-
1
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
AGRAWAL, R., GEHRKE, J., GUNOPULOS, D., AND RAGHAVAN, P. 1998. Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 94-105.
-
(1998)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
2
-
-
78049332981
-
-
ACM Transactions on Knowledge Discovery from Data, Article 15, Pub. date: October
-
ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 15, Pub. date: October 2010.
-
(2010)
, vol.4
, Issue.3
-
-
-
3
-
-
0016355478
-
A new look at the statistical model identification
-
AKAIKE, H. 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 6, 716-723.
-
(1974)
IEEE Trans. Autom. Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
4
-
-
84873117260
-
Coala: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity
-
BAE, E. AND BAILEY, J. 2006. Coala: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity. In Proceedings of the 6th International Conference on Data Mining. 53-62.
-
(2006)
Proceedings of the 6th International Conference on Data Mining
, pp. 53-62
-
-
Bae, E.1
Bailey, J.2
-
5
-
-
78049336196
-
-
UCI KDD archive
-
BAY, S. D. 1999. The UCI KDD archive. http://kdd.ics.uci.edu/.
-
(1999)
-
-
Bay, S.D.1
-
7
-
-
84878080180
-
Meta clustering
-
Hong Kong
-
CARUANA, R., ELHAWARY, M., NGUYEN, N., AND SMITH, C. 2006. Meta clustering. In Proceedings of the 6th International Conference on Data Mining. Hong Kong, 107-118.
-
(2006)
Proceedings of the 6th International Conference on Data Mining
, pp. 107-118
-
-
Caruana, R.1
Elhawary, M.2
Nguyen, N.3
Smith, C.4
-
9
-
-
78049328727
-
-
CMU, CMU 4 universities WebKB data
-
CMU. 1997. CMU 4 universities WebKB data.
-
(1997)
-
-
-
11
-
-
78149305852
-
Adaptive dimension reduction for clustering high dimensional data
-
DING, C., HE, X., ZHA, H., AND SIMON, H. 2002. Adaptive dimension reduction for clustering high dimensional data. In Proceedings of the IEEE International Conference on Data Mining. 147-154.
-
(2002)
Proceedings of the IEEE International Conference on Data Mining
, pp. 147-154
-
-
Ding, C.1
He, X.2
Zha, H.3
Simon, H.4
-
12
-
-
67549123292
-
Weighted cluster ensembles: Methods and analysis
-
January
-
DOMENICONI, C. AND AL-RAZGAN, M. 2009. Weighted cluster ensembles: Methods and analysis. ACM Trans. Knowl. Disc. Data 2, 4 (January), 1-40.
-
(2009)
ACM Trans. Knowl. Disc. Data
, vol.2
, Issue.4
, pp. 1-40
-
-
Domeniconi, C.1
Al-Razgan, M.2
-
13
-
-
33847338032
-
Locally adaptive metrics for clustering high dimensional data
-
DOMENICONI, C., GUNOPULOS, D., MA, S., YAN, B., AL-RAZGAN, M., AND PAPADOPOULOS, D. 2007. Locally adaptive metrics for clustering high dimensional data. Data Mining and Knowledge Discovery Journal 14, 63-97.
-
(2007)
Data Mining and Knowledge Discovery Journal
, vol.14
, pp. 63-97
-
-
Domeniconi, C.1
Gunopulos, D.2
Ma, S.3
Yan, B.4
Al-Razgan, M.5
Papadopoulos, D.6
-
15
-
-
26444454606
-
Feature selection for unsupervised learning
-
DY, J. G. AND BRODLEY, C. E. 2004. Feature selection for unsupervised learning. J. Mach. Learn. Res. 5, 845-889.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 845-889
-
-
Dy, J.G.1
Brodley, C.E.2
-
18
-
-
0036522404
-
Unsupervised learning of finite mixture models. IEEE
-
Mar.
-
FIGUEIREDO, M. A. T., AND JAIN, A. K. 2002. Unsupervised learning of finite mixture models. IEEE Trans. Patt. Anal. Mach. Intell. 24, 3 (Mar.), 381-396.
-
(2002)
Trans. Patt. Anal. Mach. Intell
, vol.24
, Issue.3
, pp. 381-396
-
-
Figueiredo, M.A.T.1
Jain, A.K.2
-
19
-
-
0000014486
-
Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications
-
FORGY, E. 1965. Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics 21, 768.
-
(1965)
Biometrics
, vol.21
, pp. 768
-
-
Forgy, E.1
-
20
-
-
21244468777
-
Combining multiple clusterings using evidence accumulation
-
June
-
FRED, A. L. N. AND JAIN, A. K. 2005. Combining multiple clusterings using evidence accumulation. IEEE Trans. Patt. Anal. Mach. Intell. 27, 6 (June), 835-850.
-
(2005)
IEEE Trans. Patt. Anal. Mach. Intell
, vol.27
, Issue.6
, pp. 835-850
-
-
Fred, A.L.N.1
Jain, A.K.2
-
23
-
-
49749092433
-
-
Ph. D. dissertation, Brown University
-
GONDEK, D. 2005. Non-redundant clustering. Ph. D. dissertation, Brown University.
-
(2005)
Non-redundant Clustering
-
-
Gondek, D.1
-
28
-
-
84893405732
-
Data clustering: A review
-
JAIN, A. K., MURTY, M. N., AND FLYNN, P. J. 1999. Data clustering: A review. ACM Computing Surveys 31, 3, 264-323.
-
(1999)
ACM Computing Surveys
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
31
-
-
0018297195
-
Spectral classification of phenomes by learning subspaces
-
KOHONEN, T., NEMETH, G., BRY, K. J., JALANKO, M., AND RIITTINEN, H. 1979. Spectral classification of phenomes by learning subspaces. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). 97-100.
-
(1979)
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, pp. 97-100
-
-
Kohonen, T.1
Nemeth, G.2
Bry, K.J.3
Jalanko, M.4
Riittinen, H.5
-
32
-
-
4344602134
-
Simultaneous feature selection and clustering using a mixture model
-
Sept.
-
LAW, M., FIGUEIREDO, M., AND JAIN, A. K. 2004. Simultaneous feature selection and clustering using a mixture model. IEEE Trans. Patt. Anal. Mach. Intell. 26, 9 (Sept.), 1154-1166.
-
(2004)
IEEE Trans. Patt. Anal. Mach. Intell
, vol.26
, Issue.9
, pp. 1154-1166
-
-
Law, M.1
Figueiredo, M.2
Jain, A.K.3
-
34
-
-
0038724494
-
Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
-
MONTI, S., PABLO, T., MESIROV, J., AND GOLUB, T. 2003. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52, 91-118.
-
(2003)
Mach. Learn
, vol.52
, pp. 91-118
-
-
Monti, S.1
Pablo, T.2
Mesirov, J.3
Golub, T.4
-
35
-
-
0020880649
-
The alsm algorithm-an improved subspace method of classification
-
OJA, E. AND KUUSELA, M. 1983. The alsm algorithm-an improved subspace method of classification. Patt. Recog. 4, 16, 421-427.
-
(1983)
Patt. Recog
, vol.4
, Issue.16
, pp. 421-427
-
-
Oja, E.1
Kuusela, M.2
-
36
-
-
17044376078
-
Subspace clustering for high dimensional data: A review
-
PARSONS, L., HAQUE, E., AND LIU, H. 2004. Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl. 6, 1, 90-105.
-
(2004)
SIGKDD Explor. Newsl
, vol.6
, Issue.1
, pp. 90-105
-
-
Parsons, L.1
Haque, E.2
Liu, H.3
-
38
-
-
0347918435
-
A resampling approach to cluster validation
-
ROTH, V., LANGE, T., BRAUN, M., AND BUHMANN, J. 2002. A resampling approach to cluster validation. In Proceedings of the International Conference on Computational Statistics. 123-129.
-
(2002)
Proceedings of the International Conference on Computational Statistics
, pp. 123-129
-
-
Roth, V.1
Lange, T.2
Braun, M.3
Buhmann, J.4
-
39
-
-
0000120766
-
Estimating the dimension of a model
-
SCHWARZ, G. 1978. Estimating the dimension of a model. Ann. Stat. 6, 2, 461-464.
-
(1978)
Ann. Stat
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
40
-
-
0041965980
-
Cluster ensembles-a knowledge reuse framework for combining multiple partitions
-
STREHL, A. AND GHOSH, J. 2002a. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 583-617.
-
(2002)
J. Mach. Learn. Res.
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
41
-
-
0041965980
-
Cluster ensembles-a knowledge reuse framework for combining multiple partitions
-
STREHL, A. AND GHOSH, J. 2002b. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583-617.
-
(2002)
J. Mach. Learn. Res.
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
42
-
-
0035532141
-
Estimating the number of clusters in a dataset via the gap statistic
-
TIBSHIRANI, R., WALTHER, G., AND HASTIE, T. 2001. Estimating the number of clusters in a dataset via the gap statistic. J. Roy. Statist. Soc. 63, 2, 411-423.
-
(2001)
J. Roy. Statist. Soc.
, vol.63
, Issue.2
, pp. 411-423
-
-
Tibshirani, R.1
Walther, G.2
Hastie, T.3
|