메뉴 건너뛰기




Volumn 34, Issue 24, 2014, Pages 4420-4435

Coregulated expression of the Na+/phosphate pho89 transporter and ena1 Na+-ATPase allows their functional coupling under high-pH stress

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATASE (POTASSIUM SODIUM); CALCINEURIN; ENA1 PROTEIN; MIG2 PROTEIN; NRG1 PROTEIN; NRG2 PROTEIN; PHO84 TRANSPORTER; PHO89 TRANSPORTER; PHOSPHATE TRANSPORTER; PROTEIN KINASE; PROTEIN KINASE SNF1; REPRESSOR PROTEIN; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR CRZ1; TRANSCRIPTION FACTOR PHO4; TRANSCRIPTION FACTOR RIM101; UNCLASSIFIED DRUG; CRZ1 PROTEIN, S CEREVISIAE; CULTURE MEDIUM; DNA BINDING PROTEIN; ENA1 PROTEIN, S CEREVISIAE; PHO4 PROTEIN, S CEREVISIAE; PHO84 PROTEIN, S CEREVISIAE; PHO89 PROTEIN, S CEREVISIAE; PHOSPHATE; PHOSPHATE PROTON COTRANSPORTER; SACCHAROMYCES CEREVISIAE PROTEIN; SODIUM PHOSPHATE COTRANSPORTER 3;

EID: 84918815273     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.01089-14     Document Type: Article
Times cited : (38)

References (87)
  • 1
    • 0029913162 scopus 로고    scopus 로고
    • Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae
    • Bun-ya M, Shikata K, Nakade S, Yompakdee C, Harashima S, Oshima Y. 1996. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr. Genet. 29:344-351. http://dx.doi.org/10.1007/s002940050055.
    • (1996) Curr. Genet. , vol.29 , pp. 344-351
    • Bun-ya, M.1    Shikata, K.2    Nakade, S.3    Yompakdee, C.4    Harashima, S.5    Oshima, Y.6
  • 2
    • 79951523081 scopus 로고    scopus 로고
    • Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae
    • Ghillebert R, Swinnen E, De Snijder P, Smets B, Winderickx J. 2011. Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae. Biochem. J. 434:243-251. http://dx.doi.org/10.1042/BJ20101118.
    • (2011) Biochem. J. , vol.434 , pp. 243-251
    • Ghillebert, R.1    Swinnen, E.2    De Snijder, P.3    Smets, B.4    Winderickx, J.5
  • 3
    • 0035692234 scopus 로고    scopus 로고
    • Phosphate transport and sensing in Saccharomyces cerevisiae
    • Wykoff DD, O'Shea EK. 2001. Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics 159:1491-1499.
    • (2001) Genetics , vol.159 , pp. 1491-1499
    • Wykoff, D.D.1    O'Shea, E.K.2
  • 4
    • 0025865006 scopus 로고
    • The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter
    • Bun-ya M, Nishimura M, Harashima S, Oshima Y. 1991. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol. Cell. Biol. 11:3229-3238.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 3229-3238
    • Bun-ya, M.1    Nishimura, M.2    Harashima, S.3    Oshima, Y.4
  • 5
    • 0031821798 scopus 로고    scopus 로고
    • Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae
    • Martinez P, Persson BL. 1998. Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol. Gen. Genet. 258:628-638. http://dx.doi.org/10.1007/s004380050776.
    • (1998) Mol. Gen. Genet. , vol.258 , pp. 628-638
    • Martinez, P.1    Persson, B.L.2
  • 6
    • 0032760734 scopus 로고    scopus 로고
    • Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation
    • Persson BL, Petersson J, Fristedt U, Weinander R, Berhe A, Pattison J. 1999. Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim. Biophys. Acta 1422:255-272. http://dx.doi.org/10.1016/S0304-4157(99)00010-6.
    • (1999) Biochim. Biophys. Acta , vol.1422 , pp. 255-272
    • Persson, B.L.1    Petersson, J.2    Fristedt, U.3    Weinander, R.4    Berhe, A.5    Pattison, J.6
  • 7
    • 0033896464 scopus 로고    scopus 로고
    • Regulation of cation-coupled high-affinity phosphate uptake in the yeast Saccharomyces cerevisiae
    • Pattison-Granberg J, Persson BL. 2000. Regulation of cation-coupled high-affinity phosphate uptake in the yeast Saccharomyces cerevisiae. J. Bacteriol. 182:5017-5019. http://dx.doi.org/10.1128/JB.182.17.5017-5019.2000.
    • (2000) J. Bacteriol. , vol.182 , pp. 5017-5019
    • Pattison-Granberg, J.1    Persson, B.L.2
  • 9
    • 0029564903 scopus 로고
    • Structure and distribution of specific cis-elements for transcriptional regulation of PHO84 in Saccharomyces cerevisiae
    • Ogawa N, Saitoh H, Miura K, Magbanua JP, Bun-ya M, Harashima S, Oshima Y. 1995. Structure and distribution of specific cis-elements for transcriptional regulation of PHO84 in Saccharomyces cerevisiae. Mol. Gen. Genet. 249:406-416.
    • (1995) Mol. Gen. Genet. , vol.249 , pp. 406-416
    • Ogawa, N.1    Saitoh, H.2    Miura, K.3    Magbanua, J.P.4    Bun-ya, M.5    Harashima, S.6    Oshima, Y.7
  • 11
    • 0038095416 scopus 로고    scopus 로고
    • Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae
    • Auesukaree C, Homma T, Kaneko Y, Harashima S. 2003. Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 306:843-850. http://dx.doi.org/10.1016/S0006-291X(03)01068-4.
    • (2003) Biochem. Biophys. Res. Commun. , vol.306 , pp. 843-850
    • Auesukaree, C.1    Homma, T.2    Kaneko, Y.3    Harashima, S.4
  • 12
    • 0033637520 scopus 로고    scopus 로고
    • New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis
    • Ogawa N, DeRisi J, Brown PO. 2000. New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol. Biol. Cell 11:4309-4321. http://dx.doi.org/10.1091/mbc.11.12.4309.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 4309-4321
    • Ogawa, N.1    DeRisi, J.2    Brown, P.O.3
  • 13
    • 0028207513 scopus 로고
    • Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85
    • Kaffman A, Herskowitz I, Tjian R, O'Shea EK. 1994. Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85. Science 263:1153-1156. http://dx.doi.org/10.1126/science.8108735.
    • (1994) Science , vol.263 , pp. 1153-1156
    • Kaffman, A.1    Herskowitz, I.2    Tjian, R.3    O'Shea, E.K.4
  • 14
    • 0024086374 scopus 로고
    • PHO85, a negative regulator of the PHO system, is a homolog of the protein kinase gene, CDC28, of Saccharomyces cerevisiae
    • Toh-e A, Tanaka K, Uesono Y, Wickner RB. 1988. PHO85, a negative regulator of the PHO system, is a homolog of the protein kinase gene, CDC28, of Saccharomyces cerevisiae. Mol. Gen. Genet. 214:162-164. http://dx.doi.org/10.1007/BF00340196.
    • (1988) Mol. Gen. Genet. , vol.214 , pp. 162-164
    • Toh-e, A.1    Tanaka, K.2    Uesono, Y.3    Wickner, R.B.4
  • 15
    • 0036886546 scopus 로고    scopus 로고
    • The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling
    • Serrano R, Ruiz A, Bernal D, Chambers JR, Arino J. 2002. The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Mol. Microbiol. 46:1319-1333. http://dx.doi.org/10.1046/j.1365-2958.2002.03246.x.
    • (2002) Mol. Microbiol. , vol.46 , pp. 1319-1333
    • Serrano, R.1    Ruiz, A.2    Bernal, D.3    Chambers, J.R.4    Arino, J.5
  • 16
    • 6344278689 scopus 로고    scopus 로고
    • Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae
    • Viladevall L, Serrano R, Ruiz A, Domenech G, Giraldo J, Barcelo A, Arino J. 2004. Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. J. Biol. Chem. 279:43614-43624. http://dx.doi.org/10.1074/jbc.M403606200.
    • (2004) J. Biol. Chem. , vol.279 , pp. 43614-43624
    • Viladevall, L.1    Serrano, R.2    Ruiz, A.3    Domenech, G.4    Giraldo, J.5    Barcelo, A.6    Arino, J.7
  • 17
    • 0242355632 scopus 로고    scopus 로고
    • Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress
    • Cyert MS. 2003. Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem. Biophys. Res. Commun. 311:1143-1150. http://dx.doi.org/10.1016/S0006-291X(03)01552-3.
    • (2003) Biochem. Biophys. Res. Commun. , vol.311 , pp. 1143-1150
    • Cyert, M.S.1
  • 19
    • 33845995130 scopus 로고    scopus 로고
    • Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2MAPKpathway
    • Serrano R, Martin H, Casamayor A, Arino J. 2006. Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2MAPKpathway. J. Biol. Chem. 281:39785-39795. http://dx.doi.org/10.1074/jbc.M604497200.
    • (2006) J. Biol. Chem. , vol.281 , pp. 39785-39795
    • Serrano, R.1    Martin, H.2    Casamayor, A.3    Arino, J.4
  • 20
    • 84860814079 scopus 로고    scopus 로고
    • The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress
    • Casamayor A, Serrano R, Platara M, Casado C, Ruiz A, Arino J. 2012. The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Biochem. J. 444:39-49. http://dx.doi.org/10.1042/BJ20112099.
    • (2012) Biochem. J. , vol.444 , pp. 39-49
    • Casamayor, A.1    Serrano, R.2    Platara, M.3    Casado, C.4    Ruiz, A.5    Arino, J.6
  • 21
    • 80052177213 scopus 로고    scopus 로고
    • The role of the protein kinase A pathway in the response to alkaline pH stress in yeast
    • Casado C, Gonzalez A, Platara M, Ruiz A, Arino J. 2011. The role of the protein kinase A pathway in the response to alkaline pH stress in yeast. Biochem. J. 438:523-533. http://dx.doi.org/10.1042/BJ20110607.
    • (2011) Biochem. J. , vol.438 , pp. 523-533
    • Casado, C.1    Gonzalez, A.2    Platara, M.3    Ruiz, A.4    Arino, J.5
  • 22
    • 0035910457 scopus 로고    scopus 로고
    • Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway
    • Lamb TM, Xu W, Diamond A, Mitchell AP. 2001. Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J. Biol. Chem. 276:1850-1856. http://dx.doi.org/10.1074/jbc.M008381200.
    • (2001) J. Biol. Chem. , vol.276 , pp. 1850-1856
    • Lamb, T.M.1    Xu, W.2    Diamond, A.3    Mitchell, A.P.4
  • 23
    • 0037223751 scopus 로고    scopus 로고
    • The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae
    • Lamb TM, Mitchell AP. 2003. The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 23:677-686. http://dx.doi.org/10.1128/MCB.23.2.677-686.2003.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 677-686
    • Lamb, T.M.1    Mitchell, A.P.2
  • 24
    • 33846011434 scopus 로고    scopus 로고
    • The transcriptional response of the yeast Na+-ATPase ENA1 gene to alkaline stress involves three main signaling pathways
    • Platara M, Ruiz A, Serrano R, Palomino A, Moreno F, Arino J. 2006. The transcriptional response of the yeast Na+-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. J. Biol. Chem. 281:36632-36642. http://dx.doi.org/10.1074/jbc.M606483200.
    • (2006) J. Biol. Chem. , vol.281 , pp. 36632-36642
    • Platara, M.1    Ruiz, A.2    Serrano, R.3    Palomino, A.4    Moreno, F.5    Arino, J.6
  • 25
    • 37549002168 scopus 로고    scopus 로고
    • Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system
    • Ruiz A, Arino J. 2007. Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system. Eukaryot. Cell 6:2175-2183. http://dx.doi.org/10.1128/EC.00337-07.
    • (2007) Eukaryot. Cell , vol.6 , pp. 2175-2183
    • Ruiz, A.1    Arino, J.2
  • 26
    • 0027446429 scopus 로고
    • Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae
    • Garciadeblas B, Rubio F, Quintero FJ, Banuelos MA, Haro R, Rodriguez-Navarro A. 1993. Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol. Gen. Genet. 236:363-368.
    • (1993) Mol. Gen. Genet. , vol.236 , pp. 363-368
    • Garciadeblas, B.1    Rubio, F.2    Quintero, F.J.3    Banuelos, M.A.4    Haro, R.5    Rodriguez-Navarro, A.6
  • 27
    • 0029080342 scopus 로고
    • The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane
    • Wieland J, Nitsche AM, Strayle J, Steiner H, Rudolph HK. 1995. The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane. EMBO J. 14:3870-3882.
    • (1995) EMBO J. , vol.14 , pp. 3870-3882
    • Wieland, J.1    Nitsche, A.M.2    Strayle, J.3    Steiner, H.4    Rudolph, H.K.5
  • 28
    • 0029019792 scopus 로고
    • The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells
    • Posas F, Camps M, Arino J. 1995. The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells. J. Biol. Chem. 270:13036-13041. http://dx.doi.org/10.1074/jbc.270.22.13036.
    • (1995) J. Biol. Chem. , vol.270 , pp. 13036-13041
    • Posas, F.1    Camps, M.2    Arino, J.3
  • 29
    • 0026006263 scopus 로고
    • A novel P-type ATPase from yeast involved in sodium transport
    • Haro R, Garciadeblas B, Rodriguez-Navarro A. 1991. A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett. 291:189-191. http://dx.doi.org/10.1016/0014-5793(91)81280-L.
    • (1991) FEBS Lett. , vol.291 , pp. 189-191
    • Haro, R.1    Garciadeblas, B.2    Rodriguez-Navarro, A.3
  • 30
    • 0003611323 scopus 로고    scopus 로고
    • Methods in yeast genetics
    • Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • Adams A, Gottschling DE, Kaiser CA, Stearns T. 1997. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    • (1997)
    • Adams, A.1    Gottschling, D.E.2    Kaiser, C.A.3    Stearns, T.4
  • 33
    • 12244282462 scopus 로고    scopus 로고
    • New mutations of Saccharomyces cerevisiae that partially relieve both glucose and galactose repression activate the protein kinase Snf1
    • Rodriguez C, Sanz P, Gancedo C. 2003. New mutations of Saccharomyces cerevisiae that partially relieve both glucose and galactose repression activate the protein kinase Snf1. FEMS Yeast Res. 3:77-84. http://dx.doi.org/10.1111/j.1567-1364.2003.tb00141.x.
    • (2003) FEMS Yeast Res. , vol.3 , pp. 77-84
    • Rodriguez, C.1    Sanz, P.2    Gancedo, C.3
  • 34
    • 33748638828 scopus 로고    scopus 로고
    • Role of protein phosphatases 2C on tolerance to lithium toxicity in the yeast Saccharomyces cerevisiae
    • Ruiz A, González A, García-Salcedo R, Ramos J, Arino J. 2006. Role of protein phosphatases 2C on tolerance to lithium toxicity in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 62:263-277. http://dx.doi.org/10.1111/j.1365-2958.2006.05370.x.
    • (2006) Mol. Microbiol. , vol.62 , pp. 263-277
    • Ruiz, A.1    González, A.2    García-Salcedo, R.3    Ramos, J.4    Arino, J.5
  • 35
    • 0030770513 scopus 로고    scopus 로고
    • Glucose repression affects ion homeostasis in yeast through the regulation of the stressactivated ENA1 gene
    • Alepuz PM, Cunningham KW, Estruch F. 1997. Glucose repression affects ion homeostasis in yeast through the regulation of the stressactivated ENA1 gene. Mol. Microbiol. 26:91-98. http://dx.doi.org/10.1046/j.1365-2958.1997.5531917.x.
    • (1997) Mol. Microbiol. , vol.26 , pp. 91-98
    • Alepuz, P.M.1    Cunningham, K.W.2    Estruch, F.3
  • 36
    • 0029862619 scopus 로고    scopus 로고
    • Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae
    • Cunningham KW, Fink GR. 1996. Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2226-2237.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 2226-2237
    • Cunningham, K.W.1    Fink, G.R.2
  • 37
    • 0031438164 scopus 로고    scopus 로고
    • Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast
    • Stathopoulos AM, Cyert MS. 1997. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 11:3432-3444. http://dx.doi.org/10.1101/gad.11.24.3432.
    • (1997) Genes Dev. , vol.11 , pp. 3432-3444
    • Stathopoulos, A.M.1    Cyert, M.S.2
  • 38
    • 0035039154 scopus 로고    scopus 로고
    • Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization
    • Horak J, Wolf DH. 2001. Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization. J. Bacteriol. 183:3083-3088. http://dx.doi.org/10.1128/JB.183.10.3083-3088.2001.
    • (2001) J. Bacteriol. , vol.183 , pp. 3083-3088
    • Horak, J.1    Wolf, D.H.2
  • 40
    • 84877959765 scopus 로고    scopus 로고
    • Ptc6 is required for proper rapamycin-induced down-regulation of the genes coding for ribosomal and rRNA processing proteins in S. cerevisiae
    • González A, Casado C, Ariño J, Casamayor A. 2013. Ptc6 is required for proper rapamycin-induced down-regulation of the genes coding for ribosomal and rRNA processing proteins in S. cerevisiae. PLoS One 8:e64470. http://dx.doi.org/10.1371/journal.pone.0064470.
    • (2013) PLoS One , vol.8
    • González, A.1    Casado, C.2    Ariño, J.3    Casamayor, A.4
  • 41
    • 56649106338 scopus 로고    scopus 로고
    • Detection of endogenous Snf1 and its activation state: application to Saccharomyces and Candida species
    • Orlova M, Barrett L, Kuchin S. 2008. Detection of endogenous Snf1 and its activation state: application to Saccharomyces and Candida species. Yeast 25:745-754. http://dx.doi.org/10.1002/yea.1628.
    • (2008) Yeast , vol.25 , pp. 745-754
    • Orlova, M.1    Barrett, L.2    Kuchin, S.3
  • 42
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357-359. http://dx.doi.org/10.1038/nmeth.1923.
    • (2012) Nat. Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 43
    • 77954480051 scopus 로고    scopus 로고
    • Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions
    • Navarrete C, Petrezselyova S, Barreto L, Martinez JL, Zahradka J, Arino J, Sychrova H, Ramos J. 2010. Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res. 10:508-517. http://dx.doi.org/10.1111/j.1567-1364.2010.00630.x.
    • (2010) FEMS Yeast Res. , vol.10 , pp. 508-517
    • Navarrete, C.1    Petrezselyova, S.2    Barreto, L.3    Martinez, J.L.4    Zahradka, J.5    Arino, J.6    Sychrova, H.7    Ramos, J.8
  • 44
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA, Van Dijken JP. 1992. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501-517. http://dx.doi.org/10.1002/yea.320080703.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 47
    • 0037163129 scopus 로고    scopus 로고
    • Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae
    • Yoshimoto H, Saltsman K, Gasch AP, Li HX, Ogawa N, Botstein D, Brown PO, Cyert MS. 2002. Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. J. Biol. Chem. 277:31079-31088. http://dx.doi.org/10.1074/jbc.M202718200.
    • (2002) J. Biol. Chem. , vol.277 , pp. 31079-31088
    • Yoshimoto, H.1    Saltsman, K.2    Gasch, A.P.3    Li, H.X.4    Ogawa, N.5    Botstein, D.6    Brown, P.O.7    Cyert, M.S.8
  • 49
    • 46649112175 scopus 로고    scopus 로고
    • Direct regulation of genes involved in glucose utilization by the calcium/calcineurin pathway
    • Ruiz A, Serrano R, Arino J. 2008. Direct regulation of genes involved in glucose utilization by the calcium/calcineurin pathway. J. Biol. Chem. 283:13923-13933. http://dx.doi.org/10.1074/jbc.M708683200.
    • (2008) J. Biol. Chem. , vol.283 , pp. 13923-13933
    • Ruiz, A.1    Serrano, R.2    Arino, J.3
  • 50
    • 0041305909 scopus 로고    scopus 로고
    • Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases
    • Hong SP, Leiper FC, Woods A, Carling D, Carlson M. 2003. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. U. S. A. 100:8839-8843. http://dx.doi.org/10.1073/pnas.1533136100.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 8839-8843
    • Hong, S.P.1    Leiper, F.C.2    Woods, A.3    Carling, D.4    Carlson, M.5
  • 52
    • 0029954396 scopus 로고    scopus 로고
    • Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae
    • Huang D, Farkas I, Roach PJ. 1996. Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4357-4365.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 4357-4365
    • Huang, D.1    Farkas, I.2    Roach, P.J.3
  • 53
    • 33645130011 scopus 로고    scopus 로고
    • Glucose signaling in Saccharomyces cerevisiae
    • Santangelo GM. 2006. Glucose signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70:253-282. http://dx.doi.org/10.1128/MMBR.70.1.253-282.2006.
    • (2006) Microbiol. Mol. Biol. Rev. , vol.70 , pp. 253-282
    • Santangelo, G.M.1
  • 54
    • 0033000330 scopus 로고    scopus 로고
    • Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae
    • Schmidt MC, McCartney RR, Zhang X, Tillman TS, Solimeo H, Wolfl S, Almonte C, Watkins SC. 1999. Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:4561-4571.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4561-4571
    • Schmidt, M.C.1    McCartney, R.R.2    Zhang, X.3    Tillman, T.S.4    Solimeo, H.5    Wolfl, S.6    Almonte, C.7    Watkins, S.C.8
  • 55
    • 0031740335 scopus 로고    scopus 로고
    • Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
    • Treitel MA, Kuchin S, Carlson M. 1998. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:6273-6280.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 6273-6280
    • Treitel, M.A.1    Kuchin, S.2    Carlson, M.3
  • 57
    • 0032519837 scopus 로고    scopus 로고
    • Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose
    • Ostling J, Ronne H. 1998. Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose. Eur. J. Biochem. 252:162-168. http://dx.doi.org/10.1046/j.1432-1327.1998.2520162.x.
    • (1998) Eur. J. Biochem. , vol.252 , pp. 162-168
    • Ostling, J.1    Ronne, H.2
  • 58
    • 0034977801 scopus 로고    scopus 로고
    • Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae
    • Vyas VK, Kuchin S, Carlson M. 2001. Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae. Genetics 158:563-572.
    • (2001) Genetics , vol.158 , pp. 563-572
    • Vyas, V.K.1    Kuchin, S.2    Carlson, M.3
  • 59
    • 34447128162 scopus 로고    scopus 로고
    • Regulation of snf1 protein kinase in response to environmental stress
    • Hong SP, Carlson M. 2007. Regulation of snf1 protein kinase in response to environmental stress. J. Biol. Chem. 282:16838-16845. http://dx.doi.org/10.1074/jbc.M700146200.
    • (2007) J. Biol. Chem. , vol.282 , pp. 16838-16845
    • Hong, S.P.1    Carlson, M.2
  • 60
    • 0027385382 scopus 로고
    • Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions
    • Nakamura T, Liu Y, Hirata D, Namba H, Harada S, Hirokawa T, Miyakawa T. 1993. Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J. 12:4063-4071.
    • (1993) EMBO J. , vol.12 , pp. 4063-4071
    • Nakamura, T.1    Liu, Y.2    Hirata, D.3    Namba, H.4    Harada, S.5    Hirokawa, T.6    Miyakawa, T.7
  • 61
    • 0028286249 scopus 로고
    • The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae
    • Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM. 1994. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 269:8792-8796.
    • (1994) J. Biol. Chem. , vol.269 , pp. 8792-8796
    • Mendoza, I.1    Rubio, F.2    Rodriguez-Navarro, A.3    Pardo, J.M.4
  • 62
    • 2442477661 scopus 로고    scopus 로고
    • The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway
    • Garcia R, Bermejo C, Grau C, Perez R, Rodriguez-Pena JM, Francois J, Nombela C, Arroyo J. 2004. The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J. Biol. Chem. 279:15183-15195. http://dx.doi.org/10.1074/jbc.M312954200.
    • (2004) J. Biol. Chem. , vol.279 , pp. 15183-15195
    • Garcia, R.1    Bermejo, C.2    Grau, C.3    Perez, R.4    Rodriguez-Pena, J.M.5    Francois, J.6    Nombela, C.7    Arroyo, J.8
  • 63
    • 33845959466 scopus 로고    scopus 로고
    • Transcriptional profiling of the protein phosphatase 2C family in yeast provides insights into the unique functional roles of Ptc1
    • Gonzalez A, Ruiz A, Serrano R, Arino J, Casamayor A. 2006. Transcriptional profiling of the protein phosphatase 2C family in yeast provides insights into the unique functional roles of Ptc1. J. Biol. Chem. 281:35057-35069. http://dx.doi.org/10.1074/jbc.M607919200.
    • (2006) J. Biol. Chem. , vol.281 , pp. 35057-35069
    • Gonzalez, A.1    Ruiz, A.2    Serrano, R.3    Arino, J.4    Casamayor, A.5
  • 64
    • 34247880300 scopus 로고    scopus 로고
    • Mg2+ deprivation elicits rapid Ca2+ uptake and activates Ca2+/calcineurin signaling in Saccharomyces cerevisiae
    • Wiesenberger G, Steinleitner K, Malli R, Graier WF, Vormann J, Schweyen RJ, Stadler JA. 2007. Mg2+ deprivation elicits rapid Ca2+ uptake and activates Ca2+/calcineurin signaling in Saccharomyces cerevisiae. Eukaryot. Cell 6:592-599. http://dx.doi.org/10.1128/EC.00382-06.
    • (2007) Eukaryot. Cell , vol.6 , pp. 592-599
    • Wiesenberger, G.1    Steinleitner, K.2    Malli, R.3    Graier, W.F.4    Vormann, J.5    Schweyen, R.J.6    Stadler, J.A.7
  • 66
    • 0142153872 scopus 로고    scopus 로고
    • Regulation of ENA1 Na(+)-ATPase gene expression by the Ppz1 protein phosphatase is mediated by the calcineurin pathway
    • Ruiz A, Yenush L, Arino J. 2003. Regulation of ENA1 Na(+)-ATPase gene expression by the Ppz1 protein phosphatase is mediated by the calcineurin pathway. Eukaryot. Cell 2:937-948. http://dx.doi.org/10.1128/EC.2.5.937-948.2003.
    • (2003) Eukaryot. Cell , vol.2 , pp. 937-948
    • Ruiz, A.1    Yenush, L.2    Arino, J.3
  • 67
    • 6344292232 scopus 로고    scopus 로고
    • Integration of stress responses: modulation of calcineurin signaling in Saccharomyces cerevisiae by protein kinase A
    • Kafadar KA, Cyert MS. 2004. Integration of stress responses: modulation of calcineurin signaling in Saccharomyces cerevisiae by protein kinase A. Eukaryot. Cell 3:1147-1153. http://dx.doi.org/10.1128/EC.3.5.1147-1153.2004.
    • (2004) Eukaryot. Cell , vol.3 , pp. 1147-1153
    • Kafadar, K.A.1    Cyert, M.S.2
  • 69
    • 79960208119 scopus 로고    scopus 로고
    • Alkaline stress triggers an immediate calcium fluctuation in Candida albicans mediated by Rim101p and Crz1p transcription factors
    • Wang H, Liang Y, Zhang B, Zheng W, Xing L, Li M. 2011. Alkaline stress triggers an immediate calcium fluctuation in Candida albicans mediated by Rim101p and Crz1p transcription factors. FEMS Yeast Res. 11:430-439. http://dx.doi.org/10.1111/j.1567-1364.2011.00730.x.
    • (2011) FEMS Yeast Res. , vol.11 , pp. 430-439
    • Wang, H.1    Liang, Y.2    Zhang, B.3    Zheng, W.4    Xing, L.5    Li, M.6
  • 70
    • 9644298257 scopus 로고    scopus 로고
    • Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro
    • Yang H, Curinga G, Giachelli CM. 2004. Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro. Kidney Int. 66:2293-2299. http://dx.doi.org/10.1111/j.1523-1755.2004.66015.x.
    • (2004) Kidney Int. , vol.66 , pp. 2293-2299
    • Yang, H.1    Curinga, G.2    Giachelli, C.M.3
  • 71
    • 0037033784 scopus 로고    scopus 로고
    • Internal Ca(2+) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue
    • Denis V, Cyert MS. 2002. Internal Ca(2+) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J. Cell Biol. 156:29-34. http://dx.doi.org/10.1083/jcb.200111004.
    • (2002) J. Cell Biol. , vol.156 , pp. 29-34
    • Denis, V.1    Cyert, M.S.2
  • 72
    • 0037031829 scopus 로고    scopus 로고
    • An osmotically induced cytosolic Ca2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae
    • Matsumoto TK, Ellsmore AJ, Cessna SG, Low PS, Pardo JM, Bressan RA, Hasegawa PM. 2002. An osmotically induced cytosolic Ca2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 277:33075-33080. http://dx.doi.org/10.1074/jbc.M205037200.
    • (2002) J. Biol. Chem. , vol.277 , pp. 33075-33080
    • Matsumoto, T.K.1    Ellsmore, A.J.2    Cessna, S.G.3    Low, P.S.4    Pardo, J.M.5    Bressan, R.A.6    Hasegawa, P.M.7
  • 73
    • 0035965277 scopus 로고    scopus 로고
    • Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit
    • McCartney RR, Schmidt MC. 2001. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 276:36460-36466. http://dx.doi.org/10.1074/jbc.M104418200.
    • (2001) J. Biol. Chem. , vol.276 , pp. 36460-36466
    • McCartney, R.R.1    Schmidt, M.C.2
  • 74
    • 53449102442 scopus 로고    scopus 로고
    • The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation
    • Ye T, Elbing K, Hohmann S. 2008. The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation. Microbiology 154:2814-2826. http://dx.doi.org/10.1099/mic.0.2008/020149-0.
    • (2008) Microbiology , vol.154 , pp. 2814-2826
    • Ye, T.1    Elbing, K.2    Hohmann, S.3
  • 75
    • 0031761689 scopus 로고    scopus 로고
    • Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae
    • Lutfiyya LL, Iyer VR, DeRisi J, DeVit MJ, Brown PO, Johnston M. 1998. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Genetics 150:1377-1391.
    • (1998) Genetics , vol.150 , pp. 1377-1391
    • Lutfiyya, L.L.1    Iyer, V.R.2    DeRisi, J.3    DeVit, M.J.4    Brown, P.O.5    Johnston, M.6
  • 76
    • 1242300132 scopus 로고    scopus 로고
    • Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae
    • Kaniak A, Xue Z, Macool D, Kim JH, Johnston M. 2004. Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot. Cell 3:221-231. http://dx.doi.org/10.1128/EC.3.1.221-231.2004.
    • (2004) Eukaryot. Cell , vol.3 , pp. 221-231
    • Kaniak, A.1    Xue, Z.2    Macool, D.3    Kim, J.H.4    Johnston, M.5
  • 77
    • 79954547407 scopus 로고    scopus 로고
    • Galactose induction of the GAL1 gene requires conditional degradation of the Mig2 repressor
    • Lim MK, Siew WL, Zhao J, Tay YC, Ang E, Lehming N. 2011. Galactose induction of the GAL1 gene requires conditional degradation of the Mig2 repressor. Biochem. J. 435:641-649. http://dx.doi.org/10.1042/BJ20102034.
    • (2011) Biochem. J. , vol.435 , pp. 641-649
    • Lim, M.K.1    Siew, W.L.2    Zhao, J.3    Tay, Y.C.4    Ang, E.5    Lehming, N.6
  • 78
    • 60549088898 scopus 로고    scopus 로고
    • Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3
    • Westholm JO, Nordberg N, Muren E, Ameur A, Komorowski J, Ronne H. 2008. Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. BMC Genomics 9:601. http://dx.doi.org/10.1186/1471-2164-9-601.
    • (2008) BMC Genomics , vol.9 , pp. 601
    • Westholm, J.O.1    Nordberg, N.2    Muren, E.3    Ameur, A.4    Komorowski, J.5    Ronne, H.6
  • 79
    • 15244341978 scopus 로고    scopus 로고
    • Nrg1 and Nrg2 transcriptional repressors are differently regulated in response to carbon source
    • Berkey CD, Vyas VK, Carlson M. 2004. Nrg1 and Nrg2 transcriptional repressors are differently regulated in response to carbon source. Eukaryot. Cell 3:311-317. http://dx.doi.org/10.1128/EC.3.2.311-317.2004.
    • (2004) Eukaryot. Cell , vol.3 , pp. 311-317
    • Berkey, C.D.1    Vyas, V.K.2    Carlson, M.3
  • 80
    • 0036265376 scopus 로고    scopus 로고
    • Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation
    • Kuchin S, Vyas VK, Carlson M. 2002. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol. Cell. Biol. 22:3994-4000. http://dx.doi.org/10.1128/MCB.22.12.3994-4000.2002.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 3994-4000
    • Kuchin, S.1    Vyas, V.K.2    Carlson, M.3
  • 81
    • 44949242315 scopus 로고    scopus 로고
    • Ambient pH gene regulation in fungi: making connections
    • Penalva MA, Tilburn J, Bignell E, Arst HN, Jr. 2008. Ambient pH gene regulation in fungi: making connections. Trends Microbiol. 16:291-300. http://dx.doi.org/10.1016/j.tim.2008.03.006.
    • (2008) Trends Microbiol. , vol.16 , pp. 291-300
    • Penalva, M.A.1    Tilburn, J.2    Bignell, E.3    Arst Jr., H.N.4
  • 82
    • 84865218513 scopus 로고    scopus 로고
    • The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae
    • Young ET, Zhang C, Shokat KM, Parua PK, Braun KA. 2012. The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae. J. Biol. Chem. 287:29021-29034. http://dx.doi.org/10.1074/jbc.M112.380147.
    • (2012) J. Biol. Chem. , vol.287 , pp. 29021-29034
    • Young, E.T.1    Zhang, C.2    Shokat, K.M.3    Parua, P.K.4    Braun, K.A.5
  • 83
    • 77955660389 scopus 로고    scopus 로고
    • Sodium or potassium efflux ATPase a fungal, bryophyte, and protozoal ATPase
    • Rodriguez-Navarro A, Benito B. 2010. Sodium or potassium efflux ATPase a fungal, bryophyte, and protozoal ATPase. Biochim. Biophys. Acta 1798:1841-1853. http://dx.doi.org/10.1016/j.bbamem.2010.07.009.
    • (2010) Biochim. Biophys. Acta , vol.1798 , pp. 1841-1853
    • Rodriguez-Navarro, A.1    Benito, B.2
  • 85
    • 79959359483 scopus 로고    scopus 로고
    • Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4
    • Zhou X, O'Shea EK. 2011. Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4. Mol. Cell 42:826-836. http://dx.doi.org/10.1016/j.molcel.2011.05.025.
    • (2011) Mol. Cell , vol.42 , pp. 826-836
    • Zhou, X.1    O'Shea, E.K.2
  • 86
    • 84875611589 scopus 로고    scopus 로고
    • Molecular analysis of a conditional hal3 vhs3 yeast mutant links potassium homeostasis with flocculation and invasiveness
    • Gonzalez A, Casado C, Petrezselyova S, Ruiz A, Arino J. 2013. Molecular analysis of a conditional hal3 vhs3 yeast mutant links potassium homeostasis with flocculation and invasiveness. Fungal Genet. Biol. 53:1-9. http://dx.doi.org/10.1016/j.fgb.2013.02.007.
    • (2013) Fungal Genet. Biol. , vol.53 , pp. 1-9
    • Gonzalez, A.1    Casado, C.2    Petrezselyova, S.3    Ruiz, A.4    Arino, J.5
  • 87
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115-132. http://dx.doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2.
    • (1998) Yeast , vol.14 , pp. 115-132
    • Brachmann, C.B.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.5    Hieter, P.6    Boeke, J.D.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.