메뉴 건너뛰기




Volumn 15, Issue 5, 2003, Pages 965-991

Estimating a state-space model from point process observations

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ALGORITHM; ARTICLE; BIOLOGICAL MODEL; NERVE CELL; NERVE TRACT; PHYSIOLOGY;

EID: 0038605051     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976603765202622     Document Type: Article
Times cited : (336)

References (47)
  • 1
    • 0035970024 scopus 로고    scopus 로고
    • Construction and analysis of non-Poisson stimulus-response models of neural spike train activity
    • Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., & Brown, E. N. (2001). Construction and analysis of non-Poisson stimulus-response models of neural spike train activity. J. Neurosci. Methods, 105, 25-37.
    • (2001) J. Neurosci. Methods , vol.105 , pp. 25-37
    • Barbieri, R.1    Quirk, M.C.2    Frank, L.M.3    Wilson, M.A.4    Brown, E.N.5
  • 2
    • 0030924951 scopus 로고    scopus 로고
    • The structure and precision of retinal spike trains
    • Berry, M. J., Warland, D. K., & Meister, M. (1997). The structure and precision of retinal spike trains. Proc. Nat. Acad. Sci. USA, 94, 5411-5416.
    • (1997) Proc. Nat. Acad. Sci. USA , vol.94 , pp. 5411-5416
    • Berry, M.J.1    Warland, D.K.2    Meister, M.3
  • 4
    • 0019057841 scopus 로고
    • Recursive nonlinear estimation of a diffusion acting as the rate of an observed Poisson process
    • Boel, R. K., & Beneš, V. E. (1980). Recursive nonlinear estimation of a diffusion acting as the rate of an observed Poisson process. IEEE Trans. Inf. Theory, 26(5), 561-574.
    • (1980) IEEE Trans. Inf. Theory , vol.26 , Issue.5 , pp. 561-574
    • Boel, R.K.1    Beneš, V.E.2
  • 6
    • 0036482863 scopus 로고    scopus 로고
    • The time-rescaling theorem and its application to neural spike train data analysis
    • Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E., & Frank, L. M. (2002). The time-rescaling theorem and its application to neural spike train data analysis. Neural Comp., 14(2), 325-346.
    • (2002) Neural Comp. , vol.14 , Issue.2 , pp. 325-346
    • Brown, E.N.1    Barbieri, R.2    Ventura, V.3    Kass, R.E.4    Frank, L.M.5
  • 7
    • 0032530363 scopus 로고    scopus 로고
    • A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal lace cells
    • Brown, E. N., Frank, L. M., Tang, D., Quirk, M. C., & Wilson, M. A. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal lace cells. J. Neurosci., 18, 7411-7425.
    • (1998) J. Neurosci. , vol.18 , pp. 7411-7425
    • Brown, E.N.1    Frank, L.M.2    Tang, D.3    Quirk, M.C.4    Wilson, M.A.5
  • 8
    • 21844487061 scopus 로고
    • Monte Carlo estimation for time series models involving counts
    • Chan, K. S., & Ledolter, J. (1995). Monte Carlo estimation for time series models involving counts. J. Am. Stat. Assoc., 90, 242-252.
    • (1995) J. Am. Stat. Assoc. , vol.90 , pp. 242-252
    • Chan, K.S.1    Ledolter, J.2
  • 11
    • 0043169189 scopus 로고
    • Covariances for smoothed estimates in state space models
    • de Jong, P., & Mackinnon, M. J. (1988). Covariances for smoothed estimates in state space models. Biometrika, 75, 601-602.
    • (1988) Biometrika , vol.75 , pp. 601-602
    • De Jong, P.1    Mackinnon, M.J.2
  • 12
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. B, 39, 1-38.
    • (1977) J. Roy. Statist. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 15
    • 0034354798 scopus 로고    scopus 로고
    • Time series analysis of non-gaussian observations based on state space models from both classical and Bayesian perspectives
    • Durbin, J., & Koopman, S. J. (2000). Time series analysis of non-gaussian observations based on state space models from both classical and Bayesian perspectives. J. Roy. Statist. Soc. B, 62, 3-56.
    • (2000) J. Roy. Statist. Soc. B , vol.62 , pp. 3-56
    • Durbin, J.1    Koopman, S.J.2
  • 16
    • 0000350343 scopus 로고
    • Posterior mode estimation by extended Kalman filtering for multivariate dynamic generalized linear models
    • Fahrmeir, L. (1992). Posterior mode estimation by extended Kalman filtering for multivariate dynamic generalized linear models. J. Am. Stat. Assoc., 87, 501-509.
    • (1992) J. Am. Stat. Assoc. , vol.87 , pp. 501-509
    • Fahrmeir, L.1
  • 17
    • 21844493772 scopus 로고
    • Dynamic-stochastic models for time-dependent ordered paired-comparison systems
    • Fahrmeir, L., & Tutz, D. (1994). Dynamic-stochastic models for time-dependent ordered paired-comparison systems. J. Am. Stat. Assoc., 89, 1438-1449.
    • (1994) J. Am. Stat. Assoc. , vol.89 , pp. 1438-1449
    • Fahrmeir, L.1    Tutz, D.2
  • 18
    • 0035247059 scopus 로고    scopus 로고
    • An introduction to hidden Markov models and Bayesian networks
    • Gharamani, Z. (2001). An introduction to hidden Markov models and Bayesian networks. Int. J. Pattern Recognition, 15(1), 9-42.
    • (2001) Int. J. Pattern Recognition , vol.15 , Issue.1 , pp. 9-42
    • Gharamani, Z.1
  • 23
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • Liu, J. S., & Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems. J. Am. Stat. Assoc., 93(443), 567-576.
    • (1998) J. Am. Stat. Assoc. , vol.93 , Issue.443 , pp. 567-576
    • Liu, J.S.1    Chen, R.2
  • 26
    • 0042777600 scopus 로고    scopus 로고
    • Discrete time filters for doubly stochastic Poisson processes and other exponential noise models
    • Manton, J. H., Krishnamurthy, V., & Elliott, R. J. (1999). Discrete time filters for doubly stochastic Poisson processes and other exponential noise models. Int. J. Adapt. Control Sig. Proc., 13, 393-416.
    • (1999) Int. J. Adapt. Control Sig. Proc. , vol.13 , pp. 393-416
    • Manton, J.H.1    Krishnamurthy, V.2    Elliott, R.J.3
  • 27
    • 0034786874 scopus 로고    scopus 로고
    • Aging and learning-specific changes in single-neuron activity in CA1 hippocampus during rabbit trace eyeblink conditioning
    • McEchron, M. D., Weible, A. P., & Disterhoft, J. F. (2001). Aging and learning-specific changes in single-neuron activity in CA1 hippocampus during rabbit trace eyeblink conditioning. J. Neurophysiol., 86, 1839-1857.
    • (2001) J. Neurophysiol. , vol.86 , pp. 1839-1857
    • McEchron, M.D.1    Weible, A.P.2    Disterhoft, J.F.3
  • 29
    • 0015145985 scopus 로고
    • The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat
    • O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171-175.
    • (1971) Brain Research , vol.34 , pp. 171-175
    • O'Keefe, J.1    Dostrovsky, J.2
  • 30
    • 2642691669 scopus 로고    scopus 로고
    • Spike synchronization and rate modulation differentially involved in motor cortical function
    • Riehle, A., Grün, S., Diesmann, M., & Aertsen, A. (1997). Spike synchronization and rate modulation differentially involved in motor cortical function. Science, 278, 1950-1953.
    • (1997) Science , vol.278 , pp. 1950-1953
    • Riehle, A.1    Grün, S.2    Diesmann, M.3    Aertsen, A.4
  • 31
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear gaussian models
    • Roweis, S., & Ghahramani, Z. (1999). A unifying review of linear gaussian models. Neural Comp., 11, 305-345.
    • (1999) Neural Comp. , vol.11 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 32
    • 0034267890 scopus 로고    scopus 로고
    • Rate limitations of unitary event analysis
    • Roy, A., Steinmetz, P. N., & Niebur, E. (2000). Rate limitations of unitary event analysis. Neural Comp., 12(9), 2063-2082.
    • (2000) Neural Comp. , vol.12 , Issue.9 , pp. 2063-2082
    • Roy, A.1    Steinmetz, P.N.2    Niebur, E.3
  • 33
    • 0003524533 scopus 로고    scopus 로고
    • Unpublished doctoral dissertation, California Institute of Technology, Pasadena
    • Sahini, M. (1999). Latent variable models for neural data analysis. Unpublished doctoral dissertation, California Institute of Technology, Pasadena.
    • (1999) Latent Variable Models for Neural Data Analysis
    • Sahini, M.1
  • 34
    • 0016486150 scopus 로고
    • Nonlinear filtering with counting observations
    • Segall, A., Davis, M. H. A., & Kailath, T. (1975). Nonlinear filtering with counting observations. IEEE Trans. Inf. Theory, 21(2), 143-149.
    • (1975) IEEE Trans. Inf. Theory , vol.21 , Issue.2 , pp. 143-149
    • Segall, A.1    Davis, M.H.A.2    Kailath, T.3
  • 36
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the EM algorithm
    • Shumway, R. H., & Stoffer, D. S. (1982). An approach to time series smoothing and forecasting using the EM algorithm. J. Time Series Analysis, 3, 253-264.
    • (1982) J. Time Series Analysis , vol.3 , pp. 253-264
    • Shumway, R.H.1    Stoffer, D.S.2
  • 39
    • 0034445351 scopus 로고    scopus 로고
    • Unobserved Monte-Carlo method for identification of partially-observed nonlinear state-space systems, part II: Counting process observations
    • New York: Institute of Electrical and Electronic Engineers
    • Solo, V. (2000). Unobserved Monte-Carlo method for identification of partially-observed nonlinear state-space systems, part II: counting process observations. In Proc. IEEE Conference on Decision and Control. New York: Institute of Electrical and Electronic Engineers.
    • (2000) Proc. IEEE Conference on Decision and Control
    • Solo, V.1
  • 42
    • 0034766269 scopus 로고    scopus 로고
    • Trajectory information from place cell data
    • Twum-Danso, N. T., & Brockett, R. (2001). Trajectory information from place cell data. Neural Networks, 14(6-7), 835-844.
    • (2001) Neural Networks , vol.14 , Issue.6-7 , pp. 835-844
    • Twum-Danso, N.T.1    Brockett, R.2
  • 44
    • 0027440875 scopus 로고
    • Dynamics of the hippocampal ensemble code for space
    • Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science, 261, 1055-1058.
    • (1993) Science , vol.261 , pp. 1055-1058
    • Wilson, M.A.1    McNaughton, B.L.2
  • 46
    • 0033580295 scopus 로고    scopus 로고
    • The global record of memory in hippocampal neuronal activity
    • Wood, E. R., Dudchenko, P. A., & Eichenbaum, H. (1999). The global record of memory in hippocampal neuronal activity. Nature, 397(6720), 613-616.
    • (1999) Nature , vol.397 , Issue.6720 , pp. 613-616
    • Wood, E.R.1    Dudchenko, P.A.2    Eichenbaum, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.