-
1
-
-
0009515610
-
Sur le développement et la crue des os des animaux
-
Duhamel H.L. Sur le développement et la crue des os des animaux. Mem Acad R Sci Paris 1742, 354-370.
-
(1742)
Mem Acad R Sci Paris
, pp. 354-370
-
-
Duhamel, H.L.1
-
3
-
-
8444238558
-
Periosteum: biology, regulation, and response to osteoporosis therapies
-
Allen M.R., Hock J.M., Burr D.B. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 2004, 35:1003-1012.
-
(2004)
Bone
, vol.35
, pp. 1003-1012
-
-
Allen, M.R.1
Hock, J.M.2
Burr, D.B.3
-
4
-
-
0029440145
-
Anatomy and histophysiology of the periosteum: quantification of the periosteal blood supply to the adjacent bone with 85Sr and gamma spectrometry
-
Chanavaz M. Anatomy and histophysiology of the periosteum: quantification of the periosteal blood supply to the adjacent bone with 85Sr and gamma spectrometry. J Oral Implantol 1995, 21:214-219.
-
(1995)
J Oral Implantol
, vol.21
, pp. 214-219
-
-
Chanavaz, M.1
-
5
-
-
58649117944
-
Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration
-
Colnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 2009, 24:274-282.
-
(2009)
J Bone Miner Res
, vol.24
, pp. 274-282
-
-
Colnot, C.1
-
6
-
-
0034087699
-
Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process
-
Ozaki A., Tsunoda M., Kinoshita S., Saura R. Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci 2000, 5:64-70.
-
(2000)
J Orthop Sci
, vol.5
, pp. 64-70
-
-
Ozaki, A.1
Tsunoda, M.2
Kinoshita, S.3
Saura, R.4
-
7
-
-
84255200563
-
Building strong bones: molecular regulation of the osteoblast lineage
-
Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 2012, 13:27-38.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 27-38
-
-
Long, F.1
-
8
-
-
79951622614
-
Cell replication in craniofacial periosteum: appositional vs. resorptive sites
-
Ochareon P., Herring S.W. Cell replication in craniofacial periosteum: appositional vs. resorptive sites. J Anat 2011, 218:285-297.
-
(2011)
J Anat
, vol.218
, pp. 285-297
-
-
Ochareon, P.1
Herring, S.W.2
-
9
-
-
0038687536
-
Developmental regulation of the growth plate
-
Kronenberg H.M. Developmental regulation of the growth plate. Nature 2003, 423:332-336.
-
(2003)
Nature
, vol.423
, pp. 332-336
-
-
Kronenberg, H.M.1
-
10
-
-
0036830491
-
The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6
-
Akiyama H., Chaboissier M.C., Martin J.F., Schedl A., de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002, 16:2813-2828.
-
(2002)
Genes Dev
, vol.16
, pp. 2813-2828
-
-
Akiyama, H.1
Chaboissier, M.C.2
Martin, J.F.3
Schedl, A.4
de Crombrugghe, B.5
-
11
-
-
26844574574
-
Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors
-
Akiyama H., Kim J.E., Nakashima K., Balmes G., Iwai N., Deng J.M., et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci U S A 2005, 102:14665-14670.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 14665-14670
-
-
Akiyama, H.1
Kim, J.E.2
Nakashima, K.3
Balmes, G.4
Iwai, N.5
Deng, J.M.6
-
12
-
-
0035135642
-
Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development
-
Chung U.I., Schipani E., McMahon A.P., Kronenberg H.M. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest 2001, 107:295-304.
-
(2001)
J Clin Invest
, vol.107
, pp. 295-304
-
-
Chung, U.I.1
Schipani, E.2
McMahon, A.P.3
Kronenberg, H.M.4
-
13
-
-
0037097976
-
FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease
-
Ornitz D.M., Marie P.J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 2002, 16:1446-1465.
-
(2002)
Genes Dev
, vol.16
, pp. 1446-1465
-
-
Ornitz, D.M.1
Marie, P.J.2
-
14
-
-
0033562850
-
Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation
-
Pathi S., Rutenberg J.B., Johnson R.L., Vortkamp A. Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev Biol 1999, 209:239-253.
-
(1999)
Dev Biol
, vol.209
, pp. 239-253
-
-
Pathi, S.1
Rutenberg, J.B.2
Johnson, R.L.3
Vortkamp, A.4
-
15
-
-
77955569142
-
Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels
-
Maes C., Kobayashi T., Selig M.K., Torrekens S., Roth S.I., Mackem S., et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 2010, 19:329-344.
-
(2010)
Dev Cell
, vol.19
, pp. 329-344
-
-
Maes, C.1
Kobayashi, T.2
Selig, M.K.3
Torrekens, S.4
Roth, S.I.5
Mackem, S.6
-
16
-
-
0037778765
-
Periosteal bone formation - a neglected determinant of bone strength
-
Seeman E. Periosteal bone formation - a neglected determinant of bone strength. N Engl J Med 2003, 349:320-323.
-
(2003)
N Engl J Med
, vol.349
, pp. 320-323
-
-
Seeman, E.1
-
17
-
-
0142122926
-
Toward an expanded understanding of the role of the periosteum in skeletal health
-
Orwoll E.S. Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res 2003, 18:949-954.
-
(2003)
J Bone Miner Res
, vol.18
, pp. 949-954
-
-
Orwoll, E.S.1
-
18
-
-
78049380720
-
Skeletal sexual dimorphism: relative contribution of sex steroids, GH-IGF1, and mechanical loading
-
Callewaert F., Sinnesael M., Gielen E., Boonen S., Vanderschueren D. Skeletal sexual dimorphism: relative contribution of sex steroids, GH-IGF1, and mechanical loading. J Endocrinol 2010, 207:127-134.
-
(2010)
J Endocrinol
, vol.207
, pp. 127-134
-
-
Callewaert, F.1
Sinnesael, M.2
Gielen, E.3
Boonen, S.4
Vanderschueren, D.5
-
19
-
-
84873824098
-
Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual
-
Almeida M., Iyer S., Martin-Millan M., Bartell S.M., Han L., Ambrogini E., et al. Estrogen receptor-alpha signaling in osteoblast progenitors stimulates cortical bone accrual. J Clin Invest 2012, 123:394-404.
-
(2012)
J Clin Invest
, vol.123
, pp. 394-404
-
-
Almeida, M.1
Iyer, S.2
Martin-Millan, M.3
Bartell, S.M.4
Han, L.5
Ambrogini, E.6
-
20
-
-
54349084787
-
Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration
-
Ogita M., Rached M.T., Dworakowski E., Bilezikian J.P., Kousteni S. Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration. Endocrinology 2008, 149:5713-5723.
-
(2008)
Endocrinology
, vol.149
, pp. 5713-5723
-
-
Ogita, M.1
Rached, M.T.2
Dworakowski, E.3
Bilezikian, J.P.4
Kousteni, S.5
-
21
-
-
0034761321
-
Androgens: basic biology and clinical implication
-
Orwoll E.S. Androgens: basic biology and clinical implication. Calcif Tissue Int 2001, 69:185-188.
-
(2001)
Calcif Tissue Int
, vol.69
, pp. 185-188
-
-
Orwoll, E.S.1
-
22
-
-
79957809134
-
The biology of fracture healing
-
Marsell R., Einhorn T.A. The biology of fracture healing. Injury 2011, 42:551-555.
-
(2011)
Injury
, vol.42
, pp. 551-555
-
-
Marsell, R.1
Einhorn, T.A.2
-
23
-
-
39149143035
-
Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis
-
Al-Aql Z.S., Alagl A.S., Graves D.T., Gerstenfeld L.C., Einhorn T.A. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 2008, 87:107-118.
-
(2008)
J Dent Res
, vol.87
, pp. 107-118
-
-
Al-Aql, Z.S.1
Alagl, A.S.2
Graves, D.T.3
Gerstenfeld, L.C.4
Einhorn, T.A.5
-
24
-
-
0032731755
-
Growth factor regulation of fracture repair
-
Barnes G.L., Kostenuik P.J., Gerstenfeld L.C., Einhorn T.A. Growth factor regulation of fracture repair. J Bone Miner Res 1999, 14:1805-1815.
-
(1999)
J Bone Miner Res
, vol.14
, pp. 1805-1815
-
-
Barnes, G.L.1
Kostenuik, P.J.2
Gerstenfeld, L.C.3
Einhorn, T.A.4
-
25
-
-
0036181393
-
Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing
-
Cho T.J., Gerstenfeld L.C., Einhorn T.A. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 2002, 17:513-520.
-
(2002)
J Bone Miner Res
, vol.17
, pp. 513-520
-
-
Cho, T.J.1
Gerstenfeld, L.C.2
Einhorn, T.A.3
-
26
-
-
61649087194
-
Fibroblast growth factor expression during skeletal fracture healing in mice
-
Schmid G.J., Kobayashi C., Sandell L.J., Ornitz D.M. Fibroblast growth factor expression during skeletal fracture healing in mice. Dev Dyn 2009, 238:766-774.
-
(2009)
Dev Dyn
, vol.238
, pp. 766-774
-
-
Schmid, G.J.1
Kobayashi, C.2
Sandell, L.J.3
Ornitz, D.M.4
-
27
-
-
77649187986
-
Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair
-
Yu Y.Y., Lieu S., Lu C., Miclau T., Marcucio R.S., Colnot C. Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair. Bone 2010, 46:841-851.
-
(2010)
Bone
, vol.46
, pp. 841-851
-
-
Yu, Y.Y.1
Lieu, S.2
Lu, C.3
Miclau, T.4
Marcucio, R.S.5
Colnot, C.6
-
28
-
-
0036376885
-
A model for intramembranous ossification during fracture healing
-
Thompson Z., Miclau T., Hu D., Helms J.A. A model for intramembranous ossification during fracture healing. J Orthop Res 2002, 20:1091-1098.
-
(2002)
J Orthop Res
, vol.20
, pp. 1091-1098
-
-
Thompson, Z.1
Miclau, T.2
Hu, D.3
Helms, J.A.4
-
29
-
-
0033430113
-
The biology of fracture healing: optimising outcome
-
Marsh D.R., Li G. The biology of fracture healing: optimising outcome. Br Med Bull 1999, 55:856-869.
-
(1999)
Br Med Bull
, vol.55
, pp. 856-869
-
-
Marsh, D.R.1
Li, G.2
-
30
-
-
28144436728
-
Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering
-
Zhang X., Xie C., Lin A.S., Ito H., Awad H., Lieberman J.R., et al. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res 2005, 20:2124-2137.
-
(2005)
J Bone Miner Res
, vol.20
, pp. 2124-2137
-
-
Zhang, X.1
Xie, C.2
Lin, A.S.3
Ito, H.4
Awad, H.5
Lieberman, J.R.6
-
31
-
-
84906234415
-
Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2
-
van Gastel N., Stegen S., Stockmans I., Moermans K., Schrooten J., Graf D., et al. Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2. Stem Cells 2014, 32:2407-2418.
-
(2014)
Stem Cells
, vol.32
, pp. 2407-2418
-
-
van Gastel, N.1
Stegen, S.2
Stockmans, I.3
Moermans, K.4
Schrooten, J.5
Graf, D.6
-
32
-
-
40149086548
-
BMP4 is dispensable for skeletogenesis and fracture-healing in the limb
-
Tsuji K., Cox K., Bandyopadhyay A., Harfe B.D., Tabin C.J., Rosen V. BMP4 is dispensable for skeletogenesis and fracture-healing in the limb. J Bone Joint Surg Am 2008, 90:14-18.
-
(2008)
J Bone Joint Surg Am
, vol.90
, pp. 14-18
-
-
Tsuji, K.1
Cox, K.2
Bandyopadhyay, A.3
Harfe, B.D.4
Tabin, C.J.5
Rosen, V.6
-
33
-
-
73949157583
-
Conditional deletion of BMP7 from the limb skeleton does not affect bone formation or fracture repair
-
Tsuji K., Cox K., Gamer L., Graf D., Economides A., Rosen V. Conditional deletion of BMP7 from the limb skeleton does not affect bone formation or fracture repair. J Orthop Res 2010, 28:384-389.
-
(2010)
J Orthop Res
, vol.28
, pp. 384-389
-
-
Tsuji, K.1
Cox, K.2
Gamer, L.3
Graf, D.4
Economides, A.5
Rosen, V.6
-
34
-
-
33751506452
-
BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing
-
Tsuji K., Bandyopadhyay A., Harfe B.D., Cox K., Kakar S., Gerstenfeld L., et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 2006, 38:1424-1429.
-
(2006)
Nat Genet
, vol.38
, pp. 1424-1429
-
-
Tsuji, K.1
Bandyopadhyay, A.2
Harfe, B.D.3
Cox, K.4
Kakar, S.5
Gerstenfeld, L.6
-
35
-
-
84865662934
-
Periosteal BMP2 activity drives bone graft healing
-
Chappuis V., Gamer L., Cox K., Lowery J.W., Bosshardt D.D., Rosen V. Periosteal BMP2 activity drives bone graft healing. Bone 2012, 51:800-809.
-
(2012)
Bone
, vol.51
, pp. 800-809
-
-
Chappuis, V.1
Gamer, L.2
Cox, K.3
Lowery, J.W.4
Bosshardt, D.D.5
Rosen, V.6
-
36
-
-
79751536672
-
Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing
-
Wang Q., Huang C., Xue M., Zhang X. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing. Bone 2011, 48:524-532.
-
(2011)
Bone
, vol.48
, pp. 524-532
-
-
Wang, Q.1
Huang, C.2
Xue, M.3
Zhang, X.4
-
37
-
-
77955163096
-
A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signalling
-
Eyckmans J., Roberts S.J., Schrooten J., Luyten F.P. A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signalling. J Cell Mol Med 2010, 14:1845-1856.
-
(2010)
J Cell Mol Med
, vol.14
, pp. 1845-1856
-
-
Eyckmans, J.1
Roberts, S.J.2
Schrooten, J.3
Luyten, F.P.4
-
38
-
-
77955411097
-
Fgf-9 is required for angiogenesis and osteogenesis in long bone repair
-
Behr B., Leucht P., Longaker M.T., Quarto N. Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. Proc Natl Acad Sci U S A 2010, 107:11853-11858.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 11853-11858
-
-
Behr, B.1
Leucht, P.2
Longaker, M.T.3
Quarto, N.4
-
39
-
-
79959515249
-
Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells
-
Coutu D.L., Francois M., Galipeau J. Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells. Blood 2011, 117:6801-6812.
-
(2011)
Blood
, vol.117
, pp. 6801-6812
-
-
Coutu, D.L.1
Francois, M.2
Galipeau, J.3
-
40
-
-
0036794630
-
Expression of the fibroblast growth factor receptor genes in fracture repair
-
Rundle C.H., Miyakoshi N., Ramirez E., Wergedal J.E., Lau K.H., Baylink D.J. Expression of the fibroblast growth factor receptor genes in fracture repair. Clin Orthop Relat Res 2002, 253-263.
-
(2002)
Clin Orthop Relat Res
, pp. 253-263
-
-
Rundle, C.H.1
Miyakoshi, N.2
Ramirez, E.3
Wergedal, J.E.4
Lau, K.H.5
Baylink, D.J.6
-
41
-
-
84865441732
-
Role of FGFs/FGFRs in skeletal development and bone regeneration
-
Du X., Xie Y., Xian C.J., Chen L. Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol 2012, 227:3731-3743.
-
(2012)
J Cell Physiol
, vol.227
, pp. 3731-3743
-
-
Du, X.1
Xie, Y.2
Xian, C.J.3
Chen, L.4
-
42
-
-
0035075677
-
Molecular aspects of healing in stabilized and non-stabilized fractures
-
Le A.X., Miclau T., Hu D., Helms J.A. Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res 2001, 19:78-84.
-
(2001)
J Orthop Res
, vol.19
, pp. 78-84
-
-
Le, A.X.1
Miclau, T.2
Hu, D.3
Helms, J.A.4
-
43
-
-
0034059511
-
Expression of Indian hedgehog during fracture healing in adult rat femora
-
Murakami S., Noda M. Expression of Indian hedgehog during fracture healing in adult rat femora. Calcif Tissue Int 2000, 66:272-276.
-
(2000)
Calcif Tissue Int
, vol.66
, pp. 272-276
-
-
Murakami, S.1
Noda, M.2
-
44
-
-
78650203492
-
Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair
-
Wang Q., Huang C., Zeng F., Xue M., Zhang X. Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair. Am J Pathol 2010, 177:3100-3111.
-
(2010)
Am J Pathol
, vol.177
, pp. 3100-3111
-
-
Wang, Q.1
Huang, C.2
Zeng, F.3
Xue, M.4
Zhang, X.5
-
45
-
-
84895902202
-
Overexpressing sonic hedgehog peptide restores periosteal bone formation in a murine bone allograft transplantation model
-
Huang C., Tang M., Yehling E., Zhang X. Overexpressing sonic hedgehog peptide restores periosteal bone formation in a murine bone allograft transplantation model. Mol Ther 2014, 22:430-439.
-
(2014)
Mol Ther
, vol.22
, pp. 430-439
-
-
Huang, C.1
Tang, M.2
Yehling, E.3
Zhang, X.4
-
46
-
-
0042978778
-
Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption
-
Gerstenfeld L.C., Cho T.J., Kon T., Aizawa T., Tsay A., Fitch J., et al. Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res 2003, 18:1584-1592.
-
(2003)
J Bone Miner Res
, vol.18
, pp. 1584-1592
-
-
Gerstenfeld, L.C.1
Cho, T.J.2
Kon, T.3
Aizawa, T.4
Tsay, A.5
Fitch, J.6
-
47
-
-
57049122815
-
COX-2 from the injury milieu is critical for the initiation of periosteal progenitor cell mediated bone healing
-
Xie C., Ming X., Wang Q., Schwarz E.M., Guldberg R.E., O'Keefe R.J., et al. COX-2 from the injury milieu is critical for the initiation of periosteal progenitor cell mediated bone healing. Bone 2008, 43:1075-1083.
-
(2008)
Bone
, vol.43
, pp. 1075-1083
-
-
Xie, C.1
Ming, X.2
Wang, Q.3
Schwarz, E.M.4
Guldberg, R.E.5
O'Keefe, R.J.6
-
48
-
-
0036259278
-
Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair
-
Zhang X., Schwarz E.M., Young D.A., Puzas J.E., Rosier R.N., O'Keefe R.J. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest 2002, 109:1405-1415.
-
(2002)
J Clin Invest
, vol.109
, pp. 1405-1415
-
-
Zhang, X.1
Schwarz, E.M.2
Young, D.A.3
Puzas, J.E.4
Rosier, R.N.5
O'Keefe, R.J.6
-
49
-
-
40449084522
-
Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation
-
Hilton M.J., Tu X., Wu X., Bai S., Zhao H., Kobayashi T., et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 2008, 14:306-314.
-
(2008)
Nat Med
, vol.14
, pp. 306-314
-
-
Hilton, M.J.1
Tu, X.2
Wu, X.3
Bai, S.4
Zhao, H.5
Kobayashi, T.6
-
50
-
-
84899082536
-
Analysis of αSMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing
-
Matthews B.G., Grcevic D., Wang L., Hagiwara Y., Roguljic H., Joshi P., et al. Analysis of αSMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing. J Bone Miner Res 2014, 29:1283-1294.
-
(2014)
J Bone Miner Res
, vol.29
, pp. 1283-1294
-
-
Matthews, B.G.1
Grcevic, D.2
Wang, L.3
Hagiwara, Y.4
Roguljic, H.5
Joshi, P.6
-
51
-
-
77953221398
-
Modulation of Wnt signaling influences fracture repair
-
Komatsu D.E., Mary M.N., Schroeder R.J., Robling A.G., Turner C.H., Warden S.J. Modulation of Wnt signaling influences fracture repair. J Orthop Res 2010, 28:928-936.
-
(2010)
J Orthop Res
, vol.28
, pp. 928-936
-
-
Komatsu, D.E.1
Mary, M.N.2
Schroeder, R.J.3
Robling, A.G.4
Turner, C.H.5
Warden, S.J.6
-
52
-
-
77952989890
-
Wnt proteins promote bone regeneration
-
Minear S., Leucht P., Jiang J., Liu B., Zeng A., Fuerer C., et al. Wnt proteins promote bone regeneration. Sci Transl Med 2010, 2:29-30.
-
(2010)
Sci Transl Med
, vol.2
, pp. 29-30
-
-
Minear, S.1
Leucht, P.2
Jiang, J.3
Liu, B.4
Zeng, A.5
Fuerer, C.6
-
53
-
-
84873558051
-
WNT signaling in bone homeostasis and disease: from human mutations to treatments
-
Baron R., Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013, 19:179-192.
-
(2013)
Nat Med
, vol.19
, pp. 179-192
-
-
Baron, R.1
Kneissel, M.2
-
54
-
-
84867850102
-
Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells
-
Chang H., Knothe Tate M.L. Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med 2012, 1:480-491.
-
(2012)
Stem Cells Transl Med
, vol.1
, pp. 480-491
-
-
Chang, H.1
Knothe Tate, M.L.2
-
55
-
-
70350517127
-
The periosteum as a cellular source for functional tissue engineering
-
Arnsdorf E.J., Jones L.M., Carter D.R., Jacobs C.R. The periosteum as a cellular source for functional tissue engineering. Tissue Eng Part A 2009, 15:2637-2642.
-
(2009)
Tissue Eng Part A
, vol.15
, pp. 2637-2642
-
-
Arnsdorf, E.J.1
Jones, L.M.2
Carter, D.R.3
Jacobs, C.R.4
-
56
-
-
0031939414
-
Tissue engineered bone repair of calvarial defects using cultured periosteal cells
-
Breitbart A.S., Grande D.A., Kessler R., Ryaby J.T., Fitzsimmons R.J., Grant R.T. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast Reconstr Surg 1998, 101:567-574.
-
(1998)
Plast Reconstr Surg
, vol.101
, pp. 567-574
-
-
Breitbart, A.S.1
Grande, D.A.2
Kessler, R.3
Ryaby, J.T.4
Fitzsimmons, R.J.5
Grant, R.T.6
-
57
-
-
32944472894
-
Isolation and osteogenic differentiation of rat periosteum-derived cells
-
Declercq H.A., De Ridder L.I., Cornelissen M.J. Isolation and osteogenic differentiation of rat periosteum-derived cells. Cytotechnology 2005, 49:39-50.
-
(2005)
Cytotechnology
, vol.49
, pp. 39-50
-
-
Declercq, H.A.1
De Ridder, L.I.2
Cornelissen, M.J.3
-
58
-
-
33750947378
-
Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells
-
Eyckmans J., Luyten F.P. Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells. Tissue Eng 2006, 12:2203-2213.
-
(2006)
Tissue Eng
, vol.12
, pp. 2203-2213
-
-
Eyckmans, J.1
Luyten, F.P.2
-
59
-
-
0025027290
-
In vivo osteochondrogenic potential of cultured cells derived from the periosteum
-
Nakahara H., Bruder S.P., Goldberg V.M., Caplan A.I. In vivo osteochondrogenic potential of cultured cells derived from the periosteum. Clin Orthop Relat Res 1990, 259:223-232.
-
(1990)
Clin Orthop Relat Res
, vol.259
, pp. 223-232
-
-
Nakahara, H.1
Bruder, S.P.2
Goldberg, V.M.3
Caplan, A.I.4
-
60
-
-
84867913813
-
Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells
-
van Gastel N., Torrekens S., Roberts S.J., Moermans K., Schrooten J., Carmeliet P., et al. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells 2012, 30:2460-2471.
-
(2012)
Stem Cells
, vol.30
, pp. 2460-2471
-
-
van Gastel, N.1
Torrekens, S.2
Roberts, S.J.3
Moermans, K.4
Schrooten, J.5
Carmeliet, P.6
-
61
-
-
33646358697
-
Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis
-
De Bari C., Dell'Accio F., Vanlauwe J., Eyckmans J., Khan I.M., Archer C.W., et al. Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 2006, 54:1209-1221.
-
(2006)
Arthritis Rheum
, vol.54
, pp. 1209-1221
-
-
De Bari, C.1
Dell'Accio, F.2
Vanlauwe, J.3
Eyckmans, J.4
Khan, I.M.5
Archer, C.W.6
-
62
-
-
84894055865
-
Humanized culture of periosteal progenitors in allogeneic serum enhances osteogenic differentiation and in vivo bone formation
-
Roberts S.J., Owen H.C., Tam W.L., Solie L., Van Cromphaut S.J., Van den Berghe G., et al. Humanized culture of periosteal progenitors in allogeneic serum enhances osteogenic differentiation and in vivo bone formation. Stem Cells Transl Med 2014, 3:218-228.
-
(2014)
Stem Cells Transl Med
, vol.3
, pp. 218-228
-
-
Roberts, S.J.1
Owen, H.C.2
Tam, W.L.3
Solie, L.4
Van Cromphaut, S.J.5
Van den Berghe, G.6
-
63
-
-
0025887905
-
In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells
-
Nakahara H., Dennis J.E., Bruder S.P., Haynesworth S.E., Lennon D.P., Caplan A.I. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res 1991, 195:492-503.
-
(1991)
Exp Cell Res
, vol.195
, pp. 492-503
-
-
Nakahara, H.1
Dennis, J.E.2
Bruder, S.P.3
Haynesworth, S.E.4
Lennon, D.P.5
Caplan, A.I.6
-
64
-
-
79955130769
-
The combined bone forming capacity of human periosteal derived cells and calcium phosphates
-
Roberts S.J., Geris L., Kerckhofs G., Desmet E., Schrooten J., Luyten F.P. The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 2011, 32:4393-4405.
-
(2011)
Biomaterials
, vol.32
, pp. 4393-4405
-
-
Roberts, S.J.1
Geris, L.2
Kerckhofs, G.3
Desmet, E.4
Schrooten, J.5
Luyten, F.P.6
-
65
-
-
84872088799
-
The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine
-
Bianco P., Cao X., Frenette P.S., Mao J.J., Robey P.G., Simmons P.J., et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 2013, 19:35-42.
-
(2013)
Nat Med
, vol.19
, pp. 35-42
-
-
Bianco, P.1
Cao, X.2
Frenette, P.S.3
Mao, J.J.4
Robey, P.G.5
Simmons, P.J.6
-
66
-
-
20944440186
-
Isolation of human periosteum-derived progenitor cells using immunophenotypes for chondrogenesis
-
Lim S.M., Choi Y.S., Shin H.C., Lee C.W., Kim D.I. Isolation of human periosteum-derived progenitor cells using immunophenotypes for chondrogenesis. Biotechnol Lett 2005, 27:607-611.
-
(2005)
Biotechnol Lett
, vol.27
, pp. 607-611
-
-
Lim, S.M.1
Choi, Y.S.2
Shin, H.C.3
Lee, C.W.4
Kim, D.I.5
-
67
-
-
44549086065
-
Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13
-
Stich S., Loch A., Leinhase I., Neumann K., Kaps C., Sittinger M., et al. Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13. Eur J Cell Biol 2008, 87:365-376.
-
(2008)
Eur J Cell Biol
, vol.87
, pp. 365-376
-
-
Stich, S.1
Loch, A.2
Leinhase, I.3
Neumann, K.4
Kaps, C.5
Sittinger, M.6
-
68
-
-
84875829954
-
Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors
-
Eyckmans J., Roberts S.J., Bolander J., Schrooten J., Chen C.S., Luyten F.P. Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors. Biomaterials 2013, 34:4612-4621.
-
(2013)
Biomaterials
, vol.34
, pp. 4612-4621
-
-
Eyckmans, J.1
Roberts, S.J.2
Bolander, J.3
Schrooten, J.4
Chen, C.S.5
Luyten, F.P.6
-
69
-
-
79960309216
-
Enhancement of osteogenic gene expression for the differentiation of human periosteal derived cells
-
Roberts S.J., Chen Y., Moesen M., Schrooten J., Luyten F.P. Enhancement of osteogenic gene expression for the differentiation of human periosteal derived cells. Stem Cell Res 2011, 7:137-144.
-
(2011)
Stem Cell Res
, vol.7
, pp. 137-144
-
-
Roberts, S.J.1
Chen, Y.2
Moesen, M.3
Schrooten, J.4
Luyten, F.P.5
-
70
-
-
79952937413
-
Probing the osteoinductive effect of calcium phosphate by using an in vitro biomimetic model
-
Chai Y.C., Roberts S.J., Schrooten J., Luyten F.P. Probing the osteoinductive effect of calcium phosphate by using an in vitro biomimetic model. Tissue Eng Part A 2011, 17:1083-1097.
-
(2011)
Tissue Eng Part A
, vol.17
, pp. 1083-1097
-
-
Chai, Y.C.1
Roberts, S.J.2
Schrooten, J.3
Luyten, F.P.4
-
71
-
-
84856573550
-
Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers
-
Chai Y.C., Roberts S.J., Desmet E., Kerckhofs G., van Gastel N., Geris L., et al. Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers. Biomaterials 2012, 33:3127-3142.
-
(2012)
Biomaterials
, vol.33
, pp. 3127-3142
-
-
Chai, Y.C.1
Roberts, S.J.2
Desmet, E.3
Kerckhofs, G.4
van Gastel, N.5
Geris, L.6
-
72
-
-
84862933577
-
In vivo fate mapping identifies mesenchymal progenitor cells
-
Grcevic D., Pejda S., Matthews B.G., Repic D., Wang L., Li H., et al. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells 2012, 30:187-196.
-
(2012)
Stem Cells
, vol.30
, pp. 187-196
-
-
Grcevic, D.1
Pejda, S.2
Matthews, B.G.3
Repic, D.4
Wang, L.5
Li, H.6
-
73
-
-
67650064589
-
Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum
-
Kawanami A., Matsushita T., Chan Y.Y., Murakami S. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun 2009, 386:477-482.
-
(2009)
Biochem Biophys Res Commun
, vol.386
, pp. 477-482
-
-
Kawanami, A.1
Matsushita, T.2
Chan, Y.Y.3
Murakami, S.4
-
74
-
-
84880303938
-
Periosteal cells are a major source of soft callus in bone fracture
-
Murao H., Yamamoto K., Matsuda S., Akiyama H. Periosteal cells are a major source of soft callus in bone fracture. J Bone Miner Metab 2013, 31:390-398.
-
(2013)
J Bone Miner Metab
, vol.31
, pp. 390-398
-
-
Murao, H.1
Yamamoto, K.2
Matsuda, S.3
Akiyama, H.4
-
75
-
-
77955646193
-
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
-
Mendez-Ferrer S., Michurina T.V., Ferraro F., Mazloom A.R., Macarthur B.D., Lira S.A., et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010, 466:829-834.
-
(2010)
Nature
, vol.466
, pp. 829-834
-
-
Mendez-Ferrer, S.1
Michurina, T.V.2
Ferraro, F.3
Mazloom, A.R.4
Macarthur, B.D.5
Lira, S.A.6
-
76
-
-
84863229757
-
Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration
-
Park D., Spencer J.A., Koh B.I., Kobayashi T., Fujisaki J., Clemens T.L., et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 2012, 10:259-272.
-
(2012)
Cell Stem Cell
, vol.10
, pp. 259-272
-
-
Park, D.1
Spencer, J.A.2
Koh, B.I.3
Kobayashi, T.4
Fujisaki, J.5
Clemens, T.L.6
-
77
-
-
35348921682
-
Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
-
Sacchetti B., Funari A., Michienzi S., Di Cesare S., Piersanti S., Saggio I., et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007, 131:324-336.
-
(2007)
Cell
, vol.131
, pp. 324-336
-
-
Sacchetti, B.1
Funari, A.2
Michienzi, S.3
Di Cesare, S.4
Piersanti, S.5
Saggio, I.6
-
78
-
-
0026531323
-
Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis
-
Diaz-Flores L., Gutierrez R., Lopez-Alonso A., Gonzalez R., Varela H. Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop Relat Res 1992, 280-286.
-
(1992)
Clin Orthop Relat Res
, pp. 280-286
-
-
Diaz-Flores, L.1
Gutierrez, R.2
Lopez-Alonso, A.3
Gonzalez, R.4
Varela, H.5
-
79
-
-
0022262947
-
The blood supply of the periosteum
-
Simpson A.H. The blood supply of the periosteum. J Anat 1985, 140:697-704.
-
(1985)
J Anat
, vol.140
, pp. 697-704
-
-
Simpson, A.H.1
-
80
-
-
0026197325
-
Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo
-
Nakahara H., Goldberg V.M., Caplan A.I. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res 1991, 9:465-476.
-
(1991)
J Orthop Res
, vol.9
, pp. 465-476
-
-
Nakahara, H.1
Goldberg, V.M.2
Caplan, A.I.3
-
81
-
-
51449109096
-
Quantitative screening of engineered implants in a long bone defect model in rabbits
-
Bakker A.D., Schrooten J., van Cleynenbreugel T., Vanlauwe J., Luyten J., Schepers E., et al. Quantitative screening of engineered implants in a long bone defect model in rabbits. Tissue Eng Part C Methods 2008, 14:251-260.
-
(2008)
Tissue Eng Part C Methods
, vol.14
, pp. 251-260
-
-
Bakker, A.D.1
Schrooten, J.2
van Cleynenbreugel, T.3
Vanlauwe, J.4
Luyten, J.5
Schepers, E.6
-
82
-
-
0034073485
-
Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits
-
Perka C., Schultz O., Spitzer R.S., Lindenhayn K., Burmester G.R., Sittinger M. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 2000, 21:1145-1153.
-
(2000)
Biomaterials
, vol.21
, pp. 1145-1153
-
-
Perka, C.1
Schultz, O.2
Spitzer, R.S.3
Lindenhayn, K.4
Burmester, G.R.5
Sittinger, M.6
-
83
-
-
0033382362
-
Bone engineering on the basis of periosteal cells cultured in polymer fleeces
-
Redlich A., Perka C., Schultz O., Spitzer R., Haupl T., Burmester G.R., et al. Bone engineering on the basis of periosteal cells cultured in polymer fleeces. J Mater Sci Mater Med 1999, 10:767-772.
-
(1999)
J Mater Sci Mater Med
, vol.10
, pp. 767-772
-
-
Redlich, A.1
Perka, C.2
Schultz, O.3
Spitzer, R.4
Haupl, T.5
Burmester, G.R.6
-
84
-
-
33845420571
-
Osteogenic potential of cultured human periosteum-derived cells - a pilot study of human cell transplantation into a rat calvarial defect model
-
Sakata Y., Ueno T., Kagawa T., Kanou M., Fujii T., Yamachika E., et al. Osteogenic potential of cultured human periosteum-derived cells - a pilot study of human cell transplantation into a rat calvarial defect model. J Craniomaxillofac Surg 2006, 34:461-465.
-
(2006)
J Craniomaxillofac Surg
, vol.34
, pp. 461-465
-
-
Sakata, Y.1
Ueno, T.2
Kagawa, T.3
Kanou, M.4
Fujii, T.5
Yamachika, E.6
-
85
-
-
84886749982
-
Evaluation of the osteoconductive potential of bone substitutes embedded with schneiderian membrane- or maxillary bone marrow-derived osteoprogenitor cells
-
Srouji S., Ben-David D., Funari A., Riminucci M., Bianco P. Evaluation of the osteoconductive potential of bone substitutes embedded with schneiderian membrane- or maxillary bone marrow-derived osteoprogenitor cells. Clin Oral Implants Res 2013, 24:1288-1294.
-
(2013)
Clin Oral Implants Res
, vol.24
, pp. 1288-1294
-
-
Srouji, S.1
Ben-David, D.2
Funari, A.3
Riminucci, M.4
Bianco, P.5
-
86
-
-
33846520017
-
Effective bone engineering with periosteum-derived cells
-
Agata H., Asahina I., Yamazaki Y., Uchida M., Shinohara Y., Honda M.J., et al. Effective bone engineering with periosteum-derived cells. J Dent Res 2007, 86:79-83.
-
(2007)
J Dent Res
, vol.86
, pp. 79-83
-
-
Agata, H.1
Asahina, I.2
Yamazaki, Y.3
Uchida, M.4
Shinohara, Y.5
Honda, M.J.6
-
87
-
-
0035902208
-
Replacement of an avulsed phalanx with tissue-engineered bone
-
Vacanti C.A., Bonassar L.J., Vacanti M.P., Shufflebarger J. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 2001, 344:1511-1514.
-
(2001)
N Engl J Med
, vol.344
, pp. 1511-1514
-
-
Vacanti, C.A.1
Bonassar, L.J.2
Vacanti, M.P.3
Shufflebarger, J.4
-
88
-
-
2942534323
-
Tissue-engineered bone for maxillary sinus augmentation
-
Schimming R., Schmelzeisen R. Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg 2004, 62:724-729.
-
(2004)
J Oral Maxillofac Surg
, vol.62
, pp. 724-729
-
-
Schimming, R.1
Schmelzeisen, R.2
-
89
-
-
0037329406
-
Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation - a preliminary report
-
Schmelzeisen R., Schimming R., Sittinger M. Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation - a preliminary report. J Craniomaxillofac Surg 2003, 31:34-39.
-
(2003)
J Craniomaxillofac Surg
, vol.31
, pp. 34-39
-
-
Schmelzeisen, R.1
Schimming, R.2
Sittinger, M.3
-
90
-
-
33750622826
-
Two techniques for the preparation of cell-scaffold constructs suitable for sinus augmentation: steps into clinical application
-
Springer I.N., Nocini P.F., Schlegel K.A., De S.D., Park J., Warnke P.H., et al. Two techniques for the preparation of cell-scaffold constructs suitable for sinus augmentation: steps into clinical application. Tissue Eng 2006, 12:2649-2656.
-
(2006)
Tissue Eng
, vol.12
, pp. 2649-2656
-
-
Springer, I.N.1
Nocini, P.F.2
Schlegel, K.A.3
De, S.D.4
Park, J.5
Warnke, P.H.6
-
91
-
-
41049086500
-
Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue
-
Hayashi O., Katsube Y., Hirose M., Ohgushi H., Ito H. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int 2008, 82:238-247.
-
(2008)
Calcif Tissue Int
, vol.82
, pp. 238-247
-
-
Hayashi, O.1
Katsube, Y.2
Hirose, M.3
Ohgushi, H.4
Ito, H.5
-
92
-
-
23644456193
-
Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source
-
Sakaguchi Y., Sekiya I., Yagishita K., Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005, 52:2521-2529.
-
(2005)
Arthritis Rheum
, vol.52
, pp. 2521-2529
-
-
Sakaguchi, Y.1
Sekiya, I.2
Yagishita, K.3
Muneta, T.4
-
93
-
-
84877021946
-
Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells
-
Radtke C.L., Nino-Fong R., Esparza Gonzalez B.P., Stryhn H., McDuffee L.A. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells. Am J Vet Res 2013, 74:790-800.
-
(2013)
Am J Vet Res
, vol.74
, pp. 790-800
-
-
Radtke, C.L.1
Nino-Fong, R.2
Esparza Gonzalez, B.P.3
Stryhn, H.4
McDuffee, L.A.5
-
94
-
-
33846935035
-
Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle
-
Yoshimura H., Muneta T., Nimura A., Yokoyama A., Koga H., Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007, 327:449-462.
-
(2007)
Cell Tissue Res
, vol.327
, pp. 449-462
-
-
Yoshimura, H.1
Muneta, T.2
Nimura, A.3
Yokoyama, A.4
Koga, H.5
Sekiya, I.6
-
95
-
-
33747713246
-
Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
-
Dominici M., Le B.K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8:315-317.
-
(2006)
Cytotherapy
, vol.8
, pp. 315-317
-
-
Dominici, M.1
Le, B.K.2
Mueller, I.3
Slaper-Cortenbach, I.4
Marini, F.5
Krause, D.6
-
96
-
-
84860675226
-
Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources
-
Stockmann P., Park J., von Wilmowsky C., Nkenke E., Felszeghy E., Dehner J.F., et al. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources. J Craniomaxillofac Surg 2012, 40:310-320.
-
(2012)
J Craniomaxillofac Surg
, vol.40
, pp. 310-320
-
-
Stockmann, P.1
Park, J.2
von Wilmowsky, C.3
Nkenke, E.4
Felszeghy, E.5
Dehner, J.F.6
-
97
-
-
0036401048
-
Behaviour of cancellous bone graft placed in induced membranes
-
Pelissier P., Martin D., Baudet J., Lepreux S., Masquelet A.C. Behaviour of cancellous bone graft placed in induced membranes. Br J Plast Surg 2002, 55:596-598.
-
(2002)
Br J Plast Surg
, vol.55
, pp. 596-598
-
-
Pelissier, P.1
Martin, D.2
Baudet, J.3
Lepreux, S.4
Masquelet, A.C.5
-
98
-
-
0346964738
-
Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration
-
Pelissier P., Masquelet A.C., Bareille R., Pelissier S.M., Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 2004, 22:73-79.
-
(2004)
J Orthop Res
, vol.22
, pp. 73-79
-
-
Pelissier, P.1
Masquelet, A.C.2
Bareille, R.3
Pelissier, S.M.4
Amedee, J.5
-
99
-
-
84886723955
-
Induced periosteum a complex cellular scaffold for the treatment of large bone defects
-
Cuthbert R.J., Churchman S.M., Tan H.B., McGonagle D., Jones E., Giannoudis P.V. Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone 2013, 57:484-492.
-
(2013)
Bone
, vol.57
, pp. 484-492
-
-
Cuthbert, R.J.1
Churchman, S.M.2
Tan, H.B.3
McGonagle, D.4
Jones, E.5
Giannoudis, P.V.6
-
100
-
-
59449102410
-
Subcutaneous-induced membranes have no osteoinductive effect on macroporous HA-TCP in vivo
-
Catros S., Zwetyenga N., Bareille R., Brouillaud B., Renard M., Amedee J., et al. Subcutaneous-induced membranes have no osteoinductive effect on macroporous HA-TCP in vivo. J Orthop Res 2009, 27:155-161.
-
(2009)
J Orthop Res
, vol.27
, pp. 155-161
-
-
Catros, S.1
Zwetyenga, N.2
Bareille, R.3
Brouillaud, B.4
Renard, M.5
Amedee, J.6
-
101
-
-
84875795520
-
Emerging ideas: engineering the periosteum: revitalizing allografts by mimicking autograft healing
-
Hoffman M.D., Benoit D.S. Emerging ideas: engineering the periosteum: revitalizing allografts by mimicking autograft healing. Clin Orthop Relat Res 2013, 471:721-726.
-
(2013)
Clin Orthop Relat Res
, vol.471
, pp. 721-726
-
-
Hoffman, M.D.1
Benoit, D.S.2
-
102
-
-
67650685825
-
Synthesis of a tissue-engineered periosteum with acellular dermal matrix and cultured mesenchymal stem cells
-
Schonmeyr B., Clavin N., Avraham T., Longo V., Mehrara B.J. Synthesis of a tissue-engineered periosteum with acellular dermal matrix and cultured mesenchymal stem cells. Tissue Eng Part A 2009, 15:1833-1841.
-
(2009)
Tissue Eng Part A
, vol.15
, pp. 1833-1841
-
-
Schonmeyr, B.1
Clavin, N.2
Avraham, T.3
Longo, V.4
Mehrara, B.J.5
-
103
-
-
34147192842
-
Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering
-
Xie C., Reynolds D., Awad H., Rubery P.T., Pelled G., Gazit D., et al. Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering. Tissue Eng 2007, 13:435-445.
-
(2007)
Tissue Eng
, vol.13
, pp. 435-445
-
-
Xie, C.1
Reynolds, D.2
Awad, H.3
Rubery, P.T.4
Pelled, G.5
Gazit, D.6
-
104
-
-
84894956063
-
The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice
-
Long T., Zhu Z., Awad H.A., Schwarz E.M., Hilton M.J., Dong Y. The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Biomaterials 2014, 35:2752-2759.
-
(2014)
Biomaterials
, vol.35
, pp. 2752-2759
-
-
Long, T.1
Zhu, Z.2
Awad, H.A.3
Schwarz, E.M.4
Hilton, M.J.5
Dong, Y.6
-
105
-
-
84883254061
-
Bioengineered periosteal progenitor cell sheets to enhance tendon-bone healing in a bone tunnel
-
Chang C.H., Chen C.H., Liu H.W., Whu S.W., Chen S.H., Tsai C.L., et al. Bioengineered periosteal progenitor cell sheets to enhance tendon-bone healing in a bone tunnel. Biomed J 2012, 35:473-480.
-
(2012)
Biomed J
, vol.35
, pp. 473-480
-
-
Chang, C.H.1
Chen, C.H.2
Liu, H.W.3
Whu, S.W.4
Chen, S.H.5
Tsai, C.L.6
|