메뉴 건너뛰기




Volumn 24, Issue , 2014, Pages 138-149

A novel variant of DNA polymerase ζ, Rev3δC, highlights differential regulation of Pol32 as a subunit of polymerase δ versus ζ in Saccharomyces cerevisiae

Author keywords

Mgs1; Pol32; Polymerase switch; Polymerase ; Translesion DNA synthesis; UV mutagenesis

Indexed keywords

DNA DIRECTED DNA POLYMERASE; DNA DIRECTED DNA POLYMERASE DELTA; DNA DIRECTED DNA POLYMERASE ZETA; UNCLASSIFIED DRUG; CYCLINE; DNA DIRECTED DNA POLYMERASE GAMMA; DNA HELICASE; DNA POLYMERASE ZETA; MGS1 PROTEIN, S CEREVISIAE; NUCLEOTIDYLTRANSFERASE; POL31 PROTEIN, S CEREVISIAE; POL32 PROTEIN, S CEREVISIAE; REV1 PROTEIN, S CEREVISIAE; REV3 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84919777165     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2014.04.013     Document Type: Article
Times cited : (20)

References (64)
  • 2
    • 84876398399 scopus 로고    scopus 로고
    • DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae
    • Boiteux S., Jinks-Robertson S. DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae. Genetics 2013, 193:1025-1064.
    • (2013) Genetics , vol.193 , pp. 1025-1064
    • Boiteux, S.1    Jinks-Robertson, S.2
  • 3
    • 28844506236 scopus 로고    scopus 로고
    • Suffering in silence: the tolerance of DNA damage
    • Friedberg E.C. Suffering in silence: the tolerance of DNA damage. Nat. Rev. Mol. Cell Biol. 2005, 6:943-953.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 943-953
    • Friedberg, E.C.1
  • 5
    • 84874681638 scopus 로고    scopus 로고
    • Translesion DNA synthesis and mutagenesis in eukaryotes
    • Sale J.E. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb. Perspect. Biol. 2013, 5:a012708.
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , pp. a012708
    • Sale, J.E.1
  • 6
    • 33750935287 scopus 로고    scopus 로고
    • Gaps and forks in DNA replication: rediscovering old models
    • Lehmann A.R., Fuchs R.P. Gaps and forks in DNA replication: rediscovering old models. DNA Repair (Amst.) 2006, 5:1495-1498.
    • (2006) DNA Repair (Amst.) , vol.5 , pp. 1495-1498
    • Lehmann, A.R.1    Fuchs, R.P.2
  • 8
    • 0037115955 scopus 로고    scopus 로고
    • How DNA lesions are turned into mutations within cells?
    • Pages V., Fuchs R.P. How DNA lesions are turned into mutations within cells?. Oncogene 2002, 21:8957-8966.
    • (2002) Oncogene , vol.21 , pp. 8957-8966
    • Pages, V.1    Fuchs, R.P.2
  • 9
    • 33845496081 scopus 로고    scopus 로고
    • Roles of DNA polymerases in replication, repair, and recombination
    • Pavlov Y.I., Shcherbakova P.V., Rogozin I.B. Roles of DNA polymerases in replication, repair, and recombination. Int. Rev. Cytol. 2006, 255:41-132.
    • (2006) Int. Rev. Cytol. , vol.255 , pp. 41-132
    • Pavlov, Y.I.1    Shcherbakova, P.V.2    Rogozin, I.B.3
  • 10
    • 14544283693 scopus 로고    scopus 로고
    • Portraits of a Y-family DNA polymerase
    • Yang W. Portraits of a Y-family DNA polymerase. FEBS Lett. 2005, 579:868-872.
    • (2005) FEBS Lett. , vol.579 , pp. 868-872
    • Yang, W.1
  • 11
    • 21244506437 scopus 로고    scopus 로고
    • Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function
    • Prakash S., Johnson R.E., Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 2005, 74:317-353.
    • (2005) Annu. Rev. Biochem. , vol.74 , pp. 317-353
    • Prakash, S.1    Johnson, R.E.2    Prakash, L.3
  • 12
    • 77953166792 scopus 로고    scopus 로고
    • Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis
    • Livneh Z., Ziv O., Shachar S. Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis. Cell Cycle 2010, 9:729-735.
    • (2010) Cell Cycle , vol.9 , pp. 729-735
    • Livneh, Z.1    Ziv, O.2    Shachar, S.3
  • 15
    • 2942649047 scopus 로고    scopus 로고
    • How to activate a damage-tolerant polymerase: consequences of PCNA modifications by ubiquitin and SUMO
    • Ulrich H.D. How to activate a damage-tolerant polymerase: consequences of PCNA modifications by ubiquitin and SUMO. Cell Cycle 2004, 3:15-18.
    • (2004) Cell Cycle , vol.3 , pp. 15-18
    • Ulrich, H.D.1
  • 16
    • 56049116698 scopus 로고    scopus 로고
    • Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae
    • Pages V., Bresson A., Acharya N., Prakash S., Fuchs R.P., Prakash L. Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 2008, 180:73-82.
    • (2008) Genetics , vol.180 , pp. 73-82
    • Pages, V.1    Bresson, A.2    Acharya, N.3    Prakash, S.4    Fuchs, R.P.5    Prakash, L.6
  • 17
    • 0036682979 scopus 로고    scopus 로고
    • Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair
    • Prakash S., Prakash L. Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev. 2002, 16:1872-1883.
    • (2002) Genes Dev. , vol.16 , pp. 1872-1883
    • Prakash, S.1    Prakash, L.2
  • 18
    • 0141831006 scopus 로고    scopus 로고
    • Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation
    • Stelter P., Ulrich H.D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 2003, 425:188-191.
    • (2003) Nature , vol.425 , pp. 188-191
    • Stelter, P.1    Ulrich, H.D.2
  • 19
    • 33645727204 scopus 로고    scopus 로고
    • Deubiquitinating PCNA: a downside to DNA damage tolerance
    • Ulrich H.D. Deubiquitinating PCNA: a downside to DNA damage tolerance. Nat. Cell Biol. 2006, 8:303-305.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 303-305
    • Ulrich, H.D.1
  • 24
    • 74249092035 scopus 로고    scopus 로고
    • Participation of DNA polymerase zeta in replication of undamaged DNA in Saccharomyces cerevisiae
    • Northam M.R., Robinson H.A., Kochenova O.V., Shcherbakova P.V. Participation of DNA polymerase zeta in replication of undamaged DNA in Saccharomyces cerevisiae. Genetics 2010, 184:27-42.
    • (2010) Genetics , vol.184 , pp. 27-42
    • Northam, M.R.1    Robinson, H.A.2    Kochenova, O.V.3    Shcherbakova, P.V.4
  • 26
    • 73649145169 scopus 로고    scopus 로고
    • Roles of Rev1, Pol zeta, Pol32 and Pol eta in the bypass of chromosomal abasic sites in Saccharomyces cerevisiae
    • Auerbach P.A., Demple B. Roles of Rev1, Pol zeta, Pol32 and Pol eta in the bypass of chromosomal abasic sites in Saccharomyces cerevisiae. Mutagenesis 2010, 25:63-69.
    • (2010) Mutagenesis , vol.25 , pp. 63-69
    • Auerbach, P.A.1    Demple, B.2
  • 27
    • 31544434491 scopus 로고    scopus 로고
    • Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells
    • Wittschieben J.P., Reshmi S.C., Gollin S.M., Wood R.D. Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells. Cancer Res. 2006, 66:134-142.
    • (2006) Cancer Res. , vol.66 , pp. 134-142
    • Wittschieben, J.P.1    Reshmi, S.C.2    Gollin, S.M.3    Wood, R.D.4
  • 28
    • 47649100711 scopus 로고    scopus 로고
    • DNA polymerases and human disease
    • Loeb L.A., Monnat R.J. DNA polymerases and human disease. Nat. Rev. Genet. 2008, 9:594-604.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 594-604
    • Loeb, L.A.1    Monnat, R.J.2
  • 29
    • 79551615628 scopus 로고    scopus 로고
    • Translesion synthesis polymerases in the prevention and promotion of carcinogenesis
    • pii: 643857
    • Stallons L.J., McGregor W.G. Translesion synthesis polymerases in the prevention and promotion of carcinogenesis. J. Nucleic Acids 2010, 2010. pii: 643857.
    • (2010) J. Nucleic Acids , vol.2010
    • Stallons, L.J.1    McGregor, W.G.2
  • 30
    • 31544479310 scopus 로고    scopus 로고
    • DNA polymerase zeta accounts for the reduced cytotoxicity and enhanced mutagenicity of cisplatin in human colon carcinoma cells that have lost DNA mismatch repair
    • Lin X., Trang J., Okuda T., Howell S.B. DNA polymerase zeta accounts for the reduced cytotoxicity and enhanced mutagenicity of cisplatin in human colon carcinoma cells that have lost DNA mismatch repair. Clin. Cancer Res. 2006, 12:563-568.
    • (2006) Clin. Cancer Res. , vol.12 , pp. 563-568
    • Lin, X.1    Trang, J.2    Okuda, T.3    Howell, S.B.4
  • 31
    • 0029952294 scopus 로고    scopus 로고
    • Thymine-thymine dimer bypass by yeast DNA polymerase ζ
    • Nelson J.R., Lawrence C.W., Hinkle D.C. Thymine-thymine dimer bypass by yeast DNA polymerase ζ. Science 1996, 272:1646-1649.
    • (1996) Science , vol.272 , pp. 1646-1649
    • Nelson, J.R.1    Lawrence, C.W.2    Hinkle, D.C.3
  • 33
    • 84896820727 scopus 로고    scopus 로고
    • Human Pol zeta purified with accessory subunits is active in translesion DNA synthesis and complements Pol eta in cisplatin bypass
    • Lee Y.S., Gregory M.T., Yang W. Human Pol zeta purified with accessory subunits is active in translesion DNA synthesis and complements Pol eta in cisplatin bypass. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:2954-2959.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 2954-2959
    • Lee, Y.S.1    Gregory, M.T.2    Yang, W.3
  • 34
    • 84864512844 scopus 로고    scopus 로고
    • Pol31 and Pol32 subunits of yeast DNA polymerase delta are also essential subunits of DNA polymerase zeta
    • Johnson R.E., Prakash L., Prakash S. Pol31 and Pol32 subunits of yeast DNA polymerase delta are also essential subunits of DNA polymerase zeta. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:12455-12460.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 12455-12460
    • Johnson, R.E.1    Prakash, L.2    Prakash, S.3
  • 35
    • 84871256295 scopus 로고    scopus 로고
    • A four-subunit DNA polymerase zeta complex containing Pol delta accessory subunits is essential for PCNA-mediated mutagenesis
    • Makarova A.V., Stodola J.L., Burgers P.M. A four-subunit DNA polymerase zeta complex containing Pol delta accessory subunits is essential for PCNA-mediated mutagenesis. Nucleic Acids Res. 2012, 1-9.
    • (2012) Nucleic Acids Res. , pp. 1-9
    • Makarova, A.V.1    Stodola, J.L.2    Burgers, P.M.3
  • 36
    • 84864498729 scopus 로고    scopus 로고
    • Subunit sharing among high- and low-fidelity DNA polymerases
    • Langston L.D., O'Donnell M. Subunit sharing among high- and low-fidelity DNA polymerases. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:12268-12269.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 12268-12269
    • Langston, L.D.1    O'Donnell, M.2
  • 38
    • 84868700132 scopus 로고    scopus 로고
    • Structure and structure and function of eukaryotic DNA polymerase δ
    • Tahirov T.H. Structure and structure and function of eukaryotic DNA polymerase δ. Subcell. Biochem. 2012, 62:217-236.
    • (2012) Subcell. Biochem. , vol.62 , pp. 217-236
    • Tahirov, T.H.1
  • 40
    • 84893775199 scopus 로고    scopus 로고
    • Def1 promotes the degradation of Pol3 for polymerase exchange to occur during DNA-damage-induced mutagenesis in Saccharomyces cerevisiae
    • Daraba A., Gali V.K., Halmai M., Haracska L., Unk I. Def1 promotes the degradation of Pol3 for polymerase exchange to occur during DNA-damage-induced mutagenesis in Saccharomyces cerevisiae. PLoS Biol. 2014, 12:e1001771.
    • (2014) PLoS Biol. , vol.12 , pp. e1001771
    • Daraba, A.1    Gali, V.K.2    Halmai, M.3    Haracska, L.4    Unk, I.5
  • 41
    • 67650409702 scopus 로고    scopus 로고
    • 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases
    • Klinge S., Nunez-Ramirez R., Llorca O., Pellegrini L. 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases. EMBO J. 2009, 28:1978-1987.
    • (2009) EMBO J. , vol.28 , pp. 1978-1987
    • Klinge, S.1    Nunez-Ramirez, R.2    Llorca, O.3    Pellegrini, L.4
  • 44
    • 84855280799 scopus 로고    scopus 로고
    • The genome maintenance factor Mgs1 is targeted to sites of replication stress by ubiquitylated PCNA
    • Saugar I., Parker J.L., Zhao S., Ulrich H.D. The genome maintenance factor Mgs1 is targeted to sites of replication stress by ubiquitylated PCNA. Nucleic Acids Res. 2012, 40:245-257.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 245-257
    • Saugar, I.1    Parker, J.L.2    Zhao, S.3    Ulrich, H.D.4
  • 45
    • 0034805293 scopus 로고    scopus 로고
    • In vivo consequences of putative active site mutations in yeast DNA polymerases α, δ, and ζ
    • Pavlov Y.I., Shcherbakova P.V., Kunkel T.A. In vivo consequences of putative active site mutations in yeast DNA polymerases α, δ, and ζ. Genetics 2001, 159:47-64.
    • (2001) Genetics , vol.159 , pp. 47-64
    • Pavlov, Y.I.1    Shcherbakova, P.V.2    Kunkel, T.A.3
  • 46
    • 0032825991 scopus 로고    scopus 로고
    • Overexpression of multisubunit replication factors in yeast
    • Burgers P.M. Overexpression of multisubunit replication factors in yeast. Methods 1999, 18:349-355.
    • (1999) Methods , vol.18 , pp. 349-355
    • Burgers, P.M.1
  • 47
    • 21244448890 scopus 로고    scopus 로고
    • Proliferating cell nuclear antigen promotes translesion synthesis by DNA polymerase zeta
    • Garg P., Stith C.M., Majka J., Burgers P.M. Proliferating cell nuclear antigen promotes translesion synthesis by DNA polymerase zeta. J. Biol. Chem. 2005, 280:23446-23450.
    • (2005) J. Biol. Chem. , vol.280 , pp. 23446-23450
    • Garg, P.1    Stith, C.M.2    Majka, J.3    Burgers, P.M.4
  • 48
    • 0042662892 scopus 로고    scopus 로고
    • Roles of Saccharomyces cerevisiae DNA polymerases Polη and Polζ in response to irradiation by simulated sunlight
    • Kozmin S.G., Pavlov Y.I., Kunkel T.A., Sage E. Roles of Saccharomyces cerevisiae DNA polymerases Polη and Polζ in response to irradiation by simulated sunlight. Nucleic Acids Res. 2003, 31:4541-4552.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 4541-4552
    • Kozmin, S.G.1    Pavlov, Y.I.2    Kunkel, T.A.3    Sage, E.4
  • 49
    • 65349186567 scopus 로고    scopus 로고
    • Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors
    • Tahirov T.H., Makarova K.S., Rogozin I.B., Pavlov Y.I., Koonin E.V. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol. Direct 2009, 4:10.
    • (2009) Biol. Direct , vol.4 , pp. 10
    • Tahirov, T.H.1    Makarova, K.S.2    Rogozin, I.B.3    Pavlov, Y.I.4    Koonin, E.V.5
  • 50
    • 0018426423 scopus 로고
    • The CAN1 locus of Saccharomyces cerevisiae: fine-structure analysis and forward mutation rates
    • Whelan W.L., Gocke E., Manney T.R. The CAN1 locus of Saccharomyces cerevisiae: fine-structure analysis and forward mutation rates. Genetics 1979, 91:35-51.
    • (1979) Genetics , vol.91 , pp. 35-51
    • Whelan, W.L.1    Gocke, E.2    Manney, T.R.3
  • 51
    • 0032584658 scopus 로고    scopus 로고
    • Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta
    • Gerik K.J., Li X., Pautz A., Burgers P.M. Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 1998, 273:19747-19755.
    • (1998) J. Biol. Chem. , vol.273 , pp. 19747-19755
    • Gerik, K.J.1    Li, X.2    Pautz, A.3    Burgers, P.M.4
  • 52
    • 0033729983 scopus 로고    scopus 로고
    • POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase delta, defines a link between DNA replication and the mutagenic bypass repair pathway
    • Huang M.E., de Calignon A., Nicolas A., Galibert F. POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase delta, defines a link between DNA replication and the mutagenic bypass repair pathway. Curr. Genet. 2000, 38:178-187.
    • (2000) Curr. Genet. , vol.38 , pp. 178-187
    • Huang, M.E.1    de Calignon, A.2    Nicolas, A.3    Galibert, F.4
  • 53
    • 27144521116 scopus 로고    scopus 로고
    • Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain
    • Acharya N., Haracska L., Johnson R.E., Unk I., Prakash S., Prakash L. Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain. Mol. Cell. Biol. 2005, 25:9734-9740.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 9734-9740
    • Acharya, N.1    Haracska, L.2    Johnson, R.E.3    Unk, I.4    Prakash, S.5    Prakash, L.6
  • 54
    • 33745845186 scopus 로고    scopus 로고
    • Functional and physical interaction of yeast Mgs1 with PCNA: impact on RAD6-dependent DNA damage tolerance
    • Hishida T., Ohya T., Kubota Y., Kamada Y., Shinagawa H. Functional and physical interaction of yeast Mgs1 with PCNA: impact on RAD6-dependent DNA damage tolerance. Mol. Cell. Biol. 2006, 26:5509-5517.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 5509-5517
    • Hishida, T.1    Ohya, T.2    Kubota, Y.3    Kamada, Y.4    Shinagawa, H.5
  • 55
    • 0030814759 scopus 로고    scopus 로고
    • Involvement of the yeast DNA polymerase δ in DNA repair in vivo
    • Giot L., Chanet R., Simon M., Facca C., Faye G. Involvement of the yeast DNA polymerase δ in DNA repair in vivo. Genetics 1997, 146:1239-1251.
    • (1997) Genetics , vol.146 , pp. 1239-1251
    • Giot, L.1    Chanet, R.2    Simon, M.3    Facca, C.4    Faye, G.5
  • 56
    • 54249092768 scopus 로고    scopus 로고
    • Dividing the workload at a eukaryotic replication fork
    • Kunkel T.A., Burgers P.M. Dividing the workload at a eukaryotic replication fork. Trends Cell Biol. 2008, 18:521-527.
    • (2008) Trends Cell Biol. , vol.18 , pp. 521-527
    • Kunkel, T.A.1    Burgers, P.M.2
  • 57
    • 39549097102 scopus 로고    scopus 로고
    • Mutational specificity and genetic control of replicative bypass of an abasic site in yeast
    • Pages V., Johnson R.E., Prakash L., Prakash S. Mutational specificity and genetic control of replicative bypass of an abasic site in yeast. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:1170-1175.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 1170-1175
    • Pages, V.1    Johnson, R.E.2    Prakash, L.3    Prakash, S.4
  • 58
    • 75749086797 scopus 로고    scopus 로고
    • DNA polymerases at the eukaryotic fork-20 years later
    • Pavlov Y.I., Shcherbakova P.V. DNA polymerases at the eukaryotic fork-20 years later. Mutat. Res. 2010, 685:45-53.
    • (2010) Mutat. Res. , vol.685 , pp. 45-53
    • Pavlov, Y.I.1    Shcherbakova, P.V.2
  • 59
    • 84866951386 scopus 로고    scopus 로고
    • Structural basis of recruitment of DNA polymerase zeta by interaction between REV1 and REV7 proteins
    • Kikuchi S., Hara K., Shimizu T., Sato M., Hashimoto H. Structural basis of recruitment of DNA polymerase zeta by interaction between REV1 and REV7 proteins. J. Biol. Chem. 2012, 287:33847-33852.
    • (2012) J. Biol. Chem. , vol.287 , pp. 33847-33852
    • Kikuchi, S.1    Hara, K.2    Shimizu, T.3    Sato, M.4    Hashimoto, H.5
  • 60
    • 67649886521 scopus 로고    scopus 로고
    • Yeast Rev1 protein promotes complex formation of DNA polymerase zeta with Pol32 subunit of DNA polymerase delta
    • Acharya N., Johnson R.E., Pages V., Prakash L., Prakash S. Yeast Rev1 protein promotes complex formation of DNA polymerase zeta with Pol32 subunit of DNA polymerase delta. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9631-9636.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 9631-9636
    • Acharya, N.1    Johnson, R.E.2    Pages, V.3    Prakash, L.4    Prakash, S.5
  • 61
    • 0035902479 scopus 로고    scopus 로고
    • A yeast gene, MGS1, encoding a DNA-dependent AAA(+) ATPase is required to maintain genome stability
    • Hishida T., Iwasaki H., Ohno T., Morishita T., Shinagawa H. A yeast gene, MGS1, encoding a DNA-dependent AAA(+) ATPase is required to maintain genome stability. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:8283-8289.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 8283-8289
    • Hishida, T.1    Iwasaki, H.2    Ohno, T.3    Morishita, T.4    Shinagawa, H.5
  • 62
    • 84856223865 scopus 로고    scopus 로고
    • WRNIP1 accumulates at laser light irradiated sites rapidly via its ubiquitin-binding zinc finger domain and independently from its ATPase domain
    • Nomura H., Yoshimura A., Edo T., Kanno S., Tada S., Seki M., Yasui A., Enomoto T. WRNIP1 accumulates at laser light irradiated sites rapidly via its ubiquitin-binding zinc finger domain and independently from its ATPase domain. Biochem. Biophys. Res. Commun. 2012, 417:1145-1150.
    • (2012) Biochem. Biophys. Res. Commun. , vol.417 , pp. 1145-1150
    • Nomura, H.1    Yoshimura, A.2    Edo, T.3    Kanno, S.4    Tada, S.5    Seki, M.6    Yasui, A.7    Enomoto, T.8
  • 63
    • 14844352465 scopus 로고    scopus 로고
    • Human Werner helicase interacting protein 1 (Wrnip1) functions as a novel modulator for DNA polymerase δ
    • Tsurimoto T., Shinozaki A., Yano M., Seki M., Enomoto T. Human Werner helicase interacting protein 1 (Wrnip1) functions as a novel modulator for DNA polymerase δ. Genes Cells 2005, 10:13-22.
    • (2005) Genes Cells , vol.10 , pp. 13-22
    • Tsurimoto, T.1    Shinozaki, A.2    Yano, M.3    Seki, M.4    Enomoto, T.5
  • 64
    • 0036435686 scopus 로고    scopus 로고
    • The product of Saccharomyces cerevisiae WHIP/MGS1, a gene related to replication factor C genes, interacts functionally with DNA polymerase delta
    • Branzei D., Seki M., Onoda F., Enomoto T. The product of Saccharomyces cerevisiae WHIP/MGS1, a gene related to replication factor C genes, interacts functionally with DNA polymerase delta. Mol. Genet. Genomics 2002, 268:371-386.
    • (2002) Mol. Genet. Genomics , vol.268 , pp. 371-386
    • Branzei, D.1    Seki, M.2    Onoda, F.3    Enomoto, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.