메뉴 건너뛰기




Volumn 4, Issue 3, 2010, Pages

Learning multiple nonredundant clusterings

Author keywords

Disparate clustering; Diverse clustering; Nonredundant clustering; Orthogonalization

Indexed keywords

BELONG TO; BENCHMARK DATA; CLUSTERING SOLUTIONS; CLUSTERINGS; COMPLEX DATA; DATA POINTS; DIFFERENT STRUCTURE; DISPARATE CLUSTERING; DIVERSE CLUSTERING; EXPLORATORY DATA ANALYSIS; FEATURE SPACE; FEATURE SUBSPACE; HIGH DIMENSIONAL DATA; HIGH-DIMENSIONAL; NON-REDUNDANT CLUSTERING; NUMBER OF CLUSTERS; ORTHOGONAL SUBSPACES; ORTHOGONALITY; ORTHOGONALIZATION; REAL-WORLD APPLICATION; STOPPING CRITERIA; TRADITIONAL CLUSTERING;

EID: 78049323340     PISSN: 15564681     EISSN: 1556472X     Source Type: Journal    
DOI: 10.1145/1839490.1839496     Document Type: Article
Times cited : (16)

References (43)
  • 2
    • 78049332981 scopus 로고    scopus 로고
    • ACM Transactions on Knowledge Discovery from Data, Article 15, Pub. date: October
    • ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 15, Pub. date: October 2010.
    • (2010) , vol.4 , Issue.3
  • 3
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • AKAIKE, H. 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 6, 716-723.
    • (1974) IEEE Trans. Autom. Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 4
    • 84873117260 scopus 로고    scopus 로고
    • Coala: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity
    • BAE, E. AND BAILEY, J. 2006. Coala: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity. In Proceedings of the 6th International Conference on Data Mining. 53-62.
    • (2006) Proceedings of the 6th International Conference on Data Mining , pp. 53-62
    • Bae, E.1    Bailey, J.2
  • 5
    • 78049336196 scopus 로고    scopus 로고
    • UCI KDD archive
    • BAY, S. D. 1999. The UCI KDD archive. http://kdd.ics.uci.edu/.
    • (1999)
    • Bay, S.D.1
  • 9
    • 78049328727 scopus 로고    scopus 로고
    • CMU, CMU 4 universities WebKB data
    • CMU. 1997. CMU 4 universities WebKB data.
    • (1997)
  • 12
    • 67549123292 scopus 로고    scopus 로고
    • Weighted cluster ensembles: Methods and analysis
    • January
    • DOMENICONI, C. AND AL-RAZGAN, M. 2009. Weighted cluster ensembles: Methods and analysis. ACM Trans. Knowl. Disc. Data 2, 4 (January), 1-40.
    • (2009) ACM Trans. Knowl. Disc. Data , vol.2 , Issue.4 , pp. 1-40
    • Domeniconi, C.1    Al-Razgan, M.2
  • 15
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • DY, J. G. AND BRODLEY, C. E. 2004. Feature selection for unsupervised learning. J. Mach. Learn. Res. 5, 845-889.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 18
    • 0036522404 scopus 로고    scopus 로고
    • Unsupervised learning of finite mixture models. IEEE
    • Mar.
    • FIGUEIREDO, M. A. T., AND JAIN, A. K. 2002. Unsupervised learning of finite mixture models. IEEE Trans. Patt. Anal. Mach. Intell. 24, 3 (Mar.), 381-396.
    • (2002) Trans. Patt. Anal. Mach. Intell , vol.24 , Issue.3 , pp. 381-396
    • Figueiredo, M.A.T.1    Jain, A.K.2
  • 19
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications
    • FORGY, E. 1965. Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics 21, 768.
    • (1965) Biometrics , vol.21 , pp. 768
    • Forgy, E.1
  • 20
    • 21244468777 scopus 로고    scopus 로고
    • Combining multiple clusterings using evidence accumulation
    • June
    • FRED, A. L. N. AND JAIN, A. K. 2005. Combining multiple clusterings using evidence accumulation. IEEE Trans. Patt. Anal. Mach. Intell. 27, 6 (June), 835-850.
    • (2005) IEEE Trans. Patt. Anal. Mach. Intell , vol.27 , Issue.6 , pp. 835-850
    • Fred, A.L.N.1    Jain, A.K.2
  • 23
  • 32
    • 4344602134 scopus 로고    scopus 로고
    • Simultaneous feature selection and clustering using a mixture model
    • Sept.
    • LAW, M., FIGUEIREDO, M., AND JAIN, A. K. 2004. Simultaneous feature selection and clustering using a mixture model. IEEE Trans. Patt. Anal. Mach. Intell. 26, 9 (Sept.), 1154-1166.
    • (2004) IEEE Trans. Patt. Anal. Mach. Intell , vol.26 , Issue.9 , pp. 1154-1166
    • Law, M.1    Figueiredo, M.2    Jain, A.K.3
  • 34
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • MONTI, S., PABLO, T., MESIROV, J., AND GOLUB, T. 2003. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52, 91-118.
    • (2003) Mach. Learn , vol.52 , pp. 91-118
    • Monti, S.1    Pablo, T.2    Mesirov, J.3    Golub, T.4
  • 35
    • 0020880649 scopus 로고
    • The alsm algorithm-an improved subspace method of classification
    • OJA, E. AND KUUSELA, M. 1983. The alsm algorithm-an improved subspace method of classification. Patt. Recog. 4, 16, 421-427.
    • (1983) Patt. Recog , vol.4 , Issue.16 , pp. 421-427
    • Oja, E.1    Kuusela, M.2
  • 36
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • PARSONS, L., HAQUE, E., AND LIU, H. 2004. Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl. 6, 1, 90-105.
    • (2004) SIGKDD Explor. Newsl , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 39
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • SCHWARZ, G. 1978. Estimating the dimension of a model. Ann. Stat. 6, 2, 461-464.
    • (1978) Ann. Stat , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 40
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining multiple partitions
    • STREHL, A. AND GHOSH, J. 2002a. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 583-617.
    • (2002) J. Mach. Learn. Res. , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 41
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining multiple partitions
    • STREHL, A. AND GHOSH, J. 2002b. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583-617.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 42
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset via the gap statistic
    • TIBSHIRANI, R., WALTHER, G., AND HASTIE, T. 2001. Estimating the number of clusters in a dataset via the gap statistic. J. Roy. Statist. Soc. 63, 2, 411-423.
    • (2001) J. Roy. Statist. Soc. , vol.63 , Issue.2 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.