-
1
-
-
0029913162
-
Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae
-
Bun-ya M, Shikata K, Nakade S, Yompakdee C, Harashima S, Oshima Y. 1996. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr. Genet. 29:344-351. http://dx.doi.org/10.1007/s002940050055.
-
(1996)
Curr. Genet.
, vol.29
, pp. 344-351
-
-
Bun-ya, M.1
Shikata, K.2
Nakade, S.3
Yompakdee, C.4
Harashima, S.5
Oshima, Y.6
-
2
-
-
79951523081
-
Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae
-
Ghillebert R, Swinnen E, De Snijder P, Smets B, Winderickx J. 2011. Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae. Biochem. J. 434:243-251. http://dx.doi.org/10.1042/BJ20101118.
-
(2011)
Biochem. J.
, vol.434
, pp. 243-251
-
-
Ghillebert, R.1
Swinnen, E.2
De Snijder, P.3
Smets, B.4
Winderickx, J.5
-
3
-
-
0035692234
-
Phosphate transport and sensing in Saccharomyces cerevisiae
-
Wykoff DD, O'Shea EK. 2001. Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics 159:1491-1499.
-
(2001)
Genetics
, vol.159
, pp. 1491-1499
-
-
Wykoff, D.D.1
O'Shea, E.K.2
-
4
-
-
0025865006
-
The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter
-
Bun-ya M, Nishimura M, Harashima S, Oshima Y. 1991. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol. Cell. Biol. 11:3229-3238.
-
(1991)
Mol. Cell. Biol.
, vol.11
, pp. 3229-3238
-
-
Bun-ya, M.1
Nishimura, M.2
Harashima, S.3
Oshima, Y.4
-
5
-
-
0031821798
-
Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae
-
Martinez P, Persson BL. 1998. Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol. Gen. Genet. 258:628-638. http://dx.doi.org/10.1007/s004380050776.
-
(1998)
Mol. Gen. Genet.
, vol.258
, pp. 628-638
-
-
Martinez, P.1
Persson, B.L.2
-
6
-
-
0032760734
-
Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation
-
Persson BL, Petersson J, Fristedt U, Weinander R, Berhe A, Pattison J. 1999. Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim. Biophys. Acta 1422:255-272. http://dx.doi.org/10.1016/S0304-4157(99)00010-6.
-
(1999)
Biochim. Biophys. Acta
, vol.1422
, pp. 255-272
-
-
Persson, B.L.1
Petersson, J.2
Fristedt, U.3
Weinander, R.4
Berhe, A.5
Pattison, J.6
-
7
-
-
0033896464
-
Regulation of cation-coupled high-affinity phosphate uptake in the yeast Saccharomyces cerevisiae
-
Pattison-Granberg J, Persson BL. 2000. Regulation of cation-coupled high-affinity phosphate uptake in the yeast Saccharomyces cerevisiae. J. Bacteriol. 182:5017-5019. http://dx.doi.org/10.1128/JB.182.17.5017-5019.2000.
-
(2000)
J. Bacteriol.
, vol.182
, pp. 5017-5019
-
-
Pattison-Granberg, J.1
Persson, B.L.2
-
8
-
-
49349115489
-
Characterization of the Pho89 phosphate transporter by functional hyperexpression in Saccharomyces cerevisiae
-
Zvyagilskaya RA, Lundh F, Samyn D, Pattison-Granberg J, Mouillon JM, Popova Y, Thevelein JM, Persson BL. 2008. Characterization of the Pho89 phosphate transporter by functional hyperexpression in Saccharomyces cerevisiae. FEMS Yeast Res. 8:685-696. http://dx.doi.org/10.1111/j.1567-1364.2008.00408.x.
-
(2008)
FEMS Yeast Res.
, vol.8
, pp. 685-696
-
-
Zvyagilskaya, R.A.1
Lundh, F.2
Samyn, D.3
Pattison-Granberg, J.4
Mouillon, J.M.5
Popova, Y.6
Thevelein, J.M.7
Persson, B.L.8
-
9
-
-
0029564903
-
Structure and distribution of specific cis-elements for transcriptional regulation of PHO84 in Saccharomyces cerevisiae
-
Ogawa N, Saitoh H, Miura K, Magbanua JP, Bun-ya M, Harashima S, Oshima Y. 1995. Structure and distribution of specific cis-elements for transcriptional regulation of PHO84 in Saccharomyces cerevisiae. Mol. Gen. Genet. 249:406-416.
-
(1995)
Mol. Gen. Genet.
, vol.249
, pp. 406-416
-
-
Ogawa, N.1
Saitoh, H.2
Miura, K.3
Magbanua, J.P.4
Bun-ya, M.5
Harashima, S.6
Oshima, Y.7
-
10
-
-
0037626962
-
Regulation of phosphate acquisition in Saccharomyces cerevisiae
-
Persson BL, Lagerstedt JO, Pratt JR, Pattison-Granberg J, Lundh K, Shokrollahzadeh S, Lundh F. 2003. Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr. Genet. 43:225-244. http://dx.doi.org/10.1007/s00294-003-0400-9.
-
(2003)
Curr. Genet.
, vol.43
, pp. 225-244
-
-
Persson, B.L.1
Lagerstedt, J.O.2
Pratt, J.R.3
Pattison-Granberg, J.4
Lundh, K.5
Shokrollahzadeh, S.6
Lundh, F.7
-
11
-
-
0038095416
-
Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae
-
Auesukaree C, Homma T, Kaneko Y, Harashima S. 2003. Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 306:843-850. http://dx.doi.org/10.1016/S0006-291X(03)01068-4.
-
(2003)
Biochem. Biophys. Res. Commun.
, vol.306
, pp. 843-850
-
-
Auesukaree, C.1
Homma, T.2
Kaneko, Y.3
Harashima, S.4
-
12
-
-
0033637520
-
New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis
-
Ogawa N, DeRisi J, Brown PO. 2000. New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol. Biol. Cell 11:4309-4321. http://dx.doi.org/10.1091/mbc.11.12.4309.
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 4309-4321
-
-
Ogawa, N.1
DeRisi, J.2
Brown, P.O.3
-
13
-
-
0028207513
-
Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85
-
Kaffman A, Herskowitz I, Tjian R, O'Shea EK. 1994. Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85. Science 263:1153-1156. http://dx.doi.org/10.1126/science.8108735.
-
(1994)
Science
, vol.263
, pp. 1153-1156
-
-
Kaffman, A.1
Herskowitz, I.2
Tjian, R.3
O'Shea, E.K.4
-
14
-
-
0024086374
-
PHO85, a negative regulator of the PHO system, is a homolog of the protein kinase gene, CDC28, of Saccharomyces cerevisiae
-
Toh-e A, Tanaka K, Uesono Y, Wickner RB. 1988. PHO85, a negative regulator of the PHO system, is a homolog of the protein kinase gene, CDC28, of Saccharomyces cerevisiae. Mol. Gen. Genet. 214:162-164. http://dx.doi.org/10.1007/BF00340196.
-
(1988)
Mol. Gen. Genet.
, vol.214
, pp. 162-164
-
-
Toh-e, A.1
Tanaka, K.2
Uesono, Y.3
Wickner, R.B.4
-
15
-
-
0036886546
-
The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling
-
Serrano R, Ruiz A, Bernal D, Chambers JR, Arino J. 2002. The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Mol. Microbiol. 46:1319-1333. http://dx.doi.org/10.1046/j.1365-2958.2002.03246.x.
-
(2002)
Mol. Microbiol.
, vol.46
, pp. 1319-1333
-
-
Serrano, R.1
Ruiz, A.2
Bernal, D.3
Chambers, J.R.4
Arino, J.5
-
16
-
-
6344278689
-
Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae
-
Viladevall L, Serrano R, Ruiz A, Domenech G, Giraldo J, Barcelo A, Arino J. 2004. Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. J. Biol. Chem. 279:43614-43624. http://dx.doi.org/10.1074/jbc.M403606200.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 43614-43624
-
-
Viladevall, L.1
Serrano, R.2
Ruiz, A.3
Domenech, G.4
Giraldo, J.5
Barcelo, A.6
Arino, J.7
-
17
-
-
0242355632
-
Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress
-
Cyert MS. 2003. Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem. Biophys. Res. Commun. 311:1143-1150. http://dx.doi.org/10.1016/S0006-291X(03)01552-3.
-
(2003)
Biochem. Biophys. Res. Commun.
, vol.311
, pp. 1143-1150
-
-
Cyert, M.S.1
-
19
-
-
33845995130
-
Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2MAPKpathway
-
Serrano R, Martin H, Casamayor A, Arino J. 2006. Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2MAPKpathway. J. Biol. Chem. 281:39785-39795. http://dx.doi.org/10.1074/jbc.M604497200.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 39785-39795
-
-
Serrano, R.1
Martin, H.2
Casamayor, A.3
Arino, J.4
-
20
-
-
84860814079
-
The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress
-
Casamayor A, Serrano R, Platara M, Casado C, Ruiz A, Arino J. 2012. The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Biochem. J. 444:39-49. http://dx.doi.org/10.1042/BJ20112099.
-
(2012)
Biochem. J.
, vol.444
, pp. 39-49
-
-
Casamayor, A.1
Serrano, R.2
Platara, M.3
Casado, C.4
Ruiz, A.5
Arino, J.6
-
21
-
-
80052177213
-
The role of the protein kinase A pathway in the response to alkaline pH stress in yeast
-
Casado C, Gonzalez A, Platara M, Ruiz A, Arino J. 2011. The role of the protein kinase A pathway in the response to alkaline pH stress in yeast. Biochem. J. 438:523-533. http://dx.doi.org/10.1042/BJ20110607.
-
(2011)
Biochem. J.
, vol.438
, pp. 523-533
-
-
Casado, C.1
Gonzalez, A.2
Platara, M.3
Ruiz, A.4
Arino, J.5
-
22
-
-
0035910457
-
Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway
-
Lamb TM, Xu W, Diamond A, Mitchell AP. 2001. Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J. Biol. Chem. 276:1850-1856. http://dx.doi.org/10.1074/jbc.M008381200.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 1850-1856
-
-
Lamb, T.M.1
Xu, W.2
Diamond, A.3
Mitchell, A.P.4
-
23
-
-
0037223751
-
The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae
-
Lamb TM, Mitchell AP. 2003. The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 23:677-686. http://dx.doi.org/10.1128/MCB.23.2.677-686.2003.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 677-686
-
-
Lamb, T.M.1
Mitchell, A.P.2
-
24
-
-
33846011434
-
The transcriptional response of the yeast Na+-ATPase ENA1 gene to alkaline stress involves three main signaling pathways
-
Platara M, Ruiz A, Serrano R, Palomino A, Moreno F, Arino J. 2006. The transcriptional response of the yeast Na+-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. J. Biol. Chem. 281:36632-36642. http://dx.doi.org/10.1074/jbc.M606483200.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 36632-36642
-
-
Platara, M.1
Ruiz, A.2
Serrano, R.3
Palomino, A.4
Moreno, F.5
Arino, J.6
-
25
-
-
37549002168
-
Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system
-
Ruiz A, Arino J. 2007. Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system. Eukaryot. Cell 6:2175-2183. http://dx.doi.org/10.1128/EC.00337-07.
-
(2007)
Eukaryot. Cell
, vol.6
, pp. 2175-2183
-
-
Ruiz, A.1
Arino, J.2
-
26
-
-
0027446429
-
Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae
-
Garciadeblas B, Rubio F, Quintero FJ, Banuelos MA, Haro R, Rodriguez-Navarro A. 1993. Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol. Gen. Genet. 236:363-368.
-
(1993)
Mol. Gen. Genet.
, vol.236
, pp. 363-368
-
-
Garciadeblas, B.1
Rubio, F.2
Quintero, F.J.3
Banuelos, M.A.4
Haro, R.5
Rodriguez-Navarro, A.6
-
27
-
-
0029080342
-
The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane
-
Wieland J, Nitsche AM, Strayle J, Steiner H, Rudolph HK. 1995. The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane. EMBO J. 14:3870-3882.
-
(1995)
EMBO J.
, vol.14
, pp. 3870-3882
-
-
Wieland, J.1
Nitsche, A.M.2
Strayle, J.3
Steiner, H.4
Rudolph, H.K.5
-
28
-
-
0029019792
-
The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells
-
Posas F, Camps M, Arino J. 1995. The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells. J. Biol. Chem. 270:13036-13041. http://dx.doi.org/10.1074/jbc.270.22.13036.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 13036-13041
-
-
Posas, F.1
Camps, M.2
Arino, J.3
-
29
-
-
0026006263
-
A novel P-type ATPase from yeast involved in sodium transport
-
Haro R, Garciadeblas B, Rodriguez-Navarro A. 1991. A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett. 291:189-191. http://dx.doi.org/10.1016/0014-5793(91)81280-L.
-
(1991)
FEBS Lett.
, vol.291
, pp. 189-191
-
-
Haro, R.1
Garciadeblas, B.2
Rodriguez-Navarro, A.3
-
30
-
-
0003611323
-
Methods in yeast genetics
-
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
-
Adams A, Gottschling DE, Kaiser CA, Stearns T. 1997. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
-
(1997)
-
-
Adams, A.1
Gottschling, D.E.2
Kaiser, C.A.3
Stearns, T.4
-
31
-
-
0033529707
-
Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis
-
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Davis RW. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901-906. http://dx.doi.org/10.1126/science.285.5429.901.
-
(1999)
Science
, vol.285
, pp. 901-906
-
-
Winzeler, E.A.1
Shoemaker, D.D.2
Astromoff, A.3
Liang, H.4
Anderson, K.5
Andre, B.6
Bangham, R.7
Benito, R.8
Boeke, J.D.9
Bussey, H.10
Chu, A.M.11
Connelly, C.12
Davis, K.13
Dietrich, F.14
Dow, S.W.15
El Bakkoury, M.16
Foury, F.17
Friend, S.H.18
Gentalen, E.19
Giaever, G.20
Hegemann, J.H.21
Jones, T.22
Laub, M.23
Liao, H.24
Davis, R.W.25
more..
-
32
-
-
0031820288
-
Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
-
Longtine MS, McKenzie A, III, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953-961.
-
(1998)
Yeast
, vol.14
, pp. 953-961
-
-
Longtine, M.S.1
McKenzie III, A.2
Demarini, D.J.3
Shah, N.G.4
Wach, A.5
Brachat, A.6
Philippsen, P.7
Pringle, J.R.8
-
33
-
-
12244282462
-
New mutations of Saccharomyces cerevisiae that partially relieve both glucose and galactose repression activate the protein kinase Snf1
-
Rodriguez C, Sanz P, Gancedo C. 2003. New mutations of Saccharomyces cerevisiae that partially relieve both glucose and galactose repression activate the protein kinase Snf1. FEMS Yeast Res. 3:77-84. http://dx.doi.org/10.1111/j.1567-1364.2003.tb00141.x.
-
(2003)
FEMS Yeast Res.
, vol.3
, pp. 77-84
-
-
Rodriguez, C.1
Sanz, P.2
Gancedo, C.3
-
34
-
-
33748638828
-
Role of protein phosphatases 2C on tolerance to lithium toxicity in the yeast Saccharomyces cerevisiae
-
Ruiz A, González A, García-Salcedo R, Ramos J, Arino J. 2006. Role of protein phosphatases 2C on tolerance to lithium toxicity in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 62:263-277. http://dx.doi.org/10.1111/j.1365-2958.2006.05370.x.
-
(2006)
Mol. Microbiol.
, vol.62
, pp. 263-277
-
-
Ruiz, A.1
González, A.2
García-Salcedo, R.3
Ramos, J.4
Arino, J.5
-
35
-
-
0030770513
-
Glucose repression affects ion homeostasis in yeast through the regulation of the stressactivated ENA1 gene
-
Alepuz PM, Cunningham KW, Estruch F. 1997. Glucose repression affects ion homeostasis in yeast through the regulation of the stressactivated ENA1 gene. Mol. Microbiol. 26:91-98. http://dx.doi.org/10.1046/j.1365-2958.1997.5531917.x.
-
(1997)
Mol. Microbiol.
, vol.26
, pp. 91-98
-
-
Alepuz, P.M.1
Cunningham, K.W.2
Estruch, F.3
-
36
-
-
0029862619
-
Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae
-
Cunningham KW, Fink GR. 1996. Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2226-2237.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 2226-2237
-
-
Cunningham, K.W.1
Fink, G.R.2
-
37
-
-
0031438164
-
Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast
-
Stathopoulos AM, Cyert MS. 1997. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 11:3432-3444. http://dx.doi.org/10.1101/gad.11.24.3432.
-
(1997)
Genes Dev.
, vol.11
, pp. 3432-3444
-
-
Stathopoulos, A.M.1
Cyert, M.S.2
-
38
-
-
0035039154
-
Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization
-
Horak J, Wolf DH. 2001. Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization. J. Bacteriol. 183:3083-3088. http://dx.doi.org/10.1128/JB.183.10.3083-3088.2001.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 3083-3088
-
-
Horak, J.1
Wolf, D.H.2
-
39
-
-
34249813098
-
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae
-
Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, Loewith R. 2007. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 26:663-674. http://dx.doi.org/10.1016/j.molcel.2007.04.020.
-
(2007)
Mol. Cell
, vol.26
, pp. 663-674
-
-
Urban, J.1
Soulard, A.2
Huber, A.3
Lippman, S.4
Mukhopadhyay, D.5
Deloche, O.6
Wanke, V.7
Anrather, D.8
Ammerer, G.9
Riezman, H.10
Broach, J.R.11
De Virgilio, C.12
Hall, M.N.13
Loewith, R.14
-
40
-
-
84877959765
-
Ptc6 is required for proper rapamycin-induced down-regulation of the genes coding for ribosomal and rRNA processing proteins in S. cerevisiae
-
González A, Casado C, Ariño J, Casamayor A. 2013. Ptc6 is required for proper rapamycin-induced down-regulation of the genes coding for ribosomal and rRNA processing proteins in S. cerevisiae. PLoS One 8:e64470. http://dx.doi.org/10.1371/journal.pone.0064470.
-
(2013)
PLoS One
, vol.8
-
-
González, A.1
Casado, C.2
Ariño, J.3
Casamayor, A.4
-
41
-
-
56649106338
-
Detection of endogenous Snf1 and its activation state: application to Saccharomyces and Candida species
-
Orlova M, Barrett L, Kuchin S. 2008. Detection of endogenous Snf1 and its activation state: application to Saccharomyces and Candida species. Yeast 25:745-754. http://dx.doi.org/10.1002/yea.1628.
-
(2008)
Yeast
, vol.25
, pp. 745-754
-
-
Orlova, M.1
Barrett, L.2
Kuchin, S.3
-
42
-
-
84859210032
-
Fast gapped-read alignment with Bowtie 2
-
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357-359. http://dx.doi.org/10.1038/nmeth.1923.
-
(2012)
Nat. Methods
, vol.9
, pp. 357-359
-
-
Langmead, B.1
Salzberg, S.L.2
-
43
-
-
77954480051
-
Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions
-
Navarrete C, Petrezselyova S, Barreto L, Martinez JL, Zahradka J, Arino J, Sychrova H, Ramos J. 2010. Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res. 10:508-517. http://dx.doi.org/10.1111/j.1567-1364.2010.00630.x.
-
(2010)
FEMS Yeast Res.
, vol.10
, pp. 508-517
-
-
Navarrete, C.1
Petrezselyova, S.2
Barreto, L.3
Martinez, J.L.4
Zahradka, J.5
Arino, J.6
Sychrova, H.7
Ramos, J.8
-
44
-
-
0026710123
-
Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation
-
Verduyn C, Postma E, Scheffers WA, Van Dijken JP. 1992. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501-517. http://dx.doi.org/10.1002/yea.320080703.
-
(1992)
Yeast
, vol.8
, pp. 501-517
-
-
Verduyn, C.1
Postma, E.2
Scheffers, W.A.3
Van Dijken, J.P.4
-
45
-
-
79959954386
-
RSAT 2011: regulatory sequence analysis tools
-
Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, van Helden J. 2011. RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res. 39:W86-W91. http://dx.doi.org/10.1093/nar/gkr377.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. W86-W91
-
-
Thomas-Chollier, M.1
Defrance, M.2
Medina-Rivera, A.3
Sand, O.4
Herrmann, C.5
Thieffry, D.6
van Helden, J.7
-
46
-
-
75549083247
-
JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles
-
Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E, Yusuf D, Lenhard B, Wasserman WW, Sandelin A. 2010. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res. 38:D105-D110. http://dx.doi.org/10.1093/nar/gkp950.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. D105-D110
-
-
Portales-Casamar, E.1
Thongjuea, S.2
Kwon, A.T.3
Arenillas, D.4
Zhao, X.5
Valen, E.6
Yusuf, D.7
Lenhard, B.8
Wasserman, W.W.9
Sandelin, A.10
-
47
-
-
0037163129
-
Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae
-
Yoshimoto H, Saltsman K, Gasch AP, Li HX, Ogawa N, Botstein D, Brown PO, Cyert MS. 2002. Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. J. Biol. Chem. 277:31079-31088. http://dx.doi.org/10.1074/jbc.M202718200.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 31079-31088
-
-
Yoshimoto, H.1
Saltsman, K.2
Gasch, A.P.3
Li, H.X.4
Ogawa, N.5
Botstein, D.6
Brown, P.O.7
Cyert, M.S.8
-
48
-
-
0035149551
-
Remodeling of yeast genome expression in response to environmental changes
-
Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA. 2001. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12:323-337. http://dx.doi.org/10.1091/mbc.12.2.323.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 323-337
-
-
Causton, H.C.1
Ren, B.2
Koh, S.S.3
Harbison, C.T.4
Kanin, E.5
Jennings, E.G.6
Lee, T.I.7
True, H.L.8
Lander, E.S.9
Young, R.A.10
-
49
-
-
46649112175
-
Direct regulation of genes involved in glucose utilization by the calcium/calcineurin pathway
-
Ruiz A, Serrano R, Arino J. 2008. Direct regulation of genes involved in glucose utilization by the calcium/calcineurin pathway. J. Biol. Chem. 283:13923-13933. http://dx.doi.org/10.1074/jbc.M708683200.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 13923-13933
-
-
Ruiz, A.1
Serrano, R.2
Arino, J.3
-
50
-
-
0041305909
-
Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases
-
Hong SP, Leiper FC, Woods A, Carling D, Carlson M. 2003. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. U. S. A. 100:8839-8843. http://dx.doi.org/10.1073/pnas.1533136100.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 8839-8843
-
-
Hong, S.P.1
Leiper, F.C.2
Woods, A.3
Carling, D.4
Carlson, M.5
-
51
-
-
79951683930
-
Yeast cells can access distinct quiescent states
-
Klosinska MM, Crutchfield CA, Bradley PH, Rabinowitz JD, Broach JR. 2011. Yeast cells can access distinct quiescent states. Genes Dev. 25:336-349. http://dx.doi.org/10.1101/gad.2011311.
-
(2011)
Genes Dev.
, vol.25
, pp. 336-349
-
-
Klosinska, M.M.1
Crutchfield, C.A.2
Bradley, P.H.3
Rabinowitz, J.D.4
Broach, J.R.5
-
52
-
-
0029954396
-
Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae
-
Huang D, Farkas I, Roach PJ. 1996. Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4357-4365.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 4357-4365
-
-
Huang, D.1
Farkas, I.2
Roach, P.J.3
-
53
-
-
33645130011
-
Glucose signaling in Saccharomyces cerevisiae
-
Santangelo GM. 2006. Glucose signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70:253-282. http://dx.doi.org/10.1128/MMBR.70.1.253-282.2006.
-
(2006)
Microbiol. Mol. Biol. Rev.
, vol.70
, pp. 253-282
-
-
Santangelo, G.M.1
-
54
-
-
0033000330
-
Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae
-
Schmidt MC, McCartney RR, Zhang X, Tillman TS, Solimeo H, Wolfl S, Almonte C, Watkins SC. 1999. Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:4561-4571.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 4561-4571
-
-
Schmidt, M.C.1
McCartney, R.R.2
Zhang, X.3
Tillman, T.S.4
Solimeo, H.5
Wolfl, S.6
Almonte, C.7
Watkins, S.C.8
-
55
-
-
0031740335
-
Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
-
Treitel MA, Kuchin S, Carlson M. 1998. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:6273-6280.
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 6273-6280
-
-
Treitel, M.A.1
Kuchin, S.2
Carlson, M.3
-
56
-
-
0041700137
-
Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex
-
Sutherland CM, Hawley SA, McCartney RR, Leech A, Stark MJ, Schmidt MC, Hardie DG. 2003. Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr. Biol. 13:1299-1305. http://dx.doi.org/10.1016/S0960-9822(03)00459-7.
-
(2003)
Curr. Biol.
, vol.13
, pp. 1299-1305
-
-
Sutherland, C.M.1
Hawley, S.A.2
McCartney, R.R.3
Leech, A.4
Stark, M.J.5
Schmidt, M.C.6
Hardie, D.G.7
-
57
-
-
0032519837
-
Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose
-
Ostling J, Ronne H. 1998. Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose. Eur. J. Biochem. 252:162-168. http://dx.doi.org/10.1046/j.1432-1327.1998.2520162.x.
-
(1998)
Eur. J. Biochem.
, vol.252
, pp. 162-168
-
-
Ostling, J.1
Ronne, H.2
-
58
-
-
0034977801
-
Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae
-
Vyas VK, Kuchin S, Carlson M. 2001. Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae. Genetics 158:563-572.
-
(2001)
Genetics
, vol.158
, pp. 563-572
-
-
Vyas, V.K.1
Kuchin, S.2
Carlson, M.3
-
59
-
-
34447128162
-
Regulation of snf1 protein kinase in response to environmental stress
-
Hong SP, Carlson M. 2007. Regulation of snf1 protein kinase in response to environmental stress. J. Biol. Chem. 282:16838-16845. http://dx.doi.org/10.1074/jbc.M700146200.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 16838-16845
-
-
Hong, S.P.1
Carlson, M.2
-
60
-
-
0027385382
-
Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions
-
Nakamura T, Liu Y, Hirata D, Namba H, Harada S, Hirokawa T, Miyakawa T. 1993. Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J. 12:4063-4071.
-
(1993)
EMBO J.
, vol.12
, pp. 4063-4071
-
-
Nakamura, T.1
Liu, Y.2
Hirata, D.3
Namba, H.4
Harada, S.5
Hirokawa, T.6
Miyakawa, T.7
-
61
-
-
0028286249
-
The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae
-
Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM. 1994. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 269:8792-8796.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 8792-8796
-
-
Mendoza, I.1
Rubio, F.2
Rodriguez-Navarro, A.3
Pardo, J.M.4
-
62
-
-
2442477661
-
The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway
-
Garcia R, Bermejo C, Grau C, Perez R, Rodriguez-Pena JM, Francois J, Nombela C, Arroyo J. 2004. The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J. Biol. Chem. 279:15183-15195. http://dx.doi.org/10.1074/jbc.M312954200.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 15183-15195
-
-
Garcia, R.1
Bermejo, C.2
Grau, C.3
Perez, R.4
Rodriguez-Pena, J.M.5
Francois, J.6
Nombela, C.7
Arroyo, J.8
-
63
-
-
33845959466
-
Transcriptional profiling of the protein phosphatase 2C family in yeast provides insights into the unique functional roles of Ptc1
-
Gonzalez A, Ruiz A, Serrano R, Arino J, Casamayor A. 2006. Transcriptional profiling of the protein phosphatase 2C family in yeast provides insights into the unique functional roles of Ptc1. J. Biol. Chem. 281:35057-35069. http://dx.doi.org/10.1074/jbc.M607919200.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 35057-35069
-
-
Gonzalez, A.1
Ruiz, A.2
Serrano, R.3
Arino, J.4
Casamayor, A.5
-
64
-
-
34247880300
-
Mg2+ deprivation elicits rapid Ca2+ uptake and activates Ca2+/calcineurin signaling in Saccharomyces cerevisiae
-
Wiesenberger G, Steinleitner K, Malli R, Graier WF, Vormann J, Schweyen RJ, Stadler JA. 2007. Mg2+ deprivation elicits rapid Ca2+ uptake and activates Ca2+/calcineurin signaling in Saccharomyces cerevisiae. Eukaryot. Cell 6:592-599. http://dx.doi.org/10.1128/EC.00382-06.
-
(2007)
Eukaryot. Cell
, vol.6
, pp. 592-599
-
-
Wiesenberger, G.1
Steinleitner, K.2
Malli, R.3
Graier, W.F.4
Vormann, J.5
Schweyen, R.J.6
Stadler, J.A.7
-
65
-
-
84867992091
-
The short-term response of yeast to potassium starvation
-
Barreto L, Canadell D, Valverde-Saubi D, Casamayor A, Arino J. 2012. The short-term response of yeast to potassium starvation. Environ. Microbiol. 14:3026-3042. http://dx.doi.org/10.1111/j.1462-2920.2012.02887.x.
-
(2012)
Environ. Microbiol.
, vol.14
, pp. 3026-3042
-
-
Barreto, L.1
Canadell, D.2
Valverde-Saubi, D.3
Casamayor, A.4
Arino, J.5
-
66
-
-
0142153872
-
Regulation of ENA1 Na(+)-ATPase gene expression by the Ppz1 protein phosphatase is mediated by the calcineurin pathway
-
Ruiz A, Yenush L, Arino J. 2003. Regulation of ENA1 Na(+)-ATPase gene expression by the Ppz1 protein phosphatase is mediated by the calcineurin pathway. Eukaryot. Cell 2:937-948. http://dx.doi.org/10.1128/EC.2.5.937-948.2003.
-
(2003)
Eukaryot. Cell
, vol.2
, pp. 937-948
-
-
Ruiz, A.1
Yenush, L.2
Arino, J.3
-
67
-
-
6344292232
-
Integration of stress responses: modulation of calcineurin signaling in Saccharomyces cerevisiae by protein kinase A
-
Kafadar KA, Cyert MS. 2004. Integration of stress responses: modulation of calcineurin signaling in Saccharomyces cerevisiae by protein kinase A. Eukaryot. Cell 3:1147-1153. http://dx.doi.org/10.1128/EC.3.5.1147-1153.2004.
-
(2004)
Eukaryot. Cell
, vol.3
, pp. 1147-1153
-
-
Kafadar, K.A.1
Cyert, M.S.2
-
68
-
-
31544482407
-
Mapping pathways and phenotypes by systematic gene overexpression
-
Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K, Snyder M, Oliver SG, Cyert M, Hughes TR, Boone C, Andrews B. 2006. Mapping pathways and phenotypes by systematic gene overexpression. Mol. Cell 21:319-330. http://dx.doi.org/10.1016/j.molcel.2005.12.011.
-
(2006)
Mol. Cell
, vol.21
, pp. 319-330
-
-
Sopko, R.1
Huang, D.2
Preston, N.3
Chua, G.4
Papp, B.5
Kafadar, K.6
Snyder, M.7
Oliver, S.G.8
Cyert, M.9
Hughes, T.R.10
Boone, C.11
Andrews, B.12
-
69
-
-
79960208119
-
Alkaline stress triggers an immediate calcium fluctuation in Candida albicans mediated by Rim101p and Crz1p transcription factors
-
Wang H, Liang Y, Zhang B, Zheng W, Xing L, Li M. 2011. Alkaline stress triggers an immediate calcium fluctuation in Candida albicans mediated by Rim101p and Crz1p transcription factors. FEMS Yeast Res. 11:430-439. http://dx.doi.org/10.1111/j.1567-1364.2011.00730.x.
-
(2011)
FEMS Yeast Res.
, vol.11
, pp. 430-439
-
-
Wang, H.1
Liang, Y.2
Zhang, B.3
Zheng, W.4
Xing, L.5
Li, M.6
-
70
-
-
9644298257
-
Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro
-
Yang H, Curinga G, Giachelli CM. 2004. Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro. Kidney Int. 66:2293-2299. http://dx.doi.org/10.1111/j.1523-1755.2004.66015.x.
-
(2004)
Kidney Int.
, vol.66
, pp. 2293-2299
-
-
Yang, H.1
Curinga, G.2
Giachelli, C.M.3
-
71
-
-
0037033784
-
Internal Ca(2+) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue
-
Denis V, Cyert MS. 2002. Internal Ca(2+) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J. Cell Biol. 156:29-34. http://dx.doi.org/10.1083/jcb.200111004.
-
(2002)
J. Cell Biol.
, vol.156
, pp. 29-34
-
-
Denis, V.1
Cyert, M.S.2
-
72
-
-
0037031829
-
An osmotically induced cytosolic Ca2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae
-
Matsumoto TK, Ellsmore AJ, Cessna SG, Low PS, Pardo JM, Bressan RA, Hasegawa PM. 2002. An osmotically induced cytosolic Ca2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 277:33075-33080. http://dx.doi.org/10.1074/jbc.M205037200.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 33075-33080
-
-
Matsumoto, T.K.1
Ellsmore, A.J.2
Cessna, S.G.3
Low, P.S.4
Pardo, J.M.5
Bressan, R.A.6
Hasegawa, P.M.7
-
73
-
-
0035965277
-
Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit
-
McCartney RR, Schmidt MC. 2001. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 276:36460-36466. http://dx.doi.org/10.1074/jbc.M104418200.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 36460-36466
-
-
McCartney, R.R.1
Schmidt, M.C.2
-
74
-
-
53449102442
-
The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation
-
Ye T, Elbing K, Hohmann S. 2008. The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation. Microbiology 154:2814-2826. http://dx.doi.org/10.1099/mic.0.2008/020149-0.
-
(2008)
Microbiology
, vol.154
, pp. 2814-2826
-
-
Ye, T.1
Elbing, K.2
Hohmann, S.3
-
75
-
-
0031761689
-
Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae
-
Lutfiyya LL, Iyer VR, DeRisi J, DeVit MJ, Brown PO, Johnston M. 1998. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Genetics 150:1377-1391.
-
(1998)
Genetics
, vol.150
, pp. 1377-1391
-
-
Lutfiyya, L.L.1
Iyer, V.R.2
DeRisi, J.3
DeVit, M.J.4
Brown, P.O.5
Johnston, M.6
-
76
-
-
1242300132
-
Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae
-
Kaniak A, Xue Z, Macool D, Kim JH, Johnston M. 2004. Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot. Cell 3:221-231. http://dx.doi.org/10.1128/EC.3.1.221-231.2004.
-
(2004)
Eukaryot. Cell
, vol.3
, pp. 221-231
-
-
Kaniak, A.1
Xue, Z.2
Macool, D.3
Kim, J.H.4
Johnston, M.5
-
77
-
-
79954547407
-
Galactose induction of the GAL1 gene requires conditional degradation of the Mig2 repressor
-
Lim MK, Siew WL, Zhao J, Tay YC, Ang E, Lehming N. 2011. Galactose induction of the GAL1 gene requires conditional degradation of the Mig2 repressor. Biochem. J. 435:641-649. http://dx.doi.org/10.1042/BJ20102034.
-
(2011)
Biochem. J.
, vol.435
, pp. 641-649
-
-
Lim, M.K.1
Siew, W.L.2
Zhao, J.3
Tay, Y.C.4
Ang, E.5
Lehming, N.6
-
78
-
-
60549088898
-
Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3
-
Westholm JO, Nordberg N, Muren E, Ameur A, Komorowski J, Ronne H. 2008. Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. BMC Genomics 9:601. http://dx.doi.org/10.1186/1471-2164-9-601.
-
(2008)
BMC Genomics
, vol.9
, pp. 601
-
-
Westholm, J.O.1
Nordberg, N.2
Muren, E.3
Ameur, A.4
Komorowski, J.5
Ronne, H.6
-
79
-
-
15244341978
-
Nrg1 and Nrg2 transcriptional repressors are differently regulated in response to carbon source
-
Berkey CD, Vyas VK, Carlson M. 2004. Nrg1 and Nrg2 transcriptional repressors are differently regulated in response to carbon source. Eukaryot. Cell 3:311-317. http://dx.doi.org/10.1128/EC.3.2.311-317.2004.
-
(2004)
Eukaryot. Cell
, vol.3
, pp. 311-317
-
-
Berkey, C.D.1
Vyas, V.K.2
Carlson, M.3
-
80
-
-
0036265376
-
Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation
-
Kuchin S, Vyas VK, Carlson M. 2002. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol. Cell. Biol. 22:3994-4000. http://dx.doi.org/10.1128/MCB.22.12.3994-4000.2002.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 3994-4000
-
-
Kuchin, S.1
Vyas, V.K.2
Carlson, M.3
-
81
-
-
44949242315
-
Ambient pH gene regulation in fungi: making connections
-
Penalva MA, Tilburn J, Bignell E, Arst HN, Jr. 2008. Ambient pH gene regulation in fungi: making connections. Trends Microbiol. 16:291-300. http://dx.doi.org/10.1016/j.tim.2008.03.006.
-
(2008)
Trends Microbiol.
, vol.16
, pp. 291-300
-
-
Penalva, M.A.1
Tilburn, J.2
Bignell, E.3
Arst Jr., H.N.4
-
82
-
-
84865218513
-
The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae
-
Young ET, Zhang C, Shokat KM, Parua PK, Braun KA. 2012. The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae. J. Biol. Chem. 287:29021-29034. http://dx.doi.org/10.1074/jbc.M112.380147.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 29021-29034
-
-
Young, E.T.1
Zhang, C.2
Shokat, K.M.3
Parua, P.K.4
Braun, K.A.5
-
83
-
-
77955660389
-
Sodium or potassium efflux ATPase a fungal, bryophyte, and protozoal ATPase
-
Rodriguez-Navarro A, Benito B. 2010. Sodium or potassium efflux ATPase a fungal, bryophyte, and protozoal ATPase. Biochim. Biophys. Acta 1798:1841-1853. http://dx.doi.org/10.1016/j.bbamem.2010.07.009.
-
(2010)
Biochim. Biophys. Acta
, vol.1798
, pp. 1841-1853
-
-
Rodriguez-Navarro, A.1
Benito, B.2
-
85
-
-
79959359483
-
Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4
-
Zhou X, O'Shea EK. 2011. Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4. Mol. Cell 42:826-836. http://dx.doi.org/10.1016/j.molcel.2011.05.025.
-
(2011)
Mol. Cell
, vol.42
, pp. 826-836
-
-
Zhou, X.1
O'Shea, E.K.2
-
86
-
-
84875611589
-
Molecular analysis of a conditional hal3 vhs3 yeast mutant links potassium homeostasis with flocculation and invasiveness
-
Gonzalez A, Casado C, Petrezselyova S, Ruiz A, Arino J. 2013. Molecular analysis of a conditional hal3 vhs3 yeast mutant links potassium homeostasis with flocculation and invasiveness. Fungal Genet. Biol. 53:1-9. http://dx.doi.org/10.1016/j.fgb.2013.02.007.
-
(2013)
Fungal Genet. Biol.
, vol.53
, pp. 1-9
-
-
Gonzalez, A.1
Casado, C.2
Petrezselyova, S.3
Ruiz, A.4
Arino, J.5
-
87
-
-
0032579440
-
Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
-
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115-132. http://dx.doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2.
-
(1998)
Yeast
, vol.14
, pp. 115-132
-
-
Brachmann, C.B.1
Davies, A.2
Cost, G.J.3
Caputo, E.4
Li, J.5
Hieter, P.6
Boeke, J.D.7
|