-
1
-
-
12244261221
-
A generalized maximum entropy approach to Bregman co-clustering and matrix approximation
-
A. Banerjee, I. Dhillon, I. Ghosh, S, Merugu, and D. Modha. A generalized maximum entropy approach to Bregman co-clustering and matrix approximation. In KDD, 2004.
-
(2004)
KDD
-
-
Banerjee, A.1
Dhillon, I.2
Ghosh, I.3
Merugu, S.4
Modha, D.5
-
3
-
-
12244300524
-
A probabilistic framework for semi-supervised clustering
-
S. Basu, M, Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. In KDD, 2004.
-
(2004)
KDD
-
-
Basu, S.1
Bilenko, M.2
Mooney, R.J.3
-
4
-
-
32344448816
-
Probabilistic discovery of overlapping cellular processes and their regulation using gene expression data
-
A. Battle, E. Segal, and D. Koller. Probabilistic discovery of overlapping cellular processes and their regulation using gene expression data. In RECOMB, 2004.
-
(2004)
RECOMB
-
-
Battle, A.1
Segal, E.2
Koller, D.3
-
8
-
-
0034566393
-
Biclustering of expression data
-
Y. Cheng and G. M. Church. Biclustering of expression data. In ISMB, 2000.
-
(2000)
ISMB
-
-
Cheng, Y.1
Church, G.M.2
-
9
-
-
0009625877
-
Hard knapsack problems
-
V.Chvátal. Hard knapsack problems. Operations Research, 28(6):1402-1412, 1980.
-
(1980)
Operations Research
, vol.28
, Issue.6
, pp. 1402-1412
-
-
Chvátal, V.1
-
10
-
-
0042420026
-
A generalization of principal component analysis to the exponential family
-
M. Collins, S. Dasgupta, and R. Schapire. A generalization of principal component analysis to the exponential family. In NIPS, 2001.
-
(2001)
NIPS
-
-
Collins, M.1
Dasgupta, S.2
Schapire, R.3
-
11
-
-
0001087620
-
Logistic regression, AdaBoost and Bregman distances
-
M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances. In COLT, 2000.
-
(2000)
COLT
-
-
Collins, M.1
Schapire, R.E.2
Singer, Y.3
-
13
-
-
0034824884
-
Concept decompositions for large sparse text data using clustering
-
I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering. Machine Learning, 42:143-175, 2001.
-
(2001)
Machine Learning
, vol.42
, pp. 143-175
-
-
Dhillon, I.S.1
Modha, D.S.2
-
16
-
-
0034568109
-
Gene shaving as a method for identifying distinct sets of genes with similar expression patterns
-
T. Hastie, R. Tibshirani, M. B. Eisen, A. Alizadeh, R. Levy, L. Staudt, W. C. Chan, D. Botstein, and P. Brown. Gene shaving as a method for identifying distinct sets of genes with similar expression patterns. Genome Biology, 2000.
-
(2000)
Genome Biology
-
-
Hastie, T.1
Tibshirani, R.2
Eisen, M.B.3
Alizadeh, A.4
Levy, R.5
Staudt, L.6
Chan, W.C.7
Botstein, D.8
Brown, P.9
-
18
-
-
0036012349
-
Plaid models for gene expression data
-
L. Lazzeroni and A. B. Owen. Plaid models for gene expression data. Statistica Sinica, 12(1):61-86, 2002.
-
(2002)
Statistica Sinica
, vol.12
, Issue.1
, pp. 61-86
-
-
Lazzeroni, L.1
Owen, A.B.2
-
19
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, 2001.
-
(2001)
NIPS
-
-
Lee, D.1
Seung, H.S.2
-
20
-
-
0015397231
-
Problem decomposition and data reorganization by a clustering technique
-
W. T. McCormick, P. J. Schweitzer, and T. W. White. Problem decomposition and data reorganization by a clustering technique. Operations Research, 20:993-1009, 1972.
-
(1972)
Operations Research
, vol.20
, pp. 993-1009
-
-
McCormick, W.T.1
Schweitzer, P.J.2
White, T.W.3
-
22
-
-
32344446698
-
Applying the multiple cause mixture model to text categorization
-
M. Sahami, M. Hearst, and E. Saund. Applying the Multiple Cause Mixture Model to Text Categorization. In ICML, 1996.
-
(1996)
ICML
-
-
Sahami, M.1
Hearst, M.2
Saund, E.3
-
23
-
-
0043130664
-
Decomposing gene expression into cellular processes
-
E. Segal, A. Battle, and D. Koller. Decomposing gene expression into cellular processes. In PSB, 2003.
-
(2003)
PSB
-
-
Segal, E.1
Battle, A.2
Koller, D.3
|