메뉴 건너뛰기




Volumn 29, Issue 5, 2014, Pages 1283-1294

Analysis of αsMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing

Author keywords

alpha smooth muscle actin; fracture healing; lineage tracing; Notch signaling; periosteum

Indexed keywords

ALPHA SMOOTH MUSCLE ACTIN; ATAXIN 1; NOTCH RECEPTOR; PLATELET DERIVED GROWTH FACTOR ALPHA RECEPTOR; ACTIN;

EID: 84899082536     PISSN: 08840431     EISSN: 15234681     Source Type: Journal    
DOI: 10.1002/jbmr.2140     Document Type: Article
Times cited : (127)

References (58)
  • 2
    • 77957197146 scopus 로고    scopus 로고
    • Long bone fracture repair in mice harboring GFP reporters for cells within the osteoblastic lineage
    • Ushiku C, Adams DJ, Jiang X, Wang L, Rowe DW,. Long bone fracture repair in mice harboring GFP reporters for cells within the osteoblastic lineage. J Orthop Res. 2010; 28: 1338-47.
    • (2010) J Orthop Res. , vol.28 , pp. 1338-1347
    • Ushiku, C.1    Adams, D.J.2    Jiang, X.3    Wang, L.4    Rowe, D.W.5
  • 3
    • 0033145956 scopus 로고    scopus 로고
    • Regulation of osteoblast levels during bone healing
    • Olmedo ML, Landry PS, Sadasivan KK, et al. Regulation of osteoblast levels during bone healing. J Orthop Trauma. 1999; 13: 356-62.
    • (1999) J Orthop Trauma. , vol.13 , pp. 356-362
    • Olmedo, M.L.1    Landry, P.S.2    Sadasivan, K.K.3
  • 4
    • 0036376885 scopus 로고    scopus 로고
    • A model for intramembranous ossification during fracture healing
    • Thompson Z, Miclau T, Hu D, Helms JA,. A model for intramembranous ossification during fracture healing. J Orthop Res. 2002; 20: 1091-8.
    • (2002) J Orthop Res. , vol.20 , pp. 1091-1098
    • Thompson, Z.1    Miclau, T.2    Hu, D.3    Helms, J.A.4
  • 5
    • 84857920401 scopus 로고    scopus 로고
    • Fracture healing under healthy and inflammatory conditions
    • Claes L, Recknagel S, Ignatius A,. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012; 8: 133-43.
    • (2012) Nat Rev Rheumatol. , vol.8 , pp. 133-143
    • Claes, L.1    Recknagel, S.2    Ignatius, A.3
  • 6
    • 0034087699 scopus 로고    scopus 로고
    • Role of fracture hematoma and periosteum during fracture healing in rats: Interaction of fracture hematoma and the periosteum in the initial step of the healing process
    • Ozaki A, Tsunoda M, Kinoshita S, Saura R,. Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci. 2000; 5: 64-70.
    • (2000) J Orthop Sci. , vol.5 , pp. 64-70
    • Ozaki, A.1    Tsunoda, M.2    Kinoshita, S.3    Saura, R.4
  • 7
    • 79959508609 scopus 로고    scopus 로고
    • Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model
    • Alexander KA, Chang MK, Maylin ER, et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res. 2011; 26: 1517-32.
    • (2011) J Bone Miner Res. , vol.26 , pp. 1517-1532
    • Alexander, K.A.1    Chang, M.K.2    Maylin, E.R.3
  • 8
    • 0035208929 scopus 로고    scopus 로고
    • Prevention of fracture healing in rats by an inhibitor of angiogenesis
    • Hausman MR, Schaffler MB, Majeska RJ,. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone. 2001; 29: 560-4.
    • (2001) Bone. , vol.29 , pp. 560-564
    • Hausman, M.R.1    Schaffler, M.B.2    Majeska, R.J.3
  • 9
    • 28144436728 scopus 로고    scopus 로고
    • Periosteal progenitor cell fate in segmental cortical bone graft transplantations: Implications for functional tissue engineering
    • Zhang X, Xie C, Lin AS, et al. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res. 2005; 20: 2124-37.
    • (2005) J Bone Miner Res. , vol.20 , pp. 2124-2137
    • Zhang, X.1    Xie, C.2    Lin, A.S.3
  • 10
    • 58649117944 scopus 로고    scopus 로고
    • Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration
    • Colnot C,. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res. 2009; 24: 274-82.
    • (2009) J Bone Miner Res. , vol.24 , pp. 274-282
    • Colnot, C.1
  • 11
    • 84055213708 scopus 로고    scopus 로고
    • Myogenic progenitors contribute to open but not closed fracture repair
    • Liu R, Birke O, Morse A, et al. Myogenic progenitors contribute to open but not closed fracture repair. BMC Musculoskelet Disord. 2011; 12: 288.
    • (2011) BMC Musculoskelet Disord. , vol.12 , pp. 288
    • Liu, R.1    Birke, O.2    Morse, A.3
  • 12
    • 55049092713 scopus 로고    scopus 로고
    • In search of the in vivo identity of mesenchymal stem cells
    • da Silva Meirelles L, Caplan AI, Nardi NB,. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008; 26: 2287-99.
    • (2008) Stem Cells. , vol.26 , pp. 2287-2299
    • Da Silva Meirelles, L.1    Caplan, A.I.2    Nardi, N.B.3
  • 13
    • 79952592403 scopus 로고    scopus 로고
    • Prospective identification and isolation of murine bone marrow derived multipotent mesenchymal progenitor cells
    • Anjos-Afonso F, Bonnet D,. Prospective identification and isolation of murine bone marrow derived multipotent mesenchymal progenitor cells. Best Pract Res Clin Haematol. 2011; 24: 13-24.
    • (2011) Best Pract Res Clin Haematol. , vol.24 , pp. 13-24
    • Anjos-Afonso, F.1    Bonnet, D.2
  • 14
    • 70449701931 scopus 로고    scopus 로고
    • Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow
    • Morikawa S, Mabuchi Y, Kubota Y, et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med. 2009; 206: 2483-96.
    • (2009) J Exp Med. , vol.206 , pp. 2483-2496
    • Morikawa, S.1    Mabuchi, Y.2    Kubota, Y.3
  • 15
    • 58749104518 scopus 로고    scopus 로고
    • Endochondral ossification is required for haematopoietic stem-cell niche formation
    • Chan CKF, Chen C-C, Luppen CA, et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature. 2009; 457: 490-5.
    • (2009) Nature. , vol.457 , pp. 490-495
    • Chan, C.K.F.1    Chen, C.-C.2    Luppen, C.A.3
  • 16
    • 84863229757 scopus 로고    scopus 로고
    • Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration
    • Park D, Spencer JA, Koh BI, et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell. 2012; 10: 259-72.
    • (2012) Cell Stem Cell. , vol.10 , pp. 259-272
    • Park, D.1    Spencer, J.A.2    Koh, B.I.3
  • 17
    • 84856147560 scopus 로고    scopus 로고
    • Endothelial and perivascular cells maintain haematopoietic stem cells
    • Ding L, Saunders TL, Enikolopov G, Morrison SJ,. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012; 481: 457-2.
    • (2012) Nature. , vol.481 , pp. 457-452
    • Ding, L.1    Saunders, T.L.2    Enikolopov, G.3    Morrison, S.J.4
  • 18
    • 77955646193 scopus 로고    scopus 로고
    • Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
    • Mendez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010; 466: 829-34.
    • (2010) Nature. , vol.466 , pp. 829-834
    • Mendez-Ferrer, S.1    Michurina, T.V.2    Ferraro, F.3
  • 19
    • 77955569142 scopus 로고    scopus 로고
    • Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels
    • Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 2010; 19: 329-44.
    • (2010) Dev Cell. , vol.19 , pp. 329-344
    • Maes, C.1    Kobayashi, T.2    Selig, M.K.3
  • 20
    • 35348921682 scopus 로고    scopus 로고
    • Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
    • Sacchetti B, Funari A, Michienzi S, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007; 131: 324-36.
    • (2007) Cell. , vol.131 , pp. 324-336
    • Sacchetti, B.1    Funari, A.2    Michienzi, S.3
  • 21
    • 0028102611 scopus 로고
    • The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors
    • Gronthos S, Graves SE, Ohta S, Simmons PJ,. The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood. 1994; 84: 4164-73.
    • (1994) Blood. , vol.84 , pp. 4164-4173
    • Gronthos, S.1    Graves, S.E.2    Ohta, S.3    Simmons, P.J.4
  • 22
    • 50849139576 scopus 로고    scopus 로고
    • A perivascular origin for mesenchymal stem cells in multiple human organs
    • Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008; 3: 301-13.
    • (2008) Cell Stem Cell. , vol.3 , pp. 301-313
    • Crisan, M.1    Yap, S.2    Casteilla, L.3
  • 23
    • 33745503987 scopus 로고    scopus 로고
    • Mesenchymal stem cells reside in virtually all post-natal organs and tissues
    • da Silva Meirelles L, Chagastelles PC, Nardi NB,. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006; 119: 2204-13.
    • (2006) J Cell Sci. , vol.119 , pp. 2204-2213
    • Da Silva Meirelles, L.1    Chagastelles, P.C.2    Nardi, N.B.3
  • 24
    • 49149128079 scopus 로고    scopus 로고
    • Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population
    • Kalajzic Z, Li H, Wang LP, et al. Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone. 2008; 43: 501-10.
    • (2008) Bone. , vol.43 , pp. 501-510
    • Kalajzic, Z.1    Li, H.2    Wang, L.P.3
  • 25
    • 84862933577 scopus 로고    scopus 로고
    • In vivo fate mapping identifies mesenchymal progenitor cells
    • Grcevic D, Pejda S, Matthews BG, et al. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells. 2012; 30: 187-96.
    • (2012) Stem Cells. , vol.30 , pp. 187-196
    • Grcevic, D.1    Pejda, S.2    Matthews, B.G.3
  • 27
    • 0036133690 scopus 로고    scopus 로고
    • Use of type i collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage
    • Kalajzic I, Kalajzic Z, Kaliterna M, et al. Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res. 2002; 17: 15-25.
    • (2002) J Bone Miner Res. , vol.17 , pp. 15-25
    • Kalajzic, I.1    Kalajzic, Z.2    Kaliterna, M.3
  • 28
    • 84872701013 scopus 로고    scopus 로고
    • Osteoblast lineage-specific effects of Notch activation in the skeleton
    • Canalis E, Parker K, Feng JQ, Zanotti S,. Osteoblast lineage-specific effects of Notch activation in the skeleton. Endocrinology. 2013; 154: 623-34.
    • (2013) Endocrinology. , vol.154 , pp. 623-634
    • Canalis, E.1    Parker, K.2    Feng, J.Q.3    Zanotti, S.4
  • 30
    • 77957755782 scopus 로고    scopus 로고
    • Isolation of murine bone marrow derived mesenchymal stem cells using Twist2 Cre transgenic mice
    • Liu YL, Wang LP, Fatahi R, et al. Isolation of murine bone marrow derived mesenchymal stem cells using Twist2 Cre transgenic mice. Bone. 2010; 47: 916-25.
    • (2010) Bone. , vol.47 , pp. 916-925
    • Liu, Y.L.1    Wang, L.P.2    Fatahi, R.3
  • 31
    • 26944452406 scopus 로고    scopus 로고
    • Origins of endothelial and osteogenic cells in the subcutaneous collagen gel implant
    • Bilic-Curcic I, Kalajzic Z, Wang L, Rowe DW,. Origins of endothelial and osteogenic cells in the subcutaneous collagen gel implant. Bone. 2005; 37: 678-87.
    • (2005) Bone. , vol.37 , pp. 678-687
    • Bilic-Curcic, I.1    Kalajzic, Z.2    Wang, L.3    Rowe, D.W.4
  • 32
    • 0037445986 scopus 로고    scopus 로고
    • Stage specific inhibition of osteoblast lineage differentiation by FGF2 and noggin
    • Kalajzic I, Kalajzic Z, Hurley MM, Lichtler AC, Rowe DW,. Stage specific inhibition of osteoblast lineage differentiation by FGF2 and noggin. J Cell Biochem. 2003; 88: 1168-76.
    • (2003) J Cell Biochem. , vol.88 , pp. 1168-1176
    • Kalajzic, I.1    Kalajzic, Z.2    Hurley, M.M.3    Lichtler, A.C.4    Rowe, D.W.5
  • 33
    • 84867747480 scopus 로고    scopus 로고
    • Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow
    • Ludin A, Itkin T, Gur-Cohen S, et al. Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol. 2012; 13: 1072-82.
    • (2012) Nat Immunol. , vol.13 , pp. 1072-1082
    • Ludin, A.1    Itkin, T.2    Gur-Cohen, S.3
  • 34
    • 34247599739 scopus 로고    scopus 로고
    • Two distinct stem cell lineages in murine bone marrow
    • Koide Y, Morikawa S, Mabuchi Y, et al. Two distinct stem cell lineages in murine bone marrow. Stem Cells. 2007; 25: 1213-21.
    • (2007) Stem Cells. , vol.25 , pp. 1213-1221
    • Koide, Y.1    Morikawa, S.2    Mabuchi, Y.3
  • 35
    • 83855165780 scopus 로고    scopus 로고
    • Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration
    • Dishowitz MI, Terkhorn SP, Bostic SA, Hankenson KD,. Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration. J Orthop Res. 2012; 30: 296-303.
    • (2012) J Orthop Res. , vol.30 , pp. 296-303
    • Dishowitz, M.I.1    Terkhorn, S.P.2    Bostic, S.A.3    Hankenson, K.D.4
  • 36
    • 77951229591 scopus 로고    scopus 로고
    • RBPj kappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development
    • Dong Y, Jesse AM, Kohn A, et al. RBPj kappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development. 2010; 137: 1461-71.
    • (2010) Development. , vol.137 , pp. 1461-1471
    • Dong, Y.1    Jesse, A.M.2    Kohn, A.3
  • 37
    • 40449084522 scopus 로고    scopus 로고
    • Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation
    • Hilton MJ, Tu X, Wu X, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med. 2008; 14: 306-14.
    • (2008) Nat Med. , vol.14 , pp. 306-314
    • Hilton, M.J.1    Tu, X.2    Wu, X.3
  • 39
    • 0037119434 scopus 로고    scopus 로고
    • Transcriptional profiling of bone regeneration - Insight into the molecular complexity of wound repair
    • Hadjiargyrou M, Lombardo F, Zhao SC, et al. Transcriptional profiling of bone regeneration-insight into the molecular complexity of wound repair. J Biol Chem. 2002; 277: 30177-82.
    • (2002) J Biol Chem. , vol.277 , pp. 30177-30182
    • Hadjiargyrou, M.1    Lombardo, F.2    Zhao, S.C.3
  • 40
    • 33646843614 scopus 로고    scopus 로고
    • Gene expression during fracture healing in rats comparing intramedullary fixation to plate fixation by DNA microarray
    • Heiner DE, Meyer MH, Frick SL, Kellam JF, Fiechtl J, Meyer RA,. Gene expression during fracture healing in rats comparing intramedullary fixation to plate fixation by DNA microarray. J Orthop Trauma. 2006; 20: 27-38.
    • (2006) J Orthop Trauma. , vol.20 , pp. 27-38
    • Heiner, D.E.1    Meyer, M.H.2    Frick, S.L.3    Kellam, J.F.4    Fiechtl, J.5    Meyer, R.A.6
  • 41
    • 33644990212 scopus 로고    scopus 로고
    • Microarray analysis of gene expression during the inflammation and endochondral bone formation stages of rat femur fracture repair
    • Rundle CH, Wang HL, Yu HR, et al. Microarray analysis of gene expression during the inflammation and endochondral bone formation stages of rat femur fracture repair. Bone. 2006; 38: 521-9.
    • (2006) Bone. , vol.38 , pp. 521-529
    • Rundle, C.H.1    Wang, H.L.2    Yu, H.R.3
  • 42
    • 67649823758 scopus 로고    scopus 로고
    • Transcriptional analysis of fracture healing,the induction of embryonic stem cell-related genes
    • Bais M, McLean J, Sebastiani P, et al. Transcriptional analysis of fracture healing,the induction of embryonic stem cell-related genes. PLoS ONE. 2009; 4: e5393.
    • (2009) PLoS ONE. , vol.4
    • Bais, M.1    McLean, J.2    Sebastiani, P.3
  • 43
    • 33745218499 scopus 로고    scopus 로고
    • Analysis of fracture healing by large-scale transcriptional profile identified temporal relationships between metalloproteinase and ADAMTS mRNA expression
    • Wang K, Vishwanath P, Eichler GS, et al. Analysis of fracture healing by large-scale transcriptional profile identified temporal relationships between metalloproteinase and ADAMTS mRNA expression. Matrix Biol. 2006; 25: 271-81.
    • (2006) Matrix Biol. , vol.25 , pp. 271-281
    • Wang, K.1    Vishwanath, P.2    Eichler, G.S.3
  • 44
    • 80055024008 scopus 로고    scopus 로고
    • The transcriptome of fracture healing defines mechanisms of coordination of skeletal and vascular development during endochondral bone formation
    • Grimes R, Jepsen KJ, Fitch JL, Einhorn TA, Gerstenfeld LC,. The transcriptome of fracture healing defines mechanisms of coordination of skeletal and vascular development during endochondral bone formation. J Bone Miner Res. 2011; 26: 2597-609.
    • (2011) J Bone Miner Res. , vol.26 , pp. 2597-2609
    • Grimes, R.1    Jepsen, K.J.2    Fitch, J.L.3    Einhorn, T.A.4    Gerstenfeld, L.C.5
  • 45
    • 33846781432 scopus 로고    scopus 로고
    • Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects
    • Tate MLK, Ritzman TE, Schneider E, Knothe UR,. Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects. J Bone Joint Surg Am. 2007; 89A: 307-16.
    • (2007) J Bone Joint Surg Am. , vol.89 A , pp. 307-316
    • Tate, M.L.K.1    Ritzman, T.E.2    Schneider, E.3    Knothe, U.R.4
  • 46
    • 84867850102 scopus 로고    scopus 로고
    • The periosteum: Tapping into a reservoir of clinically useful progenitor cells
    • Chang H, Tate MLK,. The periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med. 2012; 1: 480-91.
    • (2012) Stem Cells Transl Med. , vol.1 , pp. 480-491
    • Chang, H.1    Tate, M.L.K.2
  • 47
    • 33846520017 scopus 로고    scopus 로고
    • Effective bone engineering with periosteum-derived cells
    • Agata H, Asahina I, Yamazaki Y, et al. Effective bone engineering with periosteum-derived cells. J Dent Res. 2007; 86: 79-83.
    • (2007) J Dent Res. , vol.86 , pp. 79-83
    • Agata, H.1    Asahina, I.2    Yamazaki, Y.3
  • 48
    • 77953244658 scopus 로고    scopus 로고
    • Periosteum-derived cells as an alternative to bone marrow cells for bone tissue engineering around dental implants. A histomorphometric study in beagle dogs
    • Ribeiro FV, Suaid FF, Ruiz KGS, et al. Periosteum-derived cells as an alternative to bone marrow cells for bone tissue engineering around dental implants. A histomorphometric study in beagle dogs. J Periodontol. 2010; 81: 907-16.
    • (2010) J Periodontol. , vol.81 , pp. 907-916
    • Ribeiro, F.V.1    Suaid, F.F.2    Ruiz, K.G.S.3
  • 49
    • 23644456193 scopus 로고    scopus 로고
    • Comparison of human stem cells derived from various mesenchymal tissues - Superiority of synovium as a cell source
    • Sakaguchi Y, Sekiya I, Yagishita K, Muneta T,. Comparison of human stem cells derived from various mesenchymal tissues-superiority of synovium as a cell source. Arthritis Rheum. 2005; 52: 2521-9.
    • (2005) Arthritis Rheum. , vol.52 , pp. 2521-2529
    • Sakaguchi, Y.1    Sekiya, I.2    Yagishita, K.3    Muneta, T.4
  • 50
    • 84867913813 scopus 로고    scopus 로고
    • Engineering vascularized bone: Osteogenic and proangiogenic potential of murine periosteal cells
    • van Gastel N, Torrekens S, Roberts SJ, et al. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells. 2012; 30: 2460-71.
    • (2012) Stem Cells. , vol.30 , pp. 2460-2471
    • Van Gastel, N.1    Torrekens, S.2    Roberts, S.J.3
  • 51
    • 78651126370 scopus 로고
    • Cell population kinetics of an osteogenic tissue. i
    • Owen M,. Cell population kinetics of an osteogenic tissue. I. J Cell Biol. 1963; 19: 19-32.
    • (1963) J Cell Biol. , vol.19 , pp. 19-32
    • Owen, M.1
  • 52
    • 67650064589 scopus 로고    scopus 로고
    • Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum
    • Kawanami A, Matsushita T, Chan YY, Murakami S,. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun. 2009; 386: 477-82.
    • (2009) Biochem Biophys Res Commun. , vol.386 , pp. 477-482
    • Kawanami, A.1    Matsushita, T.2    Chan, Y.Y.3    Murakami, S.4
  • 54
    • 40449139405 scopus 로고    scopus 로고
    • Dimorphic effects of Notch signaling in bone homeostasis
    • Engin F, Yao Z, Yang T, et al. Dimorphic effects of Notch signaling in bone homeostasis. Nat Med. 2008; 14: 299-305.
    • (2008) Nat Med. , vol.14 , pp. 299-305
    • Engin, F.1    Yao, Z.2    Yang, T.3
  • 55
    • 43149112757 scopus 로고    scopus 로고
    • Involvement of Notch signaling in wound healing
    • Chigurupati S, Arumugam TV, Son TG, et al. Involvement of Notch signaling in wound healing. PLoS ONE. 2007; 2: e1167.
    • (2007) PLoS ONE. , vol.2
    • Chigurupati, S.1    Arumugam, T.V.2    Son, T.G.3
  • 56
    • 0344827208 scopus 로고    scopus 로고
    • Notch-mediated restoration of regenerative potential to aged muscle
    • Conboy IM, Conboy MJ, Smythe GM, Rando TA,. Notch-mediated restoration of regenerative potential to aged muscle. Science. 2003; 302: 1575-7.
    • (2003) Science. , vol.302 , pp. 1575-1577
    • Conboy, I.M.1    Conboy, M.J.2    Smythe, G.M.3    Rando, T.A.4
  • 57
    • 43449104712 scopus 로고    scopus 로고
    • Activation of Notch-mediated protective signaling in the myocardium
    • Gude NA, Emmanuel G, Wu WT, et al. Activation of Notch-mediated protective signaling in the myocardium. Circ Res. 2008; 102: 1025-35.
    • (2008) Circ Res. , vol.102 , pp. 1025-1035
    • Gude, N.A.1    Emmanuel, G.2    Wu, W.T.3
  • 58
    • 84879772616 scopus 로고    scopus 로고
    • Systemic inhibition of canonical notch signaling results in sustained callus inflammation,alters multiple phases of fracture healing
    • Dishowitz MI, Mutyaba PL, Takacs JD, et al. Systemic inhibition of canonical notch signaling results in sustained callus inflammation,alters multiple phases of fracture healing. PLoS ONE. 2013; 8: e68726.
    • (2013) PLoS ONE. , vol.8
    • Dishowitz, M.I.1    Mutyaba, P.L.2    Takacs, J.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.