-
1
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven soft sensors in the process industry Comput. Chem. Eng. 2009, 33 (4) 795-814
-
(2009)
Comput. Chem. Eng.
, vol.33
, Issue.4
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
2
-
-
78649468188
-
Review of adaptation mechanisms for data-driven soft sensors
-
Kadlec, P.; Grbić, R.; Gabrys, B. Review of adaptation mechanisms for data-driven soft sensors Comput. Chem. Eng. 2011, 35 (1) 1-24
-
(2011)
Comput. Chem. Eng.
, vol.35
, Issue.1
, pp. 1-24
-
-
Kadlec, P.1
Grbić, R.2
Gabrys, B.3
-
3
-
-
33847162850
-
A systematic approach for soft sensor development
-
Lin, B.; Recke, B.; Knudsen, J. K.; Jørgensen, S. B. A systematic approach for soft sensor development Comput. Chem. Eng. 2007, 31 (5) 419-425
-
(2007)
Comput. Chem. Eng.
, vol.31
, Issue.5
, pp. 419-425
-
-
Lin, B.1
Recke, B.2
Knudsen, J.K.3
Jørgensen, S.B.4
-
4
-
-
0001681052
-
The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses
-
Wold, S.; Ruhe, A.; Wold, H.; Dunn, W. J., III. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses SIAM J. Sci. Stat. Comput. 1984, 5 (3) 735-743
-
(1984)
SIAM J. Sci. Stat. Comput.
, vol.5
, Issue.3
, pp. 735-743
-
-
Wold, S.1
Ruhe, A.2
Wold, H.3
Dunn, W.J.4
-
5
-
-
57049112694
-
ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
-
Gonzaga, J.; Meleiro, L.; Kiang, C.; Maciel Filho, R. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process Comput. Chem. Eng. 2009, 33 (1) 43-49
-
(2009)
Comput. Chem. Eng.
, vol.33
, Issue.1
, pp. 43-49
-
-
Gonzaga, J.1
Meleiro, L.2
Kiang, C.3
Maciel Filho, R.4
-
6
-
-
27444433806
-
Soft-sensor development for fed-batch bioreactors using support vector regression
-
Desai, K.; Badhe, Y.; Tambe, S. S.; Kulkarni, B. D. Soft-sensor development for fed-batch bioreactors using support vector regression Biochem. Eng. J. 2006, 27 (3) 225-239
-
(2006)
Biochem. Eng. J.
, vol.27
, Issue.3
, pp. 225-239
-
-
Desai, K.1
Badhe, Y.2
Tambe, S.S.3
Kulkarni, B.D.4
-
7
-
-
0034301495
-
Recursive PCA for adaptive process monitoring
-
Li, W.; Yue, H. H.; Valle-Cervantes, S.; Qin, S. J. Recursive PCA for adaptive process monitoring J. Process Control 2000, 10 (5) 471-486
-
(2000)
J. Process Control
, vol.10
, Issue.5
, pp. 471-486
-
-
Li, W.1
Yue, H.H.2
Valle-Cervantes, S.3
Qin, S.J.4
-
8
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
Joe Qin, S. Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 1998, 22 (4) 503-514
-
(1998)
Comput. Chem. Eng.
, vol.22
, Issue.4
, pp. 503-514
-
-
Joe Qin, S.1
-
9
-
-
79955915214
-
Real-time fault diagnosis approach based on lifting wavelet and recursive LSSVM
-
Qing, Y.; Feng, T.; Dazhi, W.; Dongsheng, W.; Anna, W. Real-time fault diagnosis approach based on lifting wavelet and recursive LSSVM Chin. J. Sci. Instrum. 2011, 32 (3) 596-602
-
(2011)
Chin. J. Sci. Instrum.
, vol.32
, Issue.3
, pp. 596-602
-
-
Qing, Y.1
Feng, T.2
Dazhi, W.3
Dongsheng, W.4
Anna, W.5
-
10
-
-
84879309312
-
Classification of the Degradation of Soft Sensor Models and Discussion on Adaptive Models
-
Kaneko, H.; Funatsu, K. Classification of the Degradation of Soft Sensor Models and Discussion on Adaptive Models AIChE J. 2013, 59 (7) 2339-2347
-
(2013)
AIChE J.
, vol.59
, Issue.7
, pp. 2339-2347
-
-
Kaneko, H.1
Funatsu, K.2
-
11
-
-
2942558590
-
A new data-based methodology for nonlinear process modeling
-
Cheng, C.; Chiu, M.-S. A new data-based methodology for nonlinear process modeling Chem. Eng. Sci. 2004, 59 (13) 2801-2810
-
(2004)
Chem. Eng. Sci.
, vol.59
, Issue.13
, pp. 2801-2810
-
-
Cheng, C.1
Chiu, M.-S.2
-
12
-
-
78650524009
-
A comparative study of just-in-time-learning based methods for online soft sensor modeling
-
Ge, Z.; Song, Z. A comparative study of just-in-time-learning based methods for online soft sensor modeling Chemom. Intell. Lab. Syst. 2010, 104 (2) 306-317
-
(2010)
Chemom. Intell. Lab. Syst.
, vol.104
, Issue.2
, pp. 306-317
-
-
Ge, Z.1
Song, Z.2
-
13
-
-
84863278909
-
Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor
-
Liu, Y.; Huang, D.; Li, Y. Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor Ind. Eng. Chem. Res. 2012, 51 (8) 3356-3367
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, Issue.8
, pp. 3356-3367
-
-
Liu, Y.1
Huang, D.2
Li, Y.3
-
14
-
-
50649095932
-
Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
-
Ge, Z.; Song, Z. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach Control Eng. Pract. 2008, 16 (12) 1427-1437
-
(2008)
Control Eng. Pract.
, vol.16
, Issue.12
, pp. 1427-1437
-
-
Ge, Z.1
Song, Z.2
-
15
-
-
68049143320
-
Soft-sensor development using correlation-based just-in-time modeling
-
Fujiwara, K.; Kano, M.; Hasebe, S.; Takinami, A. Soft-sensor development using correlation-based just-in-time modeling AIChE J. 2009, 55 (7) 1754-1765
-
(2009)
AIChE J.
, vol.55
, Issue.7
, pp. 1754-1765
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
Takinami, A.4
-
16
-
-
0031073475
-
Locally weighted learning for control
-
Atkeson, C. G.; Moore, A. W.; Schaal, S. Locally weighted learning for control Artif. Intell. Rev. 1997, 11 (1-5) 75-113
-
(1997)
Artif. Intell. Rev.
, vol.11
, Issue.15
, pp. 75-113
-
-
Atkeson, C.G.1
Moore, A.W.2
Schaal, S.3
-
17
-
-
84906872234
-
Locally Weighted Kernel Principal Component Regression Model for Soft Sensing of Nonlinear Time-Variant Processes
-
Yuan, X.; Ge, Z.; Song, Z. Locally Weighted Kernel Principal Component Regression Model for Soft Sensing of Nonlinear Time-Variant Processes Ind. Eng. Chem. Res. 2014, 53 (35) 13736-13749
-
(2014)
Ind. Eng. Chem. Res.
, vol.53
, Issue.35
, pp. 13736-13749
-
-
Yuan, X.1
Ge, Z.2
Song, Z.3
-
18
-
-
14844303316
-
Nonlinear process monitoring using JITL-PCA
-
Cheng, C.; Chiu, M.-S. Nonlinear process monitoring using JITL-PCA Chemom. Intell. Lab. Syst. 2005, 76 (1) 1-13
-
(2005)
Chemom. Intell. Lab. Syst.
, vol.76
, Issue.1
, pp. 1-13
-
-
Cheng, C.1
Chiu, M.-S.2
-
19
-
-
0030287048
-
The expectation-maximization algorithm
-
Moon, T. K. The expectation-maximization algorithm Signal Process. Mag., IEEE 1996, 13 (6) 47-60
-
(1996)
Signal Process. Mag., IEEE
, vol.13
, Issue.6
, pp. 47-60
-
-
Moon, T.K.1
-
21
-
-
0001441372
-
Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks
-
MacKay, D. J. Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks Network: Comput. Neural Syst. 1995, 6 (3) 469-505
-
(1995)
Network: Comput. Neural Syst.
, vol.6
, Issue.3
, pp. 469-505
-
-
Mackay, D.J.1
-
22
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
University of California Press: Berkeley, CA
-
MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability; Le Cam, L. M.; Neyman, J., Eds.; University of California Press: Berkeley, CA, 1967; pp 281-297.
-
(1967)
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability
, pp. 281-297
-
-
Macqueen, J.1
Le Cam, L.M.2
Neyman, J.3
-
24
-
-
0035998835
-
Model-based clustering, discriminant analysis, and density estimation
-
Fraley, C.; Raftery, A. E. Model-based clustering, discriminant analysis, and density estimation J. Am. Stat. Assoc. 2002, 97 (458) 611-631
-
(2002)
J. Am. Stat. Assoc.
, vol.97
, Issue.458
, pp. 611-631
-
-
Fraley, C.1
Raftery, A.E.2
-
27
-
-
84860652706
-
Soft Sensor Development Using non-Gaussian Just-In-Time Modeling
-
IEEE Press: Piscataway, NJ
-
Zeng, J.; Xie, L.; Gao, C.; Sha, J. Soft Sensor Development Using non-Gaussian Just-In-Time Modeling. In 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC); IEEE Press: Piscataway, NJ, 2011; pp 5868-5873.
-
(2011)
50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC)
, pp. 5868-5873
-
-
Zeng, J.1
Xie, L.2
Gao, C.3
Sha, J.4
-
28
-
-
33846516584
-
-
Information Science and Statistics Series; Springer-Verlag: New York
-
Bishop, C. M. Pattern Recognition and Machine Learning; Information Science and Statistics Series; Springer-Verlag: New York, 2006.
-
(2006)
Pattern Recognition and Machine Learning
-
-
Bishop, C.M.1
|