-
1
-
-
80053457289
-
Clustering by left-stochastic matrix factorization
-
Getoor L., Scheffer T., (eds), Omnipress
-
Arora, R., Gupta, M., Kapila, A., & Fazel, M. (2011). Clustering by left-stochastic matrix factorization. In L. Getoor & T. Scheffer (Eds.), ICML (pp. 761–768). Omnipress.
-
(2011)
ICML
, pp. 761-768
-
-
Arora, R.1
Gupta, M.2
Kapila, A.3
Fazel, M.4
-
2
-
-
36448962361
-
Cumulative voting consensus method for partitions with variable number of clusters
-
Ayad, H., & Kamel, M. S. (2008). Cumulative voting consensus method for partitions with variable number of clusters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(1), 160–173.
-
(2008)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.30
, Issue.1
, pp. 160-173
-
-
Ayad, H.1
Kamel, M.S.2
-
3
-
-
32344441237
-
Model-based overlapping clustering
-
Banerjee, A., Krumpelman, C., Basu, S., Mooney, R. J., & Ghosh, J. (2005a). Model-based overlapping clustering. In Int. conf. on knowledge discovery and data mining (pp. 532–537).
-
(2005)
Int. conf. on knowledge discovery and data mining
, pp. 532-537
-
-
Banerjee, A.1
Krumpelman, C.2
Basu, S.3
Mooney, R.J.4
Ghosh, J.5
-
4
-
-
26244461684
-
Clustering with Bregman divergences
-
Banerjee, A., Merugu, S., Dhillon, I., & Ghosh, J. (2005b). Clustering with Bregman divergences. Journal of Machine Learning Research, 6, 1705–1749.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1705-1749
-
-
Banerjee, A.1
Merugu, S.2
Dhillon, I.3
Ghosh, J.4
-
8
-
-
78049323340
-
Learning multiple nonredundant clusterings
-
4
-
Cui, Y., Fern, X. Z., & Dy, J. G. (2010). Learning multiple nonredundant clusterings. In Transactions on Knowledge Discovery from Data (TKDD) (Vol. 4, pp. 1–32).
-
(2010)
Transactions on Knowledge Discovery from Data (TKDD)
, pp. 1-32
-
-
Cui, Y.1
Fern, X.Z.2
Dy, J.G.3
-
9
-
-
2942723846
-
A divisive information-theoretic feature clustering algorithm for text classification
-
Dhillon, I. S., Mallela, S., & Kumar, R. (2003). A divisive information-theoretic feature clustering algorithm for text classification. Journal of Machine Learning Research, 3, 1265–1287.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1265-1287
-
-
Dhillon, I.S.1
Mallela, S.2
Kumar, R.3
-
10
-
-
84945305138
-
A combination scheme for fuzzy clustering
-
Dimitriadou, E., Weingessel, A., & Hornik, K. (2002). A combination scheme for fuzzy clustering. In AFSS’02 (pp. 332–338).
-
(2002)
AFSS’02
, pp. 332-338
-
-
Dimitriadou, E.1
Weingessel, A.2
Hornik, K.3
-
11
-
-
84878905116
-
On using class-labels in evaluation of clusterings
-
Färber, I., Günnemann, S., Kriegel, H., Kröger, P., Müller, E., Schubert, E., Seidl, T., & Zimek, A. (2010). On using class-labels in evaluation of clusterings. In MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings.
-
(2010)
MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings
-
-
Färber, I.1
Günnemann, S.2
Kriegel, H.3
Kröger, P.4
Müller, E.5
Schubert, E.6
Seidl, T.7
Zimek, A.8
-
12
-
-
14344258244
-
Solving cluster ensemble problems by bipartite graph partitioning
-
Fern, X. Z., & Brodley, C. E. (2004). Solving cluster ensemble problems by bipartite graph partitioning. In Proc. ICML ’04.
-
(2004)
Proc. ICML ’04
-
-
Fern, X.Z.1
Brodley, C.E.2
-
14
-
-
84957012677
-
Finding consistent clusters in data partitions
-
Kittler J., Roli F., (eds), 2096, Springer, Berlin:
-
Fred, A. (2001). Finding consistent clusters in data partitions. In J. Kittler & F. Roli (Eds.), Multiple classifier systems (Vol. 2096, pp. 309–318). Berlin: Springer.
-
(2001)
Multiple classifier systems
, pp. 309-318
-
-
Fred, A.1
-
16
-
-
21244468777
-
Combining multiple clustering using evidence accumulation
-
Fred, A., & Jain, A. (2005). Combining multiple clustering using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 835–850.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.6
, pp. 835-850
-
-
Fred, A.1
Jain, A.2
-
18
-
-
80053039117
-
Cluster ensembles
-
Ghosh, J., & Acharya, A. (2011). Cluster ensembles Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(4), 305–315.
-
(2011)
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
, vol.1
, Issue.4
, pp. 305-315
-
-
Ghosh, J.1
Acharya, A.2
-
19
-
-
0030686036
-
Multilevel hypergraph partitioning: applications in VLSI domain
-
Karypis, G., Aggarwal, R., Kumar, V., & Shekhar, S. (1997). Multilevel hypergraph partitioning: applications in VLSI domain. In Proc. design automation conf.
-
(1997)
Proc. design automation conf
-
-
Karypis, G.1
Aggarwal, R.2
Kumar, V.3
Shekhar, S.4
-
21
-
-
56449125362
-
A nonparametric Bayesian approach to modeling overlapping clusters
-
Heller, K., & Ghahramani, Z. (2007). A nonparametric Bayesian approach to modeling overlapping clusters. In Int. conf. AI and statistics.
-
(2007)
Int. conf. AI and statistics
-
-
Heller, K.1
Ghahramani, Z.2
-
23
-
-
77957178786
-
The construction of hierarchic and non-hierarchic classifications
-
Jardine, N., & Sibson, R. (1968). The construction of hierarchic and non-hierarchic classifications. Computer Journal, 11, 177–184.
-
(1968)
Computer Journal
, vol.11
, pp. 177-184
-
-
Jardine, N.1
Sibson, R.2
-
24
-
-
0141812170
-
On monotone operators and convex functionals
-
Kachurovskii, I. R. (1960). On monotone operators and convex functionals. Uspehi Matematičeskih Nauk, 15(4), 213–215.
-
(1960)
Uspehi Matematičeskih Nauk
, vol.15
, Issue.4
, pp. 213-215
-
-
Kachurovskii, I.R.1
-
26
-
-
0001093042
-
Algorithms for non-negative matrix factorization
-
Leen T. K., Dietterich T. G., Tresp V., (eds), MIT Press, Cambridge:
-
Lee, D. D., & Seung, H. S. (2000). Algorithms for non-negative matrix factorization. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), NIPS (pp. 556–562). Cambridge: MIT Press.
-
(2000)
NIPS
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
27
-
-
80053373556
-
A generative dyadic aspect model for Evidence Accumulation Clustering
-
Springer, Berlin/Heidelberg:
-
Lourenço, A., Fred, A., & Figueiredo, M. (2011). A generative dyadic aspect model for Evidence Accumulation Clustering. In Proc. 1st int. conf. similarity-based pattern recognition, SIMBAD’11 (pp. 104–116). Berlin/Heidelberg: Springer.
-
(2011)
Proc. 1st int. conf. similarity-based pattern recognition, SIMBAD’11
, pp. 104-116
-
-
Lourenço, A.1
Fred, A.2
Figueiredo, M.3
-
28
-
-
78149487877
-
On the scalability of evidence accumulation clustering
-
Lourenço, A., Fred, A., & Jain, A. K. (2010). On the scalability of evidence accumulation clustering. In Proc. 20th international conference on pattern recognition (ICPR), Istanbul, Turkey.
-
(2010)
Proc. 20th international conference on pattern recognition (ICPR)
-
-
Lourenço, A.1
Fred, A.2
Jain, A.K.3
-
29
-
-
75749127352
-
Fuzzy clustering with weighted medoids for relational data
-
Mei, J. P., & Chen, L. (2010). Fuzzy clustering with weighted medoids for relational data. Pattern Recognition, 43(5), 1964–1974.
-
(2010)
Pattern Recognition
, vol.43
, Issue.5
, pp. 1964-1974
-
-
Mei, J.P.1
Chen, L.2
-
31
-
-
38349126835
-
Fuzzy communities and the concept of bridgeness in complex networks
-
Nepusz, T., Petróczi, A., Négyessy, L., & Bazsó, F. (2008). Fuzzy communities and the concept of bridgeness in complex networks. Physical Review A, 77, 016107.
-
(2008)
Physical Review A
, vol.77
-
-
Nepusz, T.1
Petróczi, A.2
Négyessy, L.3
Bazsó, F.4
-
32
-
-
0041875229
-
On spectral clustering: analysis and an algorithm
-
MIT Press, Cambridge:
-
Ng, A. Y., Jordan, M. I., & Weiss, Y. (2001). On spectral clustering: analysis and an algorithm. In NIPS (pp. 849–856). Cambridge: MIT Press.
-
(2001)
NIPS
, pp. 849-856
-
-
Ng, A.Y.1
Jordan, M.I.2
Weiss, Y.3
-
33
-
-
0028561099
-
Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values
-
Paatero, P., & Tapper, U. (1994). Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2), 111–126.
-
(1994)
Environmetrics
, vol.5
, Issue.2
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
35
-
-
49749128817
-
Consensus-based ensembles of soft clusterings
-
Punera, K., & Ghosh, J. (2008). Consensus-based ensembles of soft clusterings. Applied Artificial Intelligence, 22(7&8), 780–810.
-
(2008)
Applied Artificial Intelligence
, vol.22
, Issue.7-8
, pp. 780-810
-
-
Punera, K.1
Ghosh, J.2
-
36
-
-
77958509515
-
Pairwise probabilistic clustering using evidence accumulation
-
Rota Bulò, S., Lourenço, A., Fred, A., & Pelillo, M. (2010). Pairwise probabilistic clustering using evidence accumulation. In Proc. 2010 int. conf. on structural, syntactic, and statistical pattern recognition, SSPR&SPR’10 (pp. 395–404).
-
(2010)
Proc. 2010 int. conf. on structural, syntactic, and statistical pattern recognition
, pp. 395-404
-
-
Rota Bulò, S.1
Lourenço, A.2
Fred, A.3
Pelillo, M.4
-
37
-
-
0034244751
-
Normalized cuts and image segmentation
-
Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 22(8), 888–905.
-
(2000)
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
, vol.22
, Issue.8
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
38
-
-
73149088947
-
Latent semantic analysis: a road to meaning
-
Laurence Erlbaum
-
Steyvers, M., & Griffiths, T. (2007). Latent semantic analysis: a road to meaning. In Probabilistic topic models. Laurence Erlbaum.
-
(2007)
Probabilistic topic models
-
-
Steyvers, M.1
Griffiths, T.2
-
39
-
-
0041965980
-
Cluster ensembles—a knowledge reuse framework for combining multiple partitions
-
Strehl, A., & Ghosh, J. (2003). Cluster ensembles—a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3, 583–617.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
40
-
-
70349238123
-
Combining multiple weak clusterings
-
Topchy, A., Jain, A., & Punch, W. (2003). Combining multiple weak clusterings. In IEEE intl. conf on data mining, Melbourne (pp. 331–338).
-
(2003)
IEEE intl. conf on data mining
, pp. 331-338
-
-
Topchy, A.1
Jain, A.2
Punch, W.3
-
42
-
-
30144442247
-
Clustering ensembles: models of consensus and weak partitions
-
Topchy, A., Jain, A. K., & Punch, W. (2005). Clustering ensembles: models of consensus and weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12), 1866–1881.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.12
, pp. 1866-1881
-
-
Topchy, A.1
Jain, A.K.2
Punch, W.3
-
44
-
-
79551693227
-
Bayesian cluster ensembles
-
Wang, H., Shan, H., & Banerjee, A. (2011). Bayesian cluster ensembles. Statistical Analysis and Data Mining, 4(1), 54–70.
-
(2011)
Statistical Analysis and Data Mining
, vol.4
, Issue.1
, pp. 54-70
-
-
Wang, H.1
Shan, H.2
Banerjee, A.3
-
45
-
-
77958056558
-
Nonparametric Bayesian clustering ensembles
-
Wang, P., Domeniconi, C., & Laskey, K. B. (2010). Nonparametric Bayesian clustering ensembles. In ECML PKDD’10 (pp. 435–450).
-
(2010)
ECML PKDD’10
, pp. 435-450
-
-
Wang, P.1
Domeniconi, C.2
Laskey, K.B.3
|