메뉴 건너뛰기




Volumn 41, Issue 3, 2014, Pages 855-869

Decision tree ensembles based on kernel features

Author keywords

AdaBoost.M1; Bagging; Classifier ensembles; Decision trees; Kernel features; Random forests; Random subspaces

Indexed keywords

RANDOM FORESTS;

EID: 84918817950     PISSN: 0924669X     EISSN: 15737497     Source Type: Journal    
DOI: 10.1007/s10489-014-0575-4     Document Type: Article
Times cited : (16)

References (38)
  • 1
    • 84918771473 scopus 로고    scopus 로고
    • Ahmad A, Brown G. Article in press
    • Ahmad A, Brown G. Article in press
  • 2
    • 84918808380 scopus 로고    scopus 로고
    • Amasyali M, Ersoy O. Article in press
    • Amasyali M, Ersoy O. Article in press
  • 3
    • 33745467619 scopus 로고    scopus 로고
    • An Algorithmic Theory of Learning:Robust Concepts and Random Projection
    • Arriaga R, Vempala S (2006) An Algorithmic Theory of Learning:Robust Concepts and Random Projection. Mach Learn 63(2):161–182
    • (2006) Mach Learn , vol.63 , Issue.2 , pp. 161-182
    • Arriaga, R.1    Vempala, S.2
  • 5
    • 33749033927 scopus 로고    scopus 로고
    • Kernels as Features: On Kernels, Margins, and Low-dimensional Mappings
    • Balcan MF, Blum A, Vempala S (2006) Kernels as Features: On Kernels, Margins, and Low-dimensional Mappings. Mach Learn 65:79–94
    • (2006) Mach Learn , vol.65 , pp. 79-94
    • Balcan, M.F.1    Blum, A.2    Vempala, S.3
  • 6
    • 50949127418 scopus 로고    scopus 로고
    • On Relevant Dimensions in Kernel Feature Spaces
    • Braun ML, Buhmann JM, Muller KR (2009) On Relevant Dimensions in Kernel Feature Spaces. J Mach Learn Res 9:1875–1908
    • (2009) J Mach Learn Res , vol.9 , pp. 1875-1908
    • Braun, M.L.1    Buhmann, J.M.2    Muller, K.R.3
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman L (1996) Bagging Predictors. Mach Learn 24(2):123–140
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L (2001) Random Forests. Mach Learn 45(1):5–32
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 10
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • Burges CJC (1998) A Tutorial on Support Vector Machines for Pattern Recognition. Data Min Knowl Disc 2:121–167
    • (1998) Data Min Knowl Disc , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 11
    • 84918780244 scopus 로고    scopus 로고
    • Caruana R, Niculescu-Mizil A (2006) An Empirical Comparison of Supervised Learning Algorithms
    • Caruana R, Niculescu-Mizil A (2006) An Empirical Comparison of Supervised Learning Algorithms
  • 12
    • 84918819425 scopus 로고    scopus 로고
    • Dietterich T G (2000) Ensemble Methods in Machine Learning
    • Dietterich T G (2000) Ensemble Methods in Machine Learning
  • 13
    • 84862152671 scopus 로고    scopus 로고
    • Improving Classification Performance of Support Vector Machine by Genetically Optimising Kernel Shape and Hyper-parameters
    • Diosan L, Rogozan A, Pecuchet J (2012) Improving Classification Performance of Support Vector Machine by Genetically Optimising Kernel Shape and Hyper-parameters. Appl Intell 36(2):280–294
    • (2012) Appl Intell , vol.36 , Issue.2 , pp. 280-294
    • Diosan, L.1    Rogozan, A.2    Pecuchet, J.3
  • 15
    • 84918804537 scopus 로고    scopus 로고
    • In: In Second International Symposium on Advances in Intelligent Data Analysis pages 187–198 (ed) Oblique Linear Tree
    • Gama J, Liu X, Cohen P (1997) In: In Second International Symposium on Advances in Intelligent Data Analysis pages 187–198 (ed) Oblique Linear Tree, Springer-Verlag
    • (1997) Springer-Verlag
    • Gama, J.1    Liu, X.2    Cohen, P.3
  • 16
    • 33646430006 scopus 로고    scopus 로고
    • Extremely Randomized Trees
    • Geurts P, Ernst D, Wehenkel L (2006) Extremely Randomized Trees. Mach Learn 63(1):3–42
    • (2006) Mach Learn , vol.63 , Issue.1 , pp. 3-42
    • Geurts, P.1    Ernst, D.2    Wehenkel, L.3
  • 19
    • 0032139235 scopus 로고    scopus 로고
    • The Random Subspace Method for Constructing Decision Forests
    • Ho TK (1998) The Random Subspace Method for Constructing Decision Forests. IEEE Trans on Pattern Anal and Mach Intell 20(8):832–844
    • (1998) IEEE Trans on Pattern Anal and Mach Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 20
    • 0142025124 scopus 로고    scopus 로고
    • Constructing Support Vector Machine Ensemble
    • Kim H, Pang S, Je H, Kim D, Bang S (2003) Constructing Support Vector Machine Ensemble. Pattern Recog 36(12):2757–2767
    • (2003) Pattern Recog , vol.36 , Issue.12 , pp. 2757-2767
    • Kim, H.1    Pang, S.2    Je, H.3    Kim, D.4    Bang, S.5
  • 24
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble Based Systems in Decision Making. IEEE Circuits and Systems Magazine
    • Polikar R (2006) Ensemble Based Systems in Decision Making. IEEE Circuits and Systems Magazine, pages 21–45.Third Quarter
    • (2006) Third Quarter
    • Polikar, R.1
  • 29
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a kernel Eigenvalue problem
    • Scholkopf B, Smola AJ, Muller K (1998) Nonlinear Component Analysis as a kernel Eigenvalue problem. Neural Comput 10:1299—1319
    • (1998) Neural Comput , vol.10 , pp. 1299—1319
    • Scholkopf, B.1    Smola, A.J.2    Muller, K.3
  • 30
    • 48549094895 scopus 로고    scopus 로고
    • A Comprehensive Comparison of Random Forests and Support Vector Machines for Microarray-based Cancer Classification
    • Statnikov A, Wang L, Aliferis CF (2008) A Comprehensive Comparison of Random Forests and Support Vector Machines for Microarray-based Cancer Classification. BMC Bioinforma 9 (319)
    • (2008) BMC Bioinforma , vol.9 , Issue.319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 31
    • 12244269945 scopus 로고    scopus 로고
    • Learning a Complex Metabolomic Dataset Using Random Forests and Support Vector Machine. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Seattle, Washington, USA
    • Truong Y, Lin X, Beecher C (2004) Learning a Complex Metabolomic Dataset Using Random Forests and Support Vector Machine. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Seattle, Washington, USA, August 22-25, 2004, pages 835–840
    • (2004) August , vol.22-25 , Issue.2004 , pp. 835-840
    • Truong, Y.1    Lin, X.2    Beecher, C.3
  • 32
    • 0030365938 scopus 로고    scopus 로고
    • Error Correlation and Error Reduction in Ensemble Classifiers
    • Tumer K, Ghosh J (1996) Error Correlation and Error Reduction in Ensemble Classifiers. Connect Sci 8(3):385–404
    • (1996) Connect Sci , vol.8 , Issue.3 , pp. 385-404
    • Tumer, K.1    Ghosh, J.2
  • 33
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance Analysis of Support Vector Machines for the Development of Svm-based Ensemble Methods
    • Valentini G, Dietterich T (2004) Bias-variance Analysis of Support Vector Machines for the Development of Svm-based Ensemble Methods. J Mach Learn Res:725–775
    • (2004) J Mach Learn Res , pp. 725-775
    • Valentini, G.1    Dietterich, T.2
  • 35
    • 84884290486 scopus 로고    scopus 로고
    • Boosting-SVM:Effective Learning With Reduced Data Dimension
    • Wang C, You W (2013) Boosting-SVM:Effective Learning With Reduced Data Dimension. Appl Intell 39(3):465–474
    • (2013) Appl Intell , vol.39 , Issue.3 , pp. 465-474
    • Wang, C.1    You, W.2
  • 36
    • 58349119116 scopus 로고    scopus 로고
    • Empirical Analysis of Support Vector Machine Ensemble Classifiers
    • Wanga S, Mathewb A, Chenc Y, Xia L, Mab L, Lee J (2009) Empirical Analysis of Support Vector Machine Ensemble Classifiers. Expert Syst Appl 9(3):6466–6476
    • (2009) Expert Syst Appl , vol.9 , Issue.3 , pp. 6466-6476
    • Wanga, S.1    Mathewb, A.2    Chenc, Y.3    Xia, L.4    Mab, L.5    Lee, J.6
  • 37
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A Technique for Combining Boosting and Wagging
    • Webb GI (2000) Multiboosting: A Technique for Combining Boosting and Wagging. Mach Learn 40(2):159–196
    • (2000) Mach Learn , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 38
    • 54449099809 scopus 로고    scopus 로고
    • Kernels and Ensembles: Perspectives on Statistical Learning
    • Zhu M (2008) Kernels and Ensembles: Perspectives on Statistical Learning. The American Stat 62:97–109
    • (2008) The American Stat , vol.62 , pp. 97-109
    • Zhu, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.