메뉴 건너뛰기




Volumn 70, Issue , 2015, Pages 10-18

Uncovering the periosteum for skeletal regeneration: The stem cell that lies beneath

Author keywords

Bone development; Fracture repair; Periosteum; Stem cells; Tissue engineering

Indexed keywords

BONE DEVELOPMENT; BONE GROWTH; BONE MARROW CELL; BONE REGENERATION; BONE REMODELING; BONE TISSUE; CELL COMPOSITION; CHONDROGENESIS; FRACTURE HEALING; HUMAN; NONHUMAN; OSSIFICATION; PERIOSTEAL STEM CELL; PERIOSTEUM; REGENERATIVE MEDICINE; REVIEW; STEM CELL; TISSUE ENGINEERING; ANIMAL; CYTOLOGY; GROWTH, DEVELOPMENT AND AGING; PHYSIOLOGY; REGENERATION;

EID: 84918592050     PISSN: 87563282     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.bone.2014.08.007     Document Type: Review
Times cited : (199)

References (105)
  • 1
    • 0009515610 scopus 로고
    • Sur le développement et la crue des os des animaux
    • Duhamel H.L. Sur le développement et la crue des os des animaux. Mem Acad R Sci Paris 1742, 354-370.
    • (1742) Mem Acad R Sci Paris , pp. 354-370
    • Duhamel, H.L.1
  • 3
    • 8444238558 scopus 로고    scopus 로고
    • Periosteum: biology, regulation, and response to osteoporosis therapies
    • Allen M.R., Hock J.M., Burr D.B. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 2004, 35:1003-1012.
    • (2004) Bone , vol.35 , pp. 1003-1012
    • Allen, M.R.1    Hock, J.M.2    Burr, D.B.3
  • 4
    • 0029440145 scopus 로고
    • Anatomy and histophysiology of the periosteum: quantification of the periosteal blood supply to the adjacent bone with 85Sr and gamma spectrometry
    • Chanavaz M. Anatomy and histophysiology of the periosteum: quantification of the periosteal blood supply to the adjacent bone with 85Sr and gamma spectrometry. J Oral Implantol 1995, 21:214-219.
    • (1995) J Oral Implantol , vol.21 , pp. 214-219
    • Chanavaz, M.1
  • 5
    • 58649117944 scopus 로고    scopus 로고
    • Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration
    • Colnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 2009, 24:274-282.
    • (2009) J Bone Miner Res , vol.24 , pp. 274-282
    • Colnot, C.1
  • 6
    • 0034087699 scopus 로고    scopus 로고
    • Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process
    • Ozaki A., Tsunoda M., Kinoshita S., Saura R. Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci 2000, 5:64-70.
    • (2000) J Orthop Sci , vol.5 , pp. 64-70
    • Ozaki, A.1    Tsunoda, M.2    Kinoshita, S.3    Saura, R.4
  • 7
    • 84255200563 scopus 로고    scopus 로고
    • Building strong bones: molecular regulation of the osteoblast lineage
    • Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 2012, 13:27-38.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 27-38
    • Long, F.1
  • 8
    • 79951622614 scopus 로고    scopus 로고
    • Cell replication in craniofacial periosteum: appositional vs. resorptive sites
    • Ochareon P., Herring S.W. Cell replication in craniofacial periosteum: appositional vs. resorptive sites. J Anat 2011, 218:285-297.
    • (2011) J Anat , vol.218 , pp. 285-297
    • Ochareon, P.1    Herring, S.W.2
  • 9
    • 0038687536 scopus 로고    scopus 로고
    • Developmental regulation of the growth plate
    • Kronenberg H.M. Developmental regulation of the growth plate. Nature 2003, 423:332-336.
    • (2003) Nature , vol.423 , pp. 332-336
    • Kronenberg, H.M.1
  • 10
    • 0036830491 scopus 로고    scopus 로고
    • The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6
    • Akiyama H., Chaboissier M.C., Martin J.F., Schedl A., de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002, 16:2813-2828.
    • (2002) Genes Dev , vol.16 , pp. 2813-2828
    • Akiyama, H.1    Chaboissier, M.C.2    Martin, J.F.3    Schedl, A.4    de Crombrugghe, B.5
  • 12
    • 0035135642 scopus 로고    scopus 로고
    • Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development
    • Chung U.I., Schipani E., McMahon A.P., Kronenberg H.M. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest 2001, 107:295-304.
    • (2001) J Clin Invest , vol.107 , pp. 295-304
    • Chung, U.I.1    Schipani, E.2    McMahon, A.P.3    Kronenberg, H.M.4
  • 13
    • 0037097976 scopus 로고    scopus 로고
    • FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease
    • Ornitz D.M., Marie P.J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 2002, 16:1446-1465.
    • (2002) Genes Dev , vol.16 , pp. 1446-1465
    • Ornitz, D.M.1    Marie, P.J.2
  • 14
    • 0033562850 scopus 로고    scopus 로고
    • Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation
    • Pathi S., Rutenberg J.B., Johnson R.L., Vortkamp A. Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev Biol 1999, 209:239-253.
    • (1999) Dev Biol , vol.209 , pp. 239-253
    • Pathi, S.1    Rutenberg, J.B.2    Johnson, R.L.3    Vortkamp, A.4
  • 15
    • 77955569142 scopus 로고    scopus 로고
    • Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels
    • Maes C., Kobayashi T., Selig M.K., Torrekens S., Roth S.I., Mackem S., et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 2010, 19:329-344.
    • (2010) Dev Cell , vol.19 , pp. 329-344
    • Maes, C.1    Kobayashi, T.2    Selig, M.K.3    Torrekens, S.4    Roth, S.I.5    Mackem, S.6
  • 16
    • 0037778765 scopus 로고    scopus 로고
    • Periosteal bone formation - a neglected determinant of bone strength
    • Seeman E. Periosteal bone formation - a neglected determinant of bone strength. N Engl J Med 2003, 349:320-323.
    • (2003) N Engl J Med , vol.349 , pp. 320-323
    • Seeman, E.1
  • 17
    • 0142122926 scopus 로고    scopus 로고
    • Toward an expanded understanding of the role of the periosteum in skeletal health
    • Orwoll E.S. Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res 2003, 18:949-954.
    • (2003) J Bone Miner Res , vol.18 , pp. 949-954
    • Orwoll, E.S.1
  • 18
    • 78049380720 scopus 로고    scopus 로고
    • Skeletal sexual dimorphism: relative contribution of sex steroids, GH-IGF1, and mechanical loading
    • Callewaert F., Sinnesael M., Gielen E., Boonen S., Vanderschueren D. Skeletal sexual dimorphism: relative contribution of sex steroids, GH-IGF1, and mechanical loading. J Endocrinol 2010, 207:127-134.
    • (2010) J Endocrinol , vol.207 , pp. 127-134
    • Callewaert, F.1    Sinnesael, M.2    Gielen, E.3    Boonen, S.4    Vanderschueren, D.5
  • 19
    • 84873824098 scopus 로고    scopus 로고
    • Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual
    • Almeida M., Iyer S., Martin-Millan M., Bartell S.M., Han L., Ambrogini E., et al. Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual. J Clin Invest 2012, 123:394-404.
    • (2012) J Clin Invest , vol.123 , pp. 394-404
    • Almeida, M.1    Iyer, S.2    Martin-Millan, M.3    Bartell, S.M.4    Han, L.5    Ambrogini, E.6
  • 20
    • 54349084787 scopus 로고    scopus 로고
    • Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration
    • Ogita M., Rached M.T., Dworakowski E., Bilezikian J.P., Kousteni S. Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration. Endocrinology 2008, 149:5713-5723.
    • (2008) Endocrinology , vol.149 , pp. 5713-5723
    • Ogita, M.1    Rached, M.T.2    Dworakowski, E.3    Bilezikian, J.P.4    Kousteni, S.5
  • 21
    • 0034761321 scopus 로고    scopus 로고
    • Androgens: basic biology and clinical implication
    • Orwoll E.S. Androgens: basic biology and clinical implication. Calcif Tissue Int 2001, 69:185-188.
    • (2001) Calcif Tissue Int , vol.69 , pp. 185-188
    • Orwoll, E.S.1
  • 22
    • 79957809134 scopus 로고    scopus 로고
    • The biology of fracture healing
    • Marsell R., Einhorn T.A. The biology of fracture healing. Injury 2011, 42:551-555.
    • (2011) Injury , vol.42 , pp. 551-555
    • Marsell, R.1    Einhorn, T.A.2
  • 23
    • 39149143035 scopus 로고    scopus 로고
    • Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis
    • Al-Aql Z.S., Alagl A.S., Graves D.T., Gerstenfeld L.C., Einhorn T.A. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 2008, 87:107-118.
    • (2008) J Dent Res , vol.87 , pp. 107-118
    • Al-Aql, Z.S.1    Alagl, A.S.2    Graves, D.T.3    Gerstenfeld, L.C.4    Einhorn, T.A.5
  • 25
    • 0036181393 scopus 로고    scopus 로고
    • Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing
    • Cho T.J., Gerstenfeld L.C., Einhorn T.A. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 2002, 17:513-520.
    • (2002) J Bone Miner Res , vol.17 , pp. 513-520
    • Cho, T.J.1    Gerstenfeld, L.C.2    Einhorn, T.A.3
  • 26
    • 61649087194 scopus 로고    scopus 로고
    • Fibroblast growth factor expression during skeletal fracture healing in mice
    • Schmid G.J., Kobayashi C., Sandell L.J., Ornitz D.M. Fibroblast growth factor expression during skeletal fracture healing in mice. Dev Dyn 2009, 238:766-774.
    • (2009) Dev Dyn , vol.238 , pp. 766-774
    • Schmid, G.J.1    Kobayashi, C.2    Sandell, L.J.3    Ornitz, D.M.4
  • 27
    • 77649187986 scopus 로고    scopus 로고
    • Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair
    • Yu Y.Y., Lieu S., Lu C., Miclau T., Marcucio R.S., Colnot C. Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair. Bone 2010, 46:841-851.
    • (2010) Bone , vol.46 , pp. 841-851
    • Yu, Y.Y.1    Lieu, S.2    Lu, C.3    Miclau, T.4    Marcucio, R.S.5    Colnot, C.6
  • 28
    • 0036376885 scopus 로고    scopus 로고
    • A model for intramembranous ossification during fracture healing
    • Thompson Z., Miclau T., Hu D., Helms J.A. A model for intramembranous ossification during fracture healing. J Orthop Res 2002, 20:1091-1098.
    • (2002) J Orthop Res , vol.20 , pp. 1091-1098
    • Thompson, Z.1    Miclau, T.2    Hu, D.3    Helms, J.A.4
  • 29
    • 0033430113 scopus 로고    scopus 로고
    • The biology of fracture healing: optimising outcome
    • Marsh D.R., Li G. The biology of fracture healing: optimising outcome. Br Med Bull 1999, 55:856-869.
    • (1999) Br Med Bull , vol.55 , pp. 856-869
    • Marsh, D.R.1    Li, G.2
  • 30
    • 28144436728 scopus 로고    scopus 로고
    • Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering
    • Zhang X., Xie C., Lin A.S., Ito H., Awad H., Lieberman J.R., et al. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res 2005, 20:2124-2137.
    • (2005) J Bone Miner Res , vol.20 , pp. 2124-2137
    • Zhang, X.1    Xie, C.2    Lin, A.S.3    Ito, H.4    Awad, H.5    Lieberman, J.R.6
  • 31
    • 84906234415 scopus 로고    scopus 로고
    • Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2
    • van Gastel N., Stegen S., Stockmans I., Moermans K., Schrooten J., Graf D., et al. Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2. Stem Cells 2014, 32:2407-2418.
    • (2014) Stem Cells , vol.32 , pp. 2407-2418
    • van Gastel, N.1    Stegen, S.2    Stockmans, I.3    Moermans, K.4    Schrooten, J.5    Graf, D.6
  • 33
    • 73949157583 scopus 로고    scopus 로고
    • Conditional deletion of BMP7 from the limb skeleton does not affect bone formation or fracture repair
    • Tsuji K., Cox K., Gamer L., Graf D., Economides A., Rosen V. Conditional deletion of BMP7 from the limb skeleton does not affect bone formation or fracture repair. J Orthop Res 2010, 28:384-389.
    • (2010) J Orthop Res , vol.28 , pp. 384-389
    • Tsuji, K.1    Cox, K.2    Gamer, L.3    Graf, D.4    Economides, A.5    Rosen, V.6
  • 34
    • 33751506452 scopus 로고    scopus 로고
    • BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing
    • Tsuji K., Bandyopadhyay A., Harfe B.D., Cox K., Kakar S., Gerstenfeld L., et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 2006, 38:1424-1429.
    • (2006) Nat Genet , vol.38 , pp. 1424-1429
    • Tsuji, K.1    Bandyopadhyay, A.2    Harfe, B.D.3    Cox, K.4    Kakar, S.5    Gerstenfeld, L.6
  • 36
    • 79751536672 scopus 로고    scopus 로고
    • Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing
    • Wang Q., Huang C., Xue M., Zhang X. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing. Bone 2011, 48:524-532.
    • (2011) Bone , vol.48 , pp. 524-532
    • Wang, Q.1    Huang, C.2    Xue, M.3    Zhang, X.4
  • 37
    • 77955163096 scopus 로고    scopus 로고
    • A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signalling
    • Eyckmans J., Roberts S.J., Schrooten J., Luyten F.P. A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signalling. J Cell Mol Med 2010, 14:1845-1856.
    • (2010) J Cell Mol Med , vol.14 , pp. 1845-1856
    • Eyckmans, J.1    Roberts, S.J.2    Schrooten, J.3    Luyten, F.P.4
  • 38
    • 77955411097 scopus 로고    scopus 로고
    • Fgf-9 is required for angiogenesis and osteogenesis in long bone repair
    • Behr B., Leucht P., Longaker M.T., Quarto N. Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. Proc Natl Acad Sci U S A 2010, 107:11853-11858.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 11853-11858
    • Behr, B.1    Leucht, P.2    Longaker, M.T.3    Quarto, N.4
  • 39
    • 79959515249 scopus 로고    scopus 로고
    • Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells
    • Coutu D.L., Francois M., Galipeau J. Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells. Blood 2011, 117:6801-6812.
    • (2011) Blood , vol.117 , pp. 6801-6812
    • Coutu, D.L.1    Francois, M.2    Galipeau, J.3
  • 41
    • 84865441732 scopus 로고    scopus 로고
    • Role of FGFs/FGFRs in skeletal development and bone regeneration
    • Du X., Xie Y., Xian C.J., Chen L. Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol 2012, 227:3731-3743.
    • (2012) J Cell Physiol , vol.227 , pp. 3731-3743
    • Du, X.1    Xie, Y.2    Xian, C.J.3    Chen, L.4
  • 42
    • 0035075677 scopus 로고    scopus 로고
    • Molecular aspects of healing in stabilized and non-stabilized fractures
    • Le A.X., Miclau T., Hu D., Helms J.A. Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res 2001, 19:78-84.
    • (2001) J Orthop Res , vol.19 , pp. 78-84
    • Le, A.X.1    Miclau, T.2    Hu, D.3    Helms, J.A.4
  • 43
    • 0034059511 scopus 로고    scopus 로고
    • Expression of Indian hedgehog during fracture healing in adult rat femora
    • Murakami S., Noda M. Expression of Indian hedgehog during fracture healing in adult rat femora. Calcif Tissue Int 2000, 66:272-276.
    • (2000) Calcif Tissue Int , vol.66 , pp. 272-276
    • Murakami, S.1    Noda, M.2
  • 44
    • 78650203492 scopus 로고    scopus 로고
    • Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair
    • Wang Q., Huang C., Zeng F., Xue M., Zhang X. Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair. Am J Pathol 2010, 177:3100-3111.
    • (2010) Am J Pathol , vol.177 , pp. 3100-3111
    • Wang, Q.1    Huang, C.2    Zeng, F.3    Xue, M.4    Zhang, X.5
  • 45
    • 84895902202 scopus 로고    scopus 로고
    • Overexpressing sonic hedgehog peptide restores periosteal bone formation in a murine bone allograft transplantation model
    • Huang C., Tang M., Yehling E., Zhang X. Overexpressing sonic hedgehog peptide restores periosteal bone formation in a murine bone allograft transplantation model. Mol Ther 2014, 22:430-439.
    • (2014) Mol Ther , vol.22 , pp. 430-439
    • Huang, C.1    Tang, M.2    Yehling, E.3    Zhang, X.4
  • 46
    • 0042978778 scopus 로고    scopus 로고
    • Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption
    • Gerstenfeld L.C., Cho T.J., Kon T., Aizawa T., Tsay A., Fitch J., et al. Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res 2003, 18:1584-1592.
    • (2003) J Bone Miner Res , vol.18 , pp. 1584-1592
    • Gerstenfeld, L.C.1    Cho, T.J.2    Kon, T.3    Aizawa, T.4    Tsay, A.5    Fitch, J.6
  • 47
    • 57049122815 scopus 로고    scopus 로고
    • COX-2 from the injury milieu is critical for the initiation of periosteal progenitor cell mediated bone healing
    • Xie C., Ming X., Wang Q., Schwarz E.M., Guldberg R.E., O'Keefe R.J., et al. COX-2 from the injury milieu is critical for the initiation of periosteal progenitor cell mediated bone healing. Bone 2008, 43:1075-1083.
    • (2008) Bone , vol.43 , pp. 1075-1083
    • Xie, C.1    Ming, X.2    Wang, Q.3    Schwarz, E.M.4    Guldberg, R.E.5    O'Keefe, R.J.6
  • 48
    • 0036259278 scopus 로고    scopus 로고
    • Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair
    • Zhang X., Schwarz E.M., Young D.A., Puzas J.E., Rosier R.N., O'Keefe R.J. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest 2002, 109:1405-1415.
    • (2002) J Clin Invest , vol.109 , pp. 1405-1415
    • Zhang, X.1    Schwarz, E.M.2    Young, D.A.3    Puzas, J.E.4    Rosier, R.N.5    O'Keefe, R.J.6
  • 49
    • 40449084522 scopus 로고    scopus 로고
    • Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation
    • Hilton M.J., Tu X., Wu X., Bai S., Zhao H., Kobayashi T., et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 2008, 14:306-314.
    • (2008) Nat Med , vol.14 , pp. 306-314
    • Hilton, M.J.1    Tu, X.2    Wu, X.3    Bai, S.4    Zhao, H.5    Kobayashi, T.6
  • 50
    • 84899082536 scopus 로고    scopus 로고
    • Analysis of αSMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing
    • Matthews B.G., Grcevic D., Wang L., Hagiwara Y., Roguljic H., Joshi P., et al. Analysis of αSMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing. J Bone Miner Res 2014, 29:1283-1294.
    • (2014) J Bone Miner Res , vol.29 , pp. 1283-1294
    • Matthews, B.G.1    Grcevic, D.2    Wang, L.3    Hagiwara, Y.4    Roguljic, H.5    Joshi, P.6
  • 53
    • 84873558051 scopus 로고    scopus 로고
    • WNT signaling in bone homeostasis and disease: from human mutations to treatments
    • Baron R., Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013, 19:179-192.
    • (2013) Nat Med , vol.19 , pp. 179-192
    • Baron, R.1    Kneissel, M.2
  • 54
    • 84867850102 scopus 로고    scopus 로고
    • Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells
    • Chang H., Knothe Tate M.L. Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med 2012, 1:480-491.
    • (2012) Stem Cells Transl Med , vol.1 , pp. 480-491
    • Chang, H.1    Knothe Tate, M.L.2
  • 55
    • 70350517127 scopus 로고    scopus 로고
    • The periosteum as a cellular source for functional tissue engineering
    • Arnsdorf E.J., Jones L.M., Carter D.R., Jacobs C.R. The periosteum as a cellular source for functional tissue engineering. Tissue Eng Part A 2009, 15:2637-2642.
    • (2009) Tissue Eng Part A , vol.15 , pp. 2637-2642
    • Arnsdorf, E.J.1    Jones, L.M.2    Carter, D.R.3    Jacobs, C.R.4
  • 57
    • 32944472894 scopus 로고    scopus 로고
    • Isolation and osteogenic differentiation of rat periosteum-derived cells
    • Declercq H.A., De Ridder L.I., Cornelissen M.J. Isolation and osteogenic differentiation of rat periosteum-derived cells. Cytotechnology 2005, 49:39-50.
    • (2005) Cytotechnology , vol.49 , pp. 39-50
    • Declercq, H.A.1    De Ridder, L.I.2    Cornelissen, M.J.3
  • 58
    • 33750947378 scopus 로고    scopus 로고
    • Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells
    • Eyckmans J., Luyten F.P. Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells. Tissue Eng 2006, 12:2203-2213.
    • (2006) Tissue Eng , vol.12 , pp. 2203-2213
    • Eyckmans, J.1    Luyten, F.P.2
  • 59
    • 0025027290 scopus 로고
    • In vivo osteochondrogenic potential of cultured cells derived from the periosteum
    • Nakahara H., Bruder S.P., Goldberg V.M., Caplan A.I. In vivo osteochondrogenic potential of cultured cells derived from the periosteum. Clin Orthop Relat Res 1990, 259:223-232.
    • (1990) Clin Orthop Relat Res , vol.259 , pp. 223-232
    • Nakahara, H.1    Bruder, S.P.2    Goldberg, V.M.3    Caplan, A.I.4
  • 60
    • 84867913813 scopus 로고    scopus 로고
    • Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells
    • van Gastel N., Torrekens S., Roberts S.J., Moermans K., Schrooten J., Carmeliet P., et al. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells 2012, 30:2460-2471.
    • (2012) Stem Cells , vol.30 , pp. 2460-2471
    • van Gastel, N.1    Torrekens, S.2    Roberts, S.J.3    Moermans, K.4    Schrooten, J.5    Carmeliet, P.6
  • 61
    • 33646358697 scopus 로고    scopus 로고
    • Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis
    • De Bari C., Dell'Accio F., Vanlauwe J., Eyckmans J., Khan I.M., Archer C.W., et al. Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 2006, 54:1209-1221.
    • (2006) Arthritis Rheum , vol.54 , pp. 1209-1221
    • De Bari, C.1    Dell'Accio, F.2    Vanlauwe, J.3    Eyckmans, J.4    Khan, I.M.5    Archer, C.W.6
  • 62
    • 84894055865 scopus 로고    scopus 로고
    • Humanized culture of periosteal progenitors in allogeneic serum enhances osteogenic differentiation and in vivo bone formation
    • Roberts S.J., Owen H.C., Tam W.L., Solie L., Van Cromphaut S.J., Van den Berghe G., et al. Humanized culture of periosteal progenitors in allogeneic serum enhances osteogenic differentiation and in vivo bone formation. Stem Cells Transl Med 2014, 3:218-228.
    • (2014) Stem Cells Transl Med , vol.3 , pp. 218-228
    • Roberts, S.J.1    Owen, H.C.2    Tam, W.L.3    Solie, L.4    Van Cromphaut, S.J.5    Van den Berghe, G.6
  • 64
    • 79955130769 scopus 로고    scopus 로고
    • The combined bone forming capacity of human periosteal derived cells and calcium phosphates
    • Roberts S.J., Geris L., Kerckhofs G., Desmet E., Schrooten J., Luyten F.P. The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 2011, 32:4393-4405.
    • (2011) Biomaterials , vol.32 , pp. 4393-4405
    • Roberts, S.J.1    Geris, L.2    Kerckhofs, G.3    Desmet, E.4    Schrooten, J.5    Luyten, F.P.6
  • 65
    • 84872088799 scopus 로고    scopus 로고
    • The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine
    • Bianco P., Cao X., Frenette P.S., Mao J.J., Robey P.G., Simmons P.J., et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 2013, 19:35-42.
    • (2013) Nat Med , vol.19 , pp. 35-42
    • Bianco, P.1    Cao, X.2    Frenette, P.S.3    Mao, J.J.4    Robey, P.G.5    Simmons, P.J.6
  • 66
    • 20944440186 scopus 로고    scopus 로고
    • Isolation of human periosteum-derived progenitor cells using immunophenotypes for chondrogenesis
    • Lim S.M., Choi Y.S., Shin H.C., Lee C.W., Kim D.I. Isolation of human periosteum-derived progenitor cells using immunophenotypes for chondrogenesis. Biotechnol Lett 2005, 27:607-611.
    • (2005) Biotechnol Lett , vol.27 , pp. 607-611
    • Lim, S.M.1    Choi, Y.S.2    Shin, H.C.3    Lee, C.W.4    Kim, D.I.5
  • 67
    • 44549086065 scopus 로고    scopus 로고
    • Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13
    • Stich S., Loch A., Leinhase I., Neumann K., Kaps C., Sittinger M., et al. Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13. Eur J Cell Biol 2008, 87:365-376.
    • (2008) Eur J Cell Biol , vol.87 , pp. 365-376
    • Stich, S.1    Loch, A.2    Leinhase, I.3    Neumann, K.4    Kaps, C.5    Sittinger, M.6
  • 68
    • 84875829954 scopus 로고    scopus 로고
    • Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors
    • Eyckmans J., Roberts S.J., Bolander J., Schrooten J., Chen C.S., Luyten F.P. Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors. Biomaterials 2013, 34:4612-4621.
    • (2013) Biomaterials , vol.34 , pp. 4612-4621
    • Eyckmans, J.1    Roberts, S.J.2    Bolander, J.3    Schrooten, J.4    Chen, C.S.5    Luyten, F.P.6
  • 69
    • 79960309216 scopus 로고    scopus 로고
    • Enhancement of osteogenic gene expression for the differentiation of human periosteal derived cells
    • Roberts S.J., Chen Y., Moesen M., Schrooten J., Luyten F.P. Enhancement of osteogenic gene expression for the differentiation of human periosteal derived cells. Stem Cell Res 2011, 7:137-144.
    • (2011) Stem Cell Res , vol.7 , pp. 137-144
    • Roberts, S.J.1    Chen, Y.2    Moesen, M.3    Schrooten, J.4    Luyten, F.P.5
  • 70
    • 79952937413 scopus 로고    scopus 로고
    • Probing the osteoinductive effect of calcium phosphate by using an in vitro biomimetic model
    • Chai Y.C., Roberts S.J., Schrooten J., Luyten F.P. Probing the osteoinductive effect of calcium phosphate by using an in vitro biomimetic model. Tissue Eng Part A 2011, 17:1083-1097.
    • (2011) Tissue Eng Part A , vol.17 , pp. 1083-1097
    • Chai, Y.C.1    Roberts, S.J.2    Schrooten, J.3    Luyten, F.P.4
  • 71
    • 84856573550 scopus 로고    scopus 로고
    • Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers
    • Chai Y.C., Roberts S.J., Desmet E., Kerckhofs G., van Gastel N., Geris L., et al. Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers. Biomaterials 2012, 33:3127-3142.
    • (2012) Biomaterials , vol.33 , pp. 3127-3142
    • Chai, Y.C.1    Roberts, S.J.2    Desmet, E.3    Kerckhofs, G.4    van Gastel, N.5    Geris, L.6
  • 72
    • 84862933577 scopus 로고    scopus 로고
    • In vivo fate mapping identifies mesenchymal progenitor cells
    • Grcevic D., Pejda S., Matthews B.G., Repic D., Wang L., Li H., et al. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells 2012, 30:187-196.
    • (2012) Stem Cells , vol.30 , pp. 187-196
    • Grcevic, D.1    Pejda, S.2    Matthews, B.G.3    Repic, D.4    Wang, L.5    Li, H.6
  • 73
    • 67650064589 scopus 로고    scopus 로고
    • Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum
    • Kawanami A., Matsushita T., Chan Y.Y., Murakami S. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun 2009, 386:477-482.
    • (2009) Biochem Biophys Res Commun , vol.386 , pp. 477-482
    • Kawanami, A.1    Matsushita, T.2    Chan, Y.Y.3    Murakami, S.4
  • 74
    • 84880303938 scopus 로고    scopus 로고
    • Periosteal cells are a major source of soft callus in bone fracture
    • Murao H., Yamamoto K., Matsuda S., Akiyama H. Periosteal cells are a major source of soft callus in bone fracture. J Bone Miner Metab 2013, 31:390-398.
    • (2013) J Bone Miner Metab , vol.31 , pp. 390-398
    • Murao, H.1    Yamamoto, K.2    Matsuda, S.3    Akiyama, H.4
  • 76
    • 84863229757 scopus 로고    scopus 로고
    • Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration
    • Park D., Spencer J.A., Koh B.I., Kobayashi T., Fujisaki J., Clemens T.L., et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 2012, 10:259-272.
    • (2012) Cell Stem Cell , vol.10 , pp. 259-272
    • Park, D.1    Spencer, J.A.2    Koh, B.I.3    Kobayashi, T.4    Fujisaki, J.5    Clemens, T.L.6
  • 77
    • 35348921682 scopus 로고    scopus 로고
    • Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
    • Sacchetti B., Funari A., Michienzi S., Di Cesare S., Piersanti S., Saggio I., et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007, 131:324-336.
    • (2007) Cell , vol.131 , pp. 324-336
    • Sacchetti, B.1    Funari, A.2    Michienzi, S.3    Di Cesare, S.4    Piersanti, S.5    Saggio, I.6
  • 79
    • 0022262947 scopus 로고
    • The blood supply of the periosteum
    • Simpson A.H. The blood supply of the periosteum. J Anat 1985, 140:697-704.
    • (1985) J Anat , vol.140 , pp. 697-704
    • Simpson, A.H.1
  • 80
    • 0026197325 scopus 로고
    • Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo
    • Nakahara H., Goldberg V.M., Caplan A.I. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res 1991, 9:465-476.
    • (1991) J Orthop Res , vol.9 , pp. 465-476
    • Nakahara, H.1    Goldberg, V.M.2    Caplan, A.I.3
  • 82
    • 0034073485 scopus 로고    scopus 로고
    • Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits
    • Perka C., Schultz O., Spitzer R.S., Lindenhayn K., Burmester G.R., Sittinger M. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 2000, 21:1145-1153.
    • (2000) Biomaterials , vol.21 , pp. 1145-1153
    • Perka, C.1    Schultz, O.2    Spitzer, R.S.3    Lindenhayn, K.4    Burmester, G.R.5    Sittinger, M.6
  • 84
    • 33845420571 scopus 로고    scopus 로고
    • Osteogenic potential of cultured human periosteum-derived cells - a pilot study of human cell transplantation into a rat calvarial defect model
    • Sakata Y., Ueno T., Kagawa T., Kanou M., Fujii T., Yamachika E., et al. Osteogenic potential of cultured human periosteum-derived cells - a pilot study of human cell transplantation into a rat calvarial defect model. J Craniomaxillofac Surg 2006, 34:461-465.
    • (2006) J Craniomaxillofac Surg , vol.34 , pp. 461-465
    • Sakata, Y.1    Ueno, T.2    Kagawa, T.3    Kanou, M.4    Fujii, T.5    Yamachika, E.6
  • 85
    • 84886749982 scopus 로고    scopus 로고
    • Evaluation of the osteoconductive potential of bone substitutes embedded with schneiderian membrane- or maxillary bone marrow-derived osteoprogenitor cells
    • Srouji S., Ben-David D., Funari A., Riminucci M., Bianco P. Evaluation of the osteoconductive potential of bone substitutes embedded with schneiderian membrane- or maxillary bone marrow-derived osteoprogenitor cells. Clin Oral Implants Res 2013, 24:1288-1294.
    • (2013) Clin Oral Implants Res , vol.24 , pp. 1288-1294
    • Srouji, S.1    Ben-David, D.2    Funari, A.3    Riminucci, M.4    Bianco, P.5
  • 88
    • 2942534323 scopus 로고    scopus 로고
    • Tissue-engineered bone for maxillary sinus augmentation
    • Schimming R., Schmelzeisen R. Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg 2004, 62:724-729.
    • (2004) J Oral Maxillofac Surg , vol.62 , pp. 724-729
    • Schimming, R.1    Schmelzeisen, R.2
  • 89
    • 0037329406 scopus 로고    scopus 로고
    • Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation - a preliminary report
    • Schmelzeisen R., Schimming R., Sittinger M. Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation - a preliminary report. J Craniomaxillofac Surg 2003, 31:34-39.
    • (2003) J Craniomaxillofac Surg , vol.31 , pp. 34-39
    • Schmelzeisen, R.1    Schimming, R.2    Sittinger, M.3
  • 90
    • 33750622826 scopus 로고    scopus 로고
    • Two techniques for the preparation of cell-scaffold constructs suitable for sinus augmentation: steps into clinical application
    • Springer I.N., Nocini P.F., Schlegel K.A., De S.D., Park J., Warnke P.H., et al. Two techniques for the preparation of cell-scaffold constructs suitable for sinus augmentation: steps into clinical application. Tissue Eng 2006, 12:2649-2656.
    • (2006) Tissue Eng , vol.12 , pp. 2649-2656
    • Springer, I.N.1    Nocini, P.F.2    Schlegel, K.A.3    De, S.D.4    Park, J.5    Warnke, P.H.6
  • 91
    • 41049086500 scopus 로고    scopus 로고
    • Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue
    • Hayashi O., Katsube Y., Hirose M., Ohgushi H., Ito H. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int 2008, 82:238-247.
    • (2008) Calcif Tissue Int , vol.82 , pp. 238-247
    • Hayashi, O.1    Katsube, Y.2    Hirose, M.3    Ohgushi, H.4    Ito, H.5
  • 92
    • 23644456193 scopus 로고    scopus 로고
    • Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source
    • Sakaguchi Y., Sekiya I., Yagishita K., Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005, 52:2521-2529.
    • (2005) Arthritis Rheum , vol.52 , pp. 2521-2529
    • Sakaguchi, Y.1    Sekiya, I.2    Yagishita, K.3    Muneta, T.4
  • 93
    • 84877021946 scopus 로고    scopus 로고
    • Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells
    • Radtke C.L., Nino-Fong R., Esparza Gonzalez B.P., Stryhn H., McDuffee L.A. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells. Am J Vet Res 2013, 74:790-800.
    • (2013) Am J Vet Res , vol.74 , pp. 790-800
    • Radtke, C.L.1    Nino-Fong, R.2    Esparza Gonzalez, B.P.3    Stryhn, H.4    McDuffee, L.A.5
  • 94
    • 33846935035 scopus 로고    scopus 로고
    • Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle
    • Yoshimura H., Muneta T., Nimura A., Yokoyama A., Koga H., Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007, 327:449-462.
    • (2007) Cell Tissue Res , vol.327 , pp. 449-462
    • Yoshimura, H.1    Muneta, T.2    Nimura, A.3    Yokoyama, A.4    Koga, H.5    Sekiya, I.6
  • 95
    • 33747713246 scopus 로고    scopus 로고
    • Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
    • Dominici M., Le B.K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8:315-317.
    • (2006) Cytotherapy , vol.8 , pp. 315-317
    • Dominici, M.1    Le, B.K.2    Mueller, I.3    Slaper-Cortenbach, I.4    Marini, F.5    Krause, D.6
  • 96
    • 84860675226 scopus 로고    scopus 로고
    • Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources
    • Stockmann P., Park J., von Wilmowsky C., Nkenke E., Felszeghy E., Dehner J.F., et al. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources. J Craniomaxillofac Surg 2012, 40:310-320.
    • (2012) J Craniomaxillofac Surg , vol.40 , pp. 310-320
    • Stockmann, P.1    Park, J.2    von Wilmowsky, C.3    Nkenke, E.4    Felszeghy, E.5    Dehner, J.F.6
  • 98
    • 0346964738 scopus 로고    scopus 로고
    • Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration
    • Pelissier P., Masquelet A.C., Bareille R., Pelissier S.M., Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 2004, 22:73-79.
    • (2004) J Orthop Res , vol.22 , pp. 73-79
    • Pelissier, P.1    Masquelet, A.C.2    Bareille, R.3    Pelissier, S.M.4    Amedee, J.5
  • 99
    • 84886723955 scopus 로고    scopus 로고
    • Induced periosteum a complex cellular scaffold for the treatment of large bone defects
    • Cuthbert R.J., Churchman S.M., Tan H.B., McGonagle D., Jones E., Giannoudis P.V. Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone 2013, 57:484-492.
    • (2013) Bone , vol.57 , pp. 484-492
    • Cuthbert, R.J.1    Churchman, S.M.2    Tan, H.B.3    McGonagle, D.4    Jones, E.5    Giannoudis, P.V.6
  • 100
    • 59449102410 scopus 로고    scopus 로고
    • Subcutaneous-induced membranes have no osteoinductive effect on macroporous HA-TCP in vivo
    • Catros S., Zwetyenga N., Bareille R., Brouillaud B., Renard M., Amedee J., et al. Subcutaneous-induced membranes have no osteoinductive effect on macroporous HA-TCP in vivo. J Orthop Res 2009, 27:155-161.
    • (2009) J Orthop Res , vol.27 , pp. 155-161
    • Catros, S.1    Zwetyenga, N.2    Bareille, R.3    Brouillaud, B.4    Renard, M.5    Amedee, J.6
  • 101
    • 84875795520 scopus 로고    scopus 로고
    • Emerging ideas: engineering the periosteum: revitalizing allografts by mimicking autograft healing
    • Hoffman M.D., Benoit D.S. Emerging ideas: engineering the periosteum: revitalizing allografts by mimicking autograft healing. Clin Orthop Relat Res 2013, 471:721-726.
    • (2013) Clin Orthop Relat Res , vol.471 , pp. 721-726
    • Hoffman, M.D.1    Benoit, D.S.2
  • 102
    • 67650685825 scopus 로고    scopus 로고
    • Synthesis of a tissue-engineered periosteum with acellular dermal matrix and cultured mesenchymal stem cells
    • Schonmeyr B., Clavin N., Avraham T., Longo V., Mehrara B.J. Synthesis of a tissue-engineered periosteum with acellular dermal matrix and cultured mesenchymal stem cells. Tissue Eng Part A 2009, 15:1833-1841.
    • (2009) Tissue Eng Part A , vol.15 , pp. 1833-1841
    • Schonmeyr, B.1    Clavin, N.2    Avraham, T.3    Longo, V.4    Mehrara, B.J.5
  • 103
    • 34147192842 scopus 로고    scopus 로고
    • Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering
    • Xie C., Reynolds D., Awad H., Rubery P.T., Pelled G., Gazit D., et al. Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering. Tissue Eng 2007, 13:435-445.
    • (2007) Tissue Eng , vol.13 , pp. 435-445
    • Xie, C.1    Reynolds, D.2    Awad, H.3    Rubery, P.T.4    Pelled, G.5    Gazit, D.6
  • 104
    • 84894956063 scopus 로고    scopus 로고
    • The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice
    • Long T., Zhu Z., Awad H.A., Schwarz E.M., Hilton M.J., Dong Y. The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Biomaterials 2014, 35:2752-2759.
    • (2014) Biomaterials , vol.35 , pp. 2752-2759
    • Long, T.1    Zhu, Z.2    Awad, H.A.3    Schwarz, E.M.4    Hilton, M.J.5    Dong, Y.6
  • 105
    • 84883254061 scopus 로고    scopus 로고
    • Bioengineered periosteal progenitor cell sheets to enhance tendon-bone healing in a bone tunnel
    • Chang C.H., Chen C.H., Liu H.W., Whu S.W., Chen S.H., Tsai C.L., et al. Bioengineered periosteal progenitor cell sheets to enhance tendon-bone healing in a bone tunnel. Biomed J 2012, 35:473-480.
    • (2012) Biomed J , vol.35 , pp. 473-480
    • Chang, C.H.1    Chen, C.H.2    Liu, H.W.3    Whu, S.W.4    Chen, S.H.5    Tsai, C.L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.