-
1
-
-
53849108098
-
Bone remodeling during fracture repair: The cellular picture
-
Schindeler A, McDonald MM, Bokko P, Little DG,. Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol. 2008; 19: 459-66.
-
(2008)
Semin Cell Dev Biol.
, vol.19
, pp. 459-466
-
-
Schindeler, A.1
McDonald, M.M.2
Bokko, P.3
Little, D.G.4
-
2
-
-
77957197146
-
Long bone fracture repair in mice harboring GFP reporters for cells within the osteoblastic lineage
-
Ushiku C, Adams DJ, Jiang X, Wang L, Rowe DW,. Long bone fracture repair in mice harboring GFP reporters for cells within the osteoblastic lineage. J Orthop Res. 2010; 28: 1338-47.
-
(2010)
J Orthop Res.
, vol.28
, pp. 1338-1347
-
-
Ushiku, C.1
Adams, D.J.2
Jiang, X.3
Wang, L.4
Rowe, D.W.5
-
4
-
-
0036376885
-
A model for intramembranous ossification during fracture healing
-
Thompson Z, Miclau T, Hu D, Helms JA,. A model for intramembranous ossification during fracture healing. J Orthop Res. 2002; 20: 1091-8.
-
(2002)
J Orthop Res.
, vol.20
, pp. 1091-1098
-
-
Thompson, Z.1
Miclau, T.2
Hu, D.3
Helms, J.A.4
-
5
-
-
84857920401
-
Fracture healing under healthy and inflammatory conditions
-
Claes L, Recknagel S, Ignatius A,. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012; 8: 133-43.
-
(2012)
Nat Rev Rheumatol.
, vol.8
, pp. 133-143
-
-
Claes, L.1
Recknagel, S.2
Ignatius, A.3
-
6
-
-
0034087699
-
Role of fracture hematoma and periosteum during fracture healing in rats: Interaction of fracture hematoma and the periosteum in the initial step of the healing process
-
Ozaki A, Tsunoda M, Kinoshita S, Saura R,. Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci. 2000; 5: 64-70.
-
(2000)
J Orthop Sci.
, vol.5
, pp. 64-70
-
-
Ozaki, A.1
Tsunoda, M.2
Kinoshita, S.3
Saura, R.4
-
7
-
-
79959508609
-
Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model
-
Alexander KA, Chang MK, Maylin ER, et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res. 2011; 26: 1517-32.
-
(2011)
J Bone Miner Res.
, vol.26
, pp. 1517-1532
-
-
Alexander, K.A.1
Chang, M.K.2
Maylin, E.R.3
-
8
-
-
0035208929
-
Prevention of fracture healing in rats by an inhibitor of angiogenesis
-
Hausman MR, Schaffler MB, Majeska RJ,. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone. 2001; 29: 560-4.
-
(2001)
Bone.
, vol.29
, pp. 560-564
-
-
Hausman, M.R.1
Schaffler, M.B.2
Majeska, R.J.3
-
9
-
-
28144436728
-
Periosteal progenitor cell fate in segmental cortical bone graft transplantations: Implications for functional tissue engineering
-
Zhang X, Xie C, Lin AS, et al. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res. 2005; 20: 2124-37.
-
(2005)
J Bone Miner Res.
, vol.20
, pp. 2124-2137
-
-
Zhang, X.1
Xie, C.2
Lin, A.S.3
-
10
-
-
58649117944
-
Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration
-
Colnot C,. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res. 2009; 24: 274-82.
-
(2009)
J Bone Miner Res.
, vol.24
, pp. 274-282
-
-
Colnot, C.1
-
11
-
-
84055213708
-
Myogenic progenitors contribute to open but not closed fracture repair
-
Liu R, Birke O, Morse A, et al. Myogenic progenitors contribute to open but not closed fracture repair. BMC Musculoskelet Disord. 2011; 12: 288.
-
(2011)
BMC Musculoskelet Disord.
, vol.12
, pp. 288
-
-
Liu, R.1
Birke, O.2
Morse, A.3
-
12
-
-
55049092713
-
In search of the in vivo identity of mesenchymal stem cells
-
da Silva Meirelles L, Caplan AI, Nardi NB,. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008; 26: 2287-99.
-
(2008)
Stem Cells.
, vol.26
, pp. 2287-2299
-
-
Da Silva Meirelles, L.1
Caplan, A.I.2
Nardi, N.B.3
-
13
-
-
79952592403
-
Prospective identification and isolation of murine bone marrow derived multipotent mesenchymal progenitor cells
-
Anjos-Afonso F, Bonnet D,. Prospective identification and isolation of murine bone marrow derived multipotent mesenchymal progenitor cells. Best Pract Res Clin Haematol. 2011; 24: 13-24.
-
(2011)
Best Pract Res Clin Haematol.
, vol.24
, pp. 13-24
-
-
Anjos-Afonso, F.1
Bonnet, D.2
-
14
-
-
70449701931
-
Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow
-
Morikawa S, Mabuchi Y, Kubota Y, et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med. 2009; 206: 2483-96.
-
(2009)
J Exp Med.
, vol.206
, pp. 2483-2496
-
-
Morikawa, S.1
Mabuchi, Y.2
Kubota, Y.3
-
15
-
-
58749104518
-
Endochondral ossification is required for haematopoietic stem-cell niche formation
-
Chan CKF, Chen C-C, Luppen CA, et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature. 2009; 457: 490-5.
-
(2009)
Nature.
, vol.457
, pp. 490-495
-
-
Chan, C.K.F.1
Chen, C.-C.2
Luppen, C.A.3
-
16
-
-
84863229757
-
Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration
-
Park D, Spencer JA, Koh BI, et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell. 2012; 10: 259-72.
-
(2012)
Cell Stem Cell.
, vol.10
, pp. 259-272
-
-
Park, D.1
Spencer, J.A.2
Koh, B.I.3
-
17
-
-
84856147560
-
Endothelial and perivascular cells maintain haematopoietic stem cells
-
Ding L, Saunders TL, Enikolopov G, Morrison SJ,. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012; 481: 457-2.
-
(2012)
Nature.
, vol.481
, pp. 457-452
-
-
Ding, L.1
Saunders, T.L.2
Enikolopov, G.3
Morrison, S.J.4
-
18
-
-
77955646193
-
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
-
Mendez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010; 466: 829-34.
-
(2010)
Nature.
, vol.466
, pp. 829-834
-
-
Mendez-Ferrer, S.1
Michurina, T.V.2
Ferraro, F.3
-
19
-
-
77955569142
-
Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels
-
Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 2010; 19: 329-44.
-
(2010)
Dev Cell.
, vol.19
, pp. 329-344
-
-
Maes, C.1
Kobayashi, T.2
Selig, M.K.3
-
20
-
-
35348921682
-
Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
-
Sacchetti B, Funari A, Michienzi S, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007; 131: 324-36.
-
(2007)
Cell.
, vol.131
, pp. 324-336
-
-
Sacchetti, B.1
Funari, A.2
Michienzi, S.3
-
21
-
-
0028102611
-
The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors
-
Gronthos S, Graves SE, Ohta S, Simmons PJ,. The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood. 1994; 84: 4164-73.
-
(1994)
Blood.
, vol.84
, pp. 4164-4173
-
-
Gronthos, S.1
Graves, S.E.2
Ohta, S.3
Simmons, P.J.4
-
22
-
-
50849139576
-
A perivascular origin for mesenchymal stem cells in multiple human organs
-
Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008; 3: 301-13.
-
(2008)
Cell Stem Cell.
, vol.3
, pp. 301-313
-
-
Crisan, M.1
Yap, S.2
Casteilla, L.3
-
23
-
-
33745503987
-
Mesenchymal stem cells reside in virtually all post-natal organs and tissues
-
da Silva Meirelles L, Chagastelles PC, Nardi NB,. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006; 119: 2204-13.
-
(2006)
J Cell Sci.
, vol.119
, pp. 2204-2213
-
-
Da Silva Meirelles, L.1
Chagastelles, P.C.2
Nardi, N.B.3
-
24
-
-
49149128079
-
Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population
-
Kalajzic Z, Li H, Wang LP, et al. Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone. 2008; 43: 501-10.
-
(2008)
Bone.
, vol.43
, pp. 501-510
-
-
Kalajzic, Z.1
Li, H.2
Wang, L.P.3
-
25
-
-
84862933577
-
In vivo fate mapping identifies mesenchymal progenitor cells
-
Grcevic D, Pejda S, Matthews BG, et al. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells. 2012; 30: 187-96.
-
(2012)
Stem Cells.
, vol.30
, pp. 187-196
-
-
Grcevic, D.1
Pejda, S.2
Matthews, B.G.3
-
26
-
-
84880311542
-
In vivo identification of periodontal progenitor cells
-
Roguljic H, Matthews BG, Yang W, Cvija H, Mina M, Kalajzic I,. In vivo identification of periodontal progenitor cells. J Dent Res. 2013; 92: 709-15.
-
(2013)
J Dent Res.
, vol.92
, pp. 709-715
-
-
Roguljic, H.1
Matthews, B.G.2
Yang, W.3
Cvija, H.4
Mina, M.5
Kalajzic, I.6
-
27
-
-
0036133690
-
Use of type i collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage
-
Kalajzic I, Kalajzic Z, Kaliterna M, et al. Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res. 2002; 17: 15-25.
-
(2002)
J Bone Miner Res.
, vol.17
, pp. 15-25
-
-
Kalajzic, I.1
Kalajzic, Z.2
Kaliterna, M.3
-
28
-
-
84872701013
-
Osteoblast lineage-specific effects of Notch activation in the skeleton
-
Canalis E, Parker K, Feng JQ, Zanotti S,. Osteoblast lineage-specific effects of Notch activation in the skeleton. Endocrinology. 2013; 154: 623-34.
-
(2013)
Endocrinology.
, vol.154
, pp. 623-634
-
-
Canalis, E.1
Parker, K.2
Feng, J.Q.3
Zanotti, S.4
-
29
-
-
70450183194
-
PBC: A software framework facilitating pattern-based clustering for microarray data analysis
-
Shangai, China.
-
Shin DG, Hong S-H, Joshi P, et al. PBC: a software framework facilitating pattern-based clustering for microarray data analysis. IJCBS International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing; 2009; Shangai, China.
-
(2009)
IJCBS International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing
-
-
Shin, D.G.1
Hong, S.-H.2
Joshi, P.3
-
30
-
-
77957755782
-
Isolation of murine bone marrow derived mesenchymal stem cells using Twist2 Cre transgenic mice
-
Liu YL, Wang LP, Fatahi R, et al. Isolation of murine bone marrow derived mesenchymal stem cells using Twist2 Cre transgenic mice. Bone. 2010; 47: 916-25.
-
(2010)
Bone.
, vol.47
, pp. 916-925
-
-
Liu, Y.L.1
Wang, L.P.2
Fatahi, R.3
-
31
-
-
26944452406
-
Origins of endothelial and osteogenic cells in the subcutaneous collagen gel implant
-
Bilic-Curcic I, Kalajzic Z, Wang L, Rowe DW,. Origins of endothelial and osteogenic cells in the subcutaneous collagen gel implant. Bone. 2005; 37: 678-87.
-
(2005)
Bone.
, vol.37
, pp. 678-687
-
-
Bilic-Curcic, I.1
Kalajzic, Z.2
Wang, L.3
Rowe, D.W.4
-
32
-
-
0037445986
-
Stage specific inhibition of osteoblast lineage differentiation by FGF2 and noggin
-
Kalajzic I, Kalajzic Z, Hurley MM, Lichtler AC, Rowe DW,. Stage specific inhibition of osteoblast lineage differentiation by FGF2 and noggin. J Cell Biochem. 2003; 88: 1168-76.
-
(2003)
J Cell Biochem.
, vol.88
, pp. 1168-1176
-
-
Kalajzic, I.1
Kalajzic, Z.2
Hurley, M.M.3
Lichtler, A.C.4
Rowe, D.W.5
-
33
-
-
84867747480
-
Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow
-
Ludin A, Itkin T, Gur-Cohen S, et al. Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol. 2012; 13: 1072-82.
-
(2012)
Nat Immunol.
, vol.13
, pp. 1072-1082
-
-
Ludin, A.1
Itkin, T.2
Gur-Cohen, S.3
-
34
-
-
34247599739
-
Two distinct stem cell lineages in murine bone marrow
-
Koide Y, Morikawa S, Mabuchi Y, et al. Two distinct stem cell lineages in murine bone marrow. Stem Cells. 2007; 25: 1213-21.
-
(2007)
Stem Cells.
, vol.25
, pp. 1213-1221
-
-
Koide, Y.1
Morikawa, S.2
Mabuchi, Y.3
-
35
-
-
83855165780
-
Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration
-
Dishowitz MI, Terkhorn SP, Bostic SA, Hankenson KD,. Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration. J Orthop Res. 2012; 30: 296-303.
-
(2012)
J Orthop Res.
, vol.30
, pp. 296-303
-
-
Dishowitz, M.I.1
Terkhorn, S.P.2
Bostic, S.A.3
Hankenson, K.D.4
-
36
-
-
77951229591
-
RBPj kappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development
-
Dong Y, Jesse AM, Kohn A, et al. RBPj kappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development. 2010; 137: 1461-71.
-
(2010)
Development.
, vol.137
, pp. 1461-1471
-
-
Dong, Y.1
Jesse, A.M.2
Kohn, A.3
-
37
-
-
40449084522
-
Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation
-
Hilton MJ, Tu X, Wu X, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med. 2008; 14: 306-14.
-
(2008)
Nat Med.
, vol.14
, pp. 306-314
-
-
Hilton, M.J.1
Tu, X.2
Wu, X.3
-
38
-
-
0344736673
-
Notch signaling controls multiple steps of pancreatic differentiation
-
Murtaugh LC, Stanger BZ, Kwan KM, Melton DA,. Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci USA. 2003; 100: 14920-5.
-
(2003)
Proc Natl Acad Sci USA.
, vol.100
, pp. 14920-14925
-
-
Murtaugh, L.C.1
Stanger, B.Z.2
Kwan, K.M.3
Melton, D.A.4
-
39
-
-
0037119434
-
Transcriptional profiling of bone regeneration - Insight into the molecular complexity of wound repair
-
Hadjiargyrou M, Lombardo F, Zhao SC, et al. Transcriptional profiling of bone regeneration-insight into the molecular complexity of wound repair. J Biol Chem. 2002; 277: 30177-82.
-
(2002)
J Biol Chem.
, vol.277
, pp. 30177-30182
-
-
Hadjiargyrou, M.1
Lombardo, F.2
Zhao, S.C.3
-
40
-
-
33646843614
-
Gene expression during fracture healing in rats comparing intramedullary fixation to plate fixation by DNA microarray
-
Heiner DE, Meyer MH, Frick SL, Kellam JF, Fiechtl J, Meyer RA,. Gene expression during fracture healing in rats comparing intramedullary fixation to plate fixation by DNA microarray. J Orthop Trauma. 2006; 20: 27-38.
-
(2006)
J Orthop Trauma.
, vol.20
, pp. 27-38
-
-
Heiner, D.E.1
Meyer, M.H.2
Frick, S.L.3
Kellam, J.F.4
Fiechtl, J.5
Meyer, R.A.6
-
41
-
-
33644990212
-
Microarray analysis of gene expression during the inflammation and endochondral bone formation stages of rat femur fracture repair
-
Rundle CH, Wang HL, Yu HR, et al. Microarray analysis of gene expression during the inflammation and endochondral bone formation stages of rat femur fracture repair. Bone. 2006; 38: 521-9.
-
(2006)
Bone.
, vol.38
, pp. 521-529
-
-
Rundle, C.H.1
Wang, H.L.2
Yu, H.R.3
-
42
-
-
67649823758
-
Transcriptional analysis of fracture healing,the induction of embryonic stem cell-related genes
-
Bais M, McLean J, Sebastiani P, et al. Transcriptional analysis of fracture healing,the induction of embryonic stem cell-related genes. PLoS ONE. 2009; 4: e5393.
-
(2009)
PLoS ONE.
, vol.4
-
-
Bais, M.1
McLean, J.2
Sebastiani, P.3
-
43
-
-
33745218499
-
Analysis of fracture healing by large-scale transcriptional profile identified temporal relationships between metalloproteinase and ADAMTS mRNA expression
-
Wang K, Vishwanath P, Eichler GS, et al. Analysis of fracture healing by large-scale transcriptional profile identified temporal relationships between metalloproteinase and ADAMTS mRNA expression. Matrix Biol. 2006; 25: 271-81.
-
(2006)
Matrix Biol.
, vol.25
, pp. 271-281
-
-
Wang, K.1
Vishwanath, P.2
Eichler, G.S.3
-
44
-
-
80055024008
-
The transcriptome of fracture healing defines mechanisms of coordination of skeletal and vascular development during endochondral bone formation
-
Grimes R, Jepsen KJ, Fitch JL, Einhorn TA, Gerstenfeld LC,. The transcriptome of fracture healing defines mechanisms of coordination of skeletal and vascular development during endochondral bone formation. J Bone Miner Res. 2011; 26: 2597-609.
-
(2011)
J Bone Miner Res.
, vol.26
, pp. 2597-2609
-
-
Grimes, R.1
Jepsen, K.J.2
Fitch, J.L.3
Einhorn, T.A.4
Gerstenfeld, L.C.5
-
45
-
-
33846781432
-
Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects
-
Tate MLK, Ritzman TE, Schneider E, Knothe UR,. Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects. J Bone Joint Surg Am. 2007; 89A: 307-16.
-
(2007)
J Bone Joint Surg Am.
, vol.89 A
, pp. 307-316
-
-
Tate, M.L.K.1
Ritzman, T.E.2
Schneider, E.3
Knothe, U.R.4
-
46
-
-
84867850102
-
The periosteum: Tapping into a reservoir of clinically useful progenitor cells
-
Chang H, Tate MLK,. The periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med. 2012; 1: 480-91.
-
(2012)
Stem Cells Transl Med.
, vol.1
, pp. 480-491
-
-
Chang, H.1
Tate, M.L.K.2
-
47
-
-
33846520017
-
Effective bone engineering with periosteum-derived cells
-
Agata H, Asahina I, Yamazaki Y, et al. Effective bone engineering with periosteum-derived cells. J Dent Res. 2007; 86: 79-83.
-
(2007)
J Dent Res.
, vol.86
, pp. 79-83
-
-
Agata, H.1
Asahina, I.2
Yamazaki, Y.3
-
48
-
-
77953244658
-
Periosteum-derived cells as an alternative to bone marrow cells for bone tissue engineering around dental implants. A histomorphometric study in beagle dogs
-
Ribeiro FV, Suaid FF, Ruiz KGS, et al. Periosteum-derived cells as an alternative to bone marrow cells for bone tissue engineering around dental implants. A histomorphometric study in beagle dogs. J Periodontol. 2010; 81: 907-16.
-
(2010)
J Periodontol.
, vol.81
, pp. 907-916
-
-
Ribeiro, F.V.1
Suaid, F.F.2
Ruiz, K.G.S.3
-
49
-
-
23644456193
-
Comparison of human stem cells derived from various mesenchymal tissues - Superiority of synovium as a cell source
-
Sakaguchi Y, Sekiya I, Yagishita K, Muneta T,. Comparison of human stem cells derived from various mesenchymal tissues-superiority of synovium as a cell source. Arthritis Rheum. 2005; 52: 2521-9.
-
(2005)
Arthritis Rheum.
, vol.52
, pp. 2521-2529
-
-
Sakaguchi, Y.1
Sekiya, I.2
Yagishita, K.3
Muneta, T.4
-
50
-
-
84867913813
-
Engineering vascularized bone: Osteogenic and proangiogenic potential of murine periosteal cells
-
van Gastel N, Torrekens S, Roberts SJ, et al. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells. 2012; 30: 2460-71.
-
(2012)
Stem Cells.
, vol.30
, pp. 2460-2471
-
-
Van Gastel, N.1
Torrekens, S.2
Roberts, S.J.3
-
51
-
-
78651126370
-
Cell population kinetics of an osteogenic tissue. i
-
Owen M,. Cell population kinetics of an osteogenic tissue. I. J Cell Biol. 1963; 19: 19-32.
-
(1963)
J Cell Biol.
, vol.19
, pp. 19-32
-
-
Owen, M.1
-
52
-
-
67650064589
-
Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum
-
Kawanami A, Matsushita T, Chan YY, Murakami S,. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun. 2009; 386: 477-82.
-
(2009)
Biochem Biophys Res Commun.
, vol.386
, pp. 477-482
-
-
Kawanami, A.1
Matsushita, T.2
Chan, Y.Y.3
Murakami, S.4
-
53
-
-
47949130093
-
Notch inhibits osteoblast differentiation and causes osteopenia
-
Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E,. Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology. 2008; 149: 3890-9.
-
(2008)
Endocrinology.
, vol.149
, pp. 3890-3899
-
-
Zanotti, S.1
Smerdel-Ramoya, A.2
Stadmeyer, L.3
Durant, D.4
Radtke, F.5
Canalis, E.6
-
54
-
-
40449139405
-
Dimorphic effects of Notch signaling in bone homeostasis
-
Engin F, Yao Z, Yang T, et al. Dimorphic effects of Notch signaling in bone homeostasis. Nat Med. 2008; 14: 299-305.
-
(2008)
Nat Med.
, vol.14
, pp. 299-305
-
-
Engin, F.1
Yao, Z.2
Yang, T.3
-
56
-
-
0344827208
-
Notch-mediated restoration of regenerative potential to aged muscle
-
Conboy IM, Conboy MJ, Smythe GM, Rando TA,. Notch-mediated restoration of regenerative potential to aged muscle. Science. 2003; 302: 1575-7.
-
(2003)
Science.
, vol.302
, pp. 1575-1577
-
-
Conboy, I.M.1
Conboy, M.J.2
Smythe, G.M.3
Rando, T.A.4
-
57
-
-
43449104712
-
Activation of Notch-mediated protective signaling in the myocardium
-
Gude NA, Emmanuel G, Wu WT, et al. Activation of Notch-mediated protective signaling in the myocardium. Circ Res. 2008; 102: 1025-35.
-
(2008)
Circ Res.
, vol.102
, pp. 1025-1035
-
-
Gude, N.A.1
Emmanuel, G.2
Wu, W.T.3
-
58
-
-
84879772616
-
Systemic inhibition of canonical notch signaling results in sustained callus inflammation,alters multiple phases of fracture healing
-
Dishowitz MI, Mutyaba PL, Takacs JD, et al. Systemic inhibition of canonical notch signaling results in sustained callus inflammation,alters multiple phases of fracture healing. PLoS ONE. 2013; 8: e68726.
-
(2013)
PLoS ONE.
, vol.8
-
-
Dishowitz, M.I.1
Mutyaba, P.L.2
Takacs, J.D.3
|