J., Paninski, L., Uzzell, V., Simoncelli, E., & Chichilnisky, E. (2005). Accounting for timing and variability of retinal ganglion cell light responses with a stochastic integrate-and-fire model. Journal of Neuroscience, 25, 11003-11013.
    • (2005) Journal of Neuroscience , vol.25 , pp. 11003-11013
    • Pillow, J.1    Paninski, L.2    Uzzell, V.3    Simoncelli, E.4    Chichilnisky, E.5
  • 21
    • 0034133323 scopus 로고    scopus 로고
    • Noise in integrate-and-fire neurons: From stochastic input to escape rates
    • Plesser, H., & Gerstner, W. (2000). Noise in integrate-and-fire neurons: From stochastic input to escape rates. Neural Computation, 12, 367-384.
    • (2000) Neural Computation , vol.12 , pp. 367-384
    • Plesser, H.1    Gerstner, W.2
  • 22
    • 0039176271 scopus 로고    scopus 로고
    • Stochastic resonance in a model neuron with reset
    • Plesser, H., & Tanaka, S. (1997). Stochastic resonance in a model neuron with reset. Physics Letters. A, 225, 228-234.
    • (1997) Physics Letters. A , vol.225 , pp. 228-234
    • Plesser, H.1    Tanaka, S.2
  • 26
    • 36149019489 scopus 로고
    • On the first passage time probability problem
    • Siegert, A. (1951). On the first passage time probability problem. Physical Review, 81, 617-623.
    • (1951) Physical Review , vol.81 , pp. 617-623
    • Siegert, A.1
  • 27
    • 0000398779 scopus 로고    scopus 로고
    • Novel integrate-and-fire-like model of repetitive firing in cortical neurons
    • In Neural Computation, UCSD
    • Stevens, C., & Zador, A. (1998). Novel integrate-and-fire-like model of repetitive firing in cortical neurons. In Proc. 5th Joint Symp. Neural Computation, UCSD.
    • (1998) Proc. 5th Joint Symp
    • Stevens, C.1    Zador, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.