메뉴 건너뛰기




Volumn 36, Issue 3 PART 2, 2009, Pages 6466-6476

Empirical analysis of support vector machine ensemble classifiers

Author keywords

AdaBoost; Bagging; Ensemble classification; Support vector machines (SVMs)

Indexed keywords

ADAPTIVE BOOSTING; BENCHMARKING; CLASSIFICATION (OF INFORMATION); DECISION TREES;

EID: 58349119116     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.07.041     Document Type: Article
Times cited : (128)

References (36)
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting and variants. Machine Learning 36 (1999) 105-139
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 (1996) 123-140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L. Arcing classifiers. The Annals of Statistics 26 3 (1998) 801-849
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 5
  • 6
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 (1998) 121-167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.1
  • 7
    • 58349114783 scopus 로고    scopus 로고
    • Chang, C. C. & Lin, C. J. LIBSVM: A library for support vector machines. (2001). Software .
    • Chang, C. C. & Lin, C. J. LIBSVM: A library for support vector machines. (2001). Software .
  • 8
    • 0035273693 scopus 로고    scopus 로고
    • Enhanced algorithm performance for land cover classification from remotely sensed data using bagging and boosting
    • Chan J., Huang C., and DeFries R. Enhanced algorithm performance for land cover classification from remotely sensed data using bagging and boosting. IEEE Transactions on Geoscience and Remote Sensing 39 3 (2001) 693-695
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 693-695
    • Chan, J.1    Huang, C.2    DeFries, R.3
  • 9
    • 37349030115 scopus 로고    scopus 로고
    • Chen, Y., Wang, H. X. & Lee, J. A. (2007). New method for feature selection and gear defect detection. In ASME International Conference on Manufacturing Science & Engineering (MSEC), Atlanta, GA, US.
    • Chen, Y., Wang, H. X. & Lee, J. A. (2007). New method for feature selection and gear defect detection. In ASME International Conference on Manufacturing Science & Engineering (MSEC), Atlanta, GA, US.
  • 11
    • 58349112889 scopus 로고    scopus 로고
    • Eom, J. -H., Kim, S. -C & Zhang, B. -T. (in press). AptaCDSS-E: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction. Expert System with Application.
    • Eom, J. -H., Kim, S. -C & Zhang, B. -T. (in press). AptaCDSS-E: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction. Expert System with Application.
  • 12
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund Y. Boosting a weak learning algorithm by majority. Information and Computation 121 2 (1995) 256-285
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 13
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Schapire R. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 1 (1997) 119-139
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 16
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.-W., and Lin C.-J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 13 2 (2002) 415-425
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 17
    • 33750503791 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble
    • Hu Q., He Z., Zhang Z., and Zi Y. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble. Mechanical Systems and Signal Processing 21 (2007) 688-705
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 688-705
    • Hu, Q.1    He, Z.2    Zhang, Z.3    Zi, Y.4
  • 19
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat M., Holte R., and Matwin S. Machine learning for the detection of oil spills in satellite radar images. Machine Learning 30 (1998) 195-215
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 22
    • 33745937896 scopus 로고    scopus 로고
    • Li, X., Wang, L. & Sung, E. A (2005). Study of AdaBoost with SVM based weak learners. Neural Networks, 2005. IJCNN'05. In Proceedings of 2005 IEEE International Joint Conference on 2005 (Vol. 1, pp. 196-201).
    • Li, X., Wang, L. & Sung, E. A (2005). Study of AdaBoost with SVM based weak learners. Neural Networks, 2005. IJCNN'05. In Proceedings of 2005 IEEE International Joint Conference on 2005 (Vol. 1, pp. 196-201).
  • 23
    • 58349114378 scopus 로고    scopus 로고
    • Lin, H. -T, & Li, L. (2005). Novel distance-based SVM kernels for infinite ensemble learning. In Proceedingsof the 12th International Conference on Neural Information Processing (pp.761-766).
    • Lin, H. -T, & Li, L. (2005). Novel distance-based SVM kernels for infinite ensemble learning. In Proceedingsof the 12th International Conference on Neural Information Processing (pp.761-766).
  • 25
    • 0037233257 scopus 로고    scopus 로고
    • Membership authentication in the dynamic group by face classification using SVM ensemble
    • Pang S., Kim D., and Sung Y. Membership authentication in the dynamic group by face classification using SVM ensemble. Pattern Recognition Letter 24 (2003) 215-225
    • (2003) Pattern Recognition Letter , vol.24 , pp. 215-225
    • Pang, S.1    Kim, D.2    Sung, Y.3
  • 26
  • 27
    • 58349107398 scopus 로고    scopus 로고
    • UCI Machine Learning Repository. .
    • UCI Machine Learning Repository. .
  • 28
    • 29144474463 scopus 로고    scopus 로고
    • An experimental bias-variance analysis of SVM ensembles based on resampling techniques
    • Valentini G. An experimental bias-variance analysis of SVM ensembles based on resampling techniques. IEEE Transactions on System, Man and Cybernetics-Part B: Cybernetics 35 6 (2005) 1252-1271
    • (2005) IEEE Transactions on System, Man and Cybernetics-Part B: Cybernetics , vol.35 , Issue.6 , pp. 1252-1271
    • Valentini, G.1
  • 29
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
    • Valentini G., and Dietterich T. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. Journal of Machine Learning Research 5 (2004) 725-775
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 725-775
    • Valentini, G.1    Dietterich, T.2
  • 31
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combing boosting and wagging
    • Webb G.I. MultiBoosting: A technique for combing boosting and wagging. Machine Learning 40 2 (2000) 159-196
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 32
    • 4344706336 scopus 로고    scopus 로고
    • Multistrategy ensemble learning: Reducing error by combining ensemble learning technique
    • Webb G.I., and Zheng Z. Multistrategy ensemble learning: Reducing error by combining ensemble learning technique. IEEE Transaction on Knowledge and Data Engineering 16 8 (2004) 980-991
    • (2004) IEEE Transaction on Knowledge and Data Engineering , vol.16 , Issue.8 , pp. 980-991
    • Webb, G.I.1    Zheng, Z.2
  • 33
    • 33847289259 scopus 로고    scopus 로고
    • Improved customer choice predictions using ensemble methods
    • Wezel M., and Potharst R. Improved customer choice predictions using ensemble methods. European Journal of Operational Research 181 (2007) 436-452
    • (2007) European Journal of Operational Research , vol.181 , pp. 436-452
    • Wezel, M.1    Potharst, R.2
  • 34
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • Widodo A., and Yang B.-S. Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing 21 (2007) 2560-2574
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 2560-2574
    • Widodo, A.1    Yang, B.-S.2
  • 35
    • 33750481498 scopus 로고    scopus 로고
    • Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors
    • Widodo A., Yang B.-S., and Han T. Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors. Expert Systems with Application 32 (2007) 299-312
    • (2007) Expert Systems with Application , vol.32 , pp. 299-312
    • Widodo, A.1    Yang, B.-S.2    Han, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.