메뉴 건너뛰기




Volumn 1, Issue 6, 2012, Pages 480-491

Concise review: The periosteum: Tapping into a reservoir of clinically useful progenitor cells

Author keywords

Bone marrow stromal cells; Clinical translation; Stem progenitor cell; Tissue regeneration; Tissue specific stem cells

Indexed keywords

ACTIVATED LEUKOCYTE CELL ADHESION MOLECULE; ALKALINE PHOSPHATASE; CD14 ANTIGEN; CD9 ANTIGEN; COLLAGEN; DEXAMETHASONE; ENDOGLIN; ESTROGEN; PARATHYROID HORMONE; PROTEIN SH2; PROTEIN SH3; THY 1 ANTIGEN;

EID: 84867850102     PISSN: 21576564     EISSN: 21576580     Source Type: Journal    
DOI: 10.5966/sctm.2011-0056     Document Type: Review
Times cited : (139)

References (139)
  • 1
    • 0009515610 scopus 로고
    • Sur le Developpement et la Crue des os des animaux
    • Duhamel HL. Sur le Developpement et la Crue des os des animaux. Mem Acad Roy Des Sci 1742;55:354-357.
    • (1742) Mem Acad Roy Des Sci , vol.55 , pp. 354-357
    • Duhamel, H.L.1
  • 2
    • 0002563565 scopus 로고
    • Recherches experimentales sur les greffes osseuses
    • Ollier L. Recherches experimentales sur les greffes osseuses. J Physiol Homme Animaux 1860;3:88.
    • (1860) J Physiol Homme Animaux , vol.3 , pp. 88
    • Ollier, L.1
  • 3
    • 0035576203 scopus 로고    scopus 로고
    • Cellular origin of endochondral ossification from grafted periosteum
    • Ueno T, Kagawa T, Mizukawa N et al. Cellular origin of endochondral ossification from grafted periosteum. Anat Rec 2001;264:348-357.
    • (2001) Anat Rec , vol.264 , pp. 348-357
    • Ueno, T.1    Kagawa, T.2    Mizukawa, N.3
  • 4
    • 0001471296 scopus 로고
    • Cell proliferation and specialization during endochondral osteogenesis in young rats
    • Young RW. Cell proliferation and specialization during endochondral osteogenesis in young rats. J Cell Biol 1962;14:357-370.
    • (1962) J Cell Biol , vol.14 , pp. 357-370
    • Young, R.W.1
  • 5
    • 77954760366 scopus 로고    scopus 로고
    • Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair
    • Yu YY, Lieu S, Lu C et al. Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair. Bone 2010;47:65-73.
    • (2010) Bone , vol.47 , pp. 65-73
    • Yu, Y.Y.1    Lieu, S.2    Lu, C.3
  • 6
    • 46049108806 scopus 로고    scopus 로고
    • Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts
    • Shapiro F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater 2008;15:53-76.
    • (2008) Eur Cell Mater , vol.15 , pp. 53-76
    • Shapiro, F.1
  • 7
    • 70350517127 scopus 로고    scopus 로고
    • The periosteum as a cellular source for functional tissue engineering
    • Arnsdorf EJ, Jones LM, Carter DR et al. The periosteum as a cellular source for functional tissue engineering. Tissue Eng Part A 2009;15: 2637-2642.
    • (2009) Tissue Eng Part A , vol.15 , pp. 2637-2642
    • Arnsdorf, E.J.1    Jones, L.M.2    Carter, D.R.3
  • 9
    • 13844275666 scopus 로고    scopus 로고
    • A novel surgical procedure for bridging of massive bone defects
    • Knothe UR, Springfield DS. A novel surgical procedure for bridging of massive bone defects. World J Surg Oncol 2005;3:7.
    • (2005) World J Surg Oncol , vol.3 , pp. 7
    • Knothe, U.R.1    Springfield, D.S.2
  • 10
    • 33846781432 scopus 로고    scopus 로고
    • Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects
    • Knothe Tate ML, Ritzman TF, Schneider E et al. Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects. J Bone Joint Surg Am 2007;89:307-316.
    • (2007) J Bone Joint Surg Am , vol.89 , pp. 307-316
    • Knothe, T.M.L.1    Ritzman, T.F.2    Schneider, E.3
  • 11
    • 45149084760 scopus 로고    scopus 로고
    • Periosteal cells compared with autologous cancellous bone in lumbar segmental fusion
    • Putzier M, Strube P, Funk J et al. Periosteal cells compared with autologous cancellous bone in lumbar segmental fusion. J Neurosurg Spine 2008;8:536-543.
    • (2008) J Neurosurg Spine , vol.8 , pp. 536-543
    • Putzier, M.1    Strube, P.2    Funk, J.3
  • 12
    • 58849102969 scopus 로고    scopus 로고
    • The effects of bone marrow or periosteum on tendon-tobone tunnel healing in a rabbit model
    • Karaoglu S, Celik C, Korkusuz P. The effects of bone marrow or periosteum on tendon-tobone tunnel healing in a rabbit model. Knee Surg Sports Traumatol Arthrosc 2009;17:170-178.
    • (2009) Knee Surg Sports Traumatol Arthrosc , vol.17 , pp. 170-178
    • Karaoglu, S.1    Celik, C.2    Korkusuz, P.3
  • 13
    • 58149299857 scopus 로고    scopus 로고
    • Periosteal grafting for congenital pseudarthrosis of the tibia: A preliminary report
    • Thabet AM, Paley D, Kocaoglu M et al. Periosteal grafting for congenital pseudarthrosis of the tibia: A preliminary report. Clin Orthop Relat Res 2008;466:2981-2994.
    • (2008) Clin Orthop Relat Res , vol.466 , pp. 2981-2994
    • Thabet, A.M.1    Paley, D.2    Kocaoglu, M.3
  • 14
    • 81555207196 scopus 로고    scopus 로고
    • Periosteum: A highly underrated tool in dentistry
    • Mahajan A. Periosteum: A highly underrated tool in dentistry. Int J Dent 2012;2012: 717-816.
    • (2012) Int J Dent , vol.2012 , pp. 717-816
    • Mahajan, A.1
  • 15
    • 84860675226 scopus 로고    scopus 로고
    • Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells: A comparison of different tissue sources
    • Stockmann P, Park J, von Wilmowsky C et al. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells: A comparison of different tissue sources. J Craniomaxillofac Surg 2012;40:310-320.
    • (2012) J Craniomaxillofac Surg , vol.40 , pp. 310-320
    • Stockmann, P.1    Park, J.2    von Wilmowsky, C.3
  • 16
    • 67749097773 scopus 로고    scopus 로고
    • Repairing critical-sized rat calvarial defects with a periosteal cell-seeded small intestinal submucosal layer
    • Keskin M, Kelly CP, Moreira-Gonzalez A et al. Repairing critical-sized rat calvarial defects with a periosteal cell-seeded small intestinal submucosal layer. Plast Reconstr Surg 2008;122:400-409.
    • (2008) Plast Reconstr Surg , vol.122 , pp. 400-409
    • Keskin, M.1    Kelly, C.P.2    Moreira-Gonzalez, A.3
  • 17
    • 0025013981 scopus 로고
    • Ultrastructure of the periosteum from membrane bone
    • Squier CA, Ghoneim S, Kremenak CR. Ultrastructure of the periosteum from membrane bone. J Anat 1990;171:233-239.
    • (1990) J Anat , vol.171 , pp. 233-239
    • Squier, C.A.1    Ghoneim, S.2    Kremenak, C.R.3
  • 18
    • 79959504989 scopus 로고    scopus 로고
    • Anisotropic mechanical properties of ovine femoral periosteum and the effects of cryopreservation
    • McBride SH, Evans SF, Knothe Tate ML. Anisotropic mechanical properties of ovine femoral periosteum and the effects of cryopreservation. J Biomech 2011;44:1954-1959.
    • (2011) J Biomech , vol.44 , pp. 1954-1959
    • McBride, S.H.1    Evans, S.F.2    Knothe, T.M.L.3
  • 19
    • 35948972840 scopus 로고    scopus 로고
    • Growing the mandible: Role of the periosteum and its cells
    • Ochareon P, Herring SW. Growing the mandible: Role of the periosteum and its cells. Anat Rec (Hoboken) 2007;290:1366-1376.
    • (2007) Anat Rec (Hoboken) , vol.290 , pp. 1366-1376
    • Ochareon, P.1    Herring, S.W.2
  • 20
    • 49149107286 scopus 로고    scopus 로고
    • Collagen orientation in periosteum and perichondrium is aligned with preferential directions of tissue growth
    • Foolen J, van Donkelaar C, Nowlan N et al. Collagen orientation in periosteum and perichondrium is aligned with preferential directions of tissue growth. J Orthop Res 2008; 26:1263-1268.
    • (2008) J Orthop Res , vol.26 , pp. 1263-1268
    • Foolen, J.1    van Donkelaar, C.2    Nowlan, N.3
  • 21
    • 20944440186 scopus 로고    scopus 로고
    • Isolation of human periosteum-derived progenitor cells using immunophenotypes for chondrogenesis
    • Lim SM, Choi YS, Shin HC et al. Isolation of human periosteum-derived progenitor cells using immunophenotypes for chondrogenesis. Biotechnol Lett 2005;27:607-611.
    • (2005) Biotechnol Lett , vol.27 , pp. 607-611
    • Lim, S.M.1    Choi, Y.S.2    Shin, H.C.3
  • 22
    • 44549086065 scopus 로고    scopus 로고
    • Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13
    • Stich S, Loch A, Leinhase I et al. Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13. Eur J Cell Biol 2008;87:365-376.
    • (2008) Eur J Cell Biol , vol.87 , pp. 365-376
    • Stich, S.1    Loch, A.2    Leinhase, I.3
  • 23
    • 43149104774 scopus 로고    scopus 로고
    • Multipotency and growth characteristic of periosteumderived progenitor cells for chondrogenic, osteogenic, and adipogenic differentiation
    • Choi YS, Noh SE, Lim SM et al. Multipotency and growth characteristic of periosteumderived progenitor cells for chondrogenic, osteogenic, and adipogenic differentiation. Biotechnol Lett 2008;30:593-601.
    • (2008) Biotechnol Lett , vol.30 , pp. 593-601
    • Choi, Y.S.1    Noh, S.E.2    Lim, S.M.3
  • 24
    • 8444238558 scopus 로고    scopus 로고
    • Periosteum: Biology, regulation, and response to osteoporosis therapies
    • Allen MR, Hock JM, Burr DB. Periosteum: Biology, regulation, and response to osteoporosis therapies. Bone 2004;35:1003-1012.
    • (2004) Bone , vol.35 , pp. 1003-1012
    • Allen, M.R.1    Hock, J.M.2    Burr, D.B.3
  • 25
    • 77949275098 scopus 로고    scopus 로고
    • The periosteum: What is it, where is it, and what mimics it in its absence?
    • Dwek JR. The periosteum: What is it, where is it, and what mimics it in its absence? Skeletal Radiol 2010;39:319-323.
    • (2010) Skeletal Radiol , vol.39 , pp. 319-323
    • Dwek, J.R.1
  • 26
    • 0026501993 scopus 로고
    • The pericyte as a possible osteoblast progenitor cell
    • Brighton CT, Lorich DG, Kupcha R et al. The pericyte as a possible osteoblast progenitor cell. Clin Orthop Relat Res 1992;275:287-299.
    • (1992) Clin Orthop Relat Res , vol.275 , pp. 287-299
    • Brighton, C.T.1    Lorich, D.G.2    Kupcha, R.3
  • 27
    • 0026013994 scopus 로고
    • Inducible perivascular cells contribute to the neochondrogenesis in grafted perichondrium
    • Diaz-Flores L, Gutierrez R, Gonzalez P et al. Inducible perivascular cells contribute to the neochondrogenesis in grafted perichondrium. Anat Rec 1991;229:1-8.
    • (1991) Anat Rec , vol.229 , pp. 1-8
    • Diaz-Flores, L.1    Gutierrez, R.2    Gonzalez, P.3
  • 28
    • 0026531323 scopus 로고
    • Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis
    • Diaz-Flores L, Gutierrez R, Lopez-Alonso A et al. Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop Relat Res 1992;275:280-286.
    • (1992) Clin Orthop Relat Res , vol.275 , pp. 280-286
    • Diaz-Flores, L.1    Gutierrez, R.2    Lopez-Alonso, A.3
  • 29
    • 67651162360 scopus 로고    scopus 로고
    • Gene and microRNA expression signatures of human mesenchymal stromal cells in comparison to fibroblasts
    • Bae S, Ahn JH, Park CW et al. Gene and microRNA expression signatures of human mesenchymal stromal cells in comparison to fibroblasts. Cell Tissue Res 2009;335:565-573.
    • (2009) Cell Tissue Res , vol.335 , pp. 565-573
    • Bae, S.1    Ahn, J.H.2    Park, C.W.3
  • 30
    • 34548563813 scopus 로고    scopus 로고
    • Clonal analysis of nestin() vimentin() multipotent fibroblasts isolated from human dermis
    • Chen FG, Zhang WJ, Bi D et al. Clonal analysis of nestin() vimentin() multipotent fibroblasts isolated from human dermis. J Cell Sci 2007;120:2875-2883.
    • (2007) J Cell Sci , vol.120 , pp. 2875-2883
    • Chen, F.G.1    Zhang, W.J.2    Bi, D.3
  • 31
    • 34447516158 scopus 로고    scopus 로고
    • Activated human T lymphocytes express cyclooxygenase-2 and produce proadipogenic prostaglandins that drive human orbital fibroblast differentiation to adipocytes
    • Feldon SE, O'Loughlin CW, Ray DM et al. Activated human T lymphocytes express cyclooxygenase-2 and produce proadipogenic prostaglandins that drive human orbital fibroblast differentiation to adipocytes. Am J Pathol 2006;169:1183-1193.
    • (2006) Am J Pathol , vol.169 , pp. 1183-1193
    • Feldon, S.E.1    O'Loughlin, C.W.2    Ray, D.M.3
  • 32
    • 59449086095 scopus 로고    scopus 로고
    • Mesenchymal stem cells: The fibroblasts' new clothes?
    • Haniffa MA, Collin MP, Buckley CD et al. Mesenchymal stem cells: The fibroblasts' new clothes? Haematologica 2009;94:258-263.
    • (2009) Haematologica , vol.94 , pp. 258-263
    • Haniffa, M.A.1    Collin, M.P.2    Buckley, C.D.3
  • 33
    • 54049104400 scopus 로고    scopus 로고
    • Multilineage differentiation potential of human dermal skin-derived fibroblasts
    • Lorenz K, Sicker M, Schmelzer E et al. Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp Dermatol 2008;17:925-932.
    • (2008) Exp Dermatol , vol.17 , pp. 925-932
    • Lorenz, K.1    Sicker, M.2    Schmelzer, E.3
  • 34
    • 36348966529 scopus 로고    scopus 로고
    • Human skin fibroblasts: From mesodermal to hepatocyte-like differentiation
    • Lysy PA, Smets F, Sibille C et al. Human skin fibroblasts: From mesodermal to hepatocyte-like differentiation. Hepatology 2007;46: 1574-1585.
    • (2007) Hepatology , vol.46 , pp. 1574-1585
    • Lysy, P.A.1    Smets, F.2    Sibille, C.3
  • 35
    • 80054896456 scopus 로고    scopus 로고
    • Immune regulatory properties of multipotent mesenchymal stromal cells: Where do we stand?
    • Bassi EJ, Aita CAM, Câmara NOS. Immune regulatory properties of multipotent mesenchymal stromal cells: Where do we stand? World J Stem Cells 2011;3:1-8.
    • (2011) World J Stem Cells , vol.3 , pp. 1-8
    • Bassi, E.J.1    Aita, C.A.M.2    Câmara, N.O.S.3
  • 36
    • 36348977575 scopus 로고    scopus 로고
    • Immunomodulatory properties of mesenchymal stromal cells
    • Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007;110:3499-3506.
    • (2007) Blood , vol.110 , pp. 3499-3506
    • Nauta, A.J.1    Fibbe, W.E.2
  • 37
    • 33747713246 scopus 로고    scopus 로고
    • Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
    • Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-317.
    • (2006) Cytotherapy , vol.8 , pp. 315-317
    • Dominici, M.1    Le Blanc, K.2    Mueller, I.3
  • 38
    • 38649108162 scopus 로고    scopus 로고
    • Human bone marrow mesenchymal stem cells in vivo
    • Jones E, McGonagle D. Human bone marrow mesenchymal stem cells in vivo. Rheumatology 2008;47:126-131.
    • (2008) Rheumatology , vol.47 , pp. 126-131
    • Jones, E.1    McGonagle, D.2
  • 39
    • 70449701931 scopus 로고    scopus 로고
    • Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow
    • Morikawa S, Mabuchi Y, Kubota Y et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 2009;206:2483-2496.
    • (2009) J Exp Med , vol.206 , pp. 2483-2496
    • Morikawa, S.1    Mabuchi, Y.2    Kubota, Y.3
  • 40
    • 41549139755 scopus 로고    scopus 로고
    • Mesenchymal stem cells: Revisiting history, concepts, and assays
    • Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: Revisiting history, concepts, and assays. Cell Stem Cell 2008;2:313-319.
    • (2008) Cell Stem Cell , vol.2 , pp. 313-319
    • Bianco, P.1    Robey, P.G.2    Simmons, P.J.3
  • 41
    • 79953689841 scopus 로고    scopus 로고
    • Mechanotransduction and Its Role in Stem Cell Biology
    • Baharvand H, ed., Totowa, NJ: Humana Press
    • Wolf CB, Mohammad RK. Mechanotransduction and Its Role in Stem Cell Biology. In: Baharvand H, ed. Trends in Stem Cell Biology and Technology. Totowa, NJ: Humana Press, 2009:389-403.
    • (2009) Trends In Stem Cell Biology and Technology , pp. 389-403
    • Wolf, C.B.1    Mohammad, R.K.2
  • 42
    • 77957133737 scopus 로고    scopus 로고
    • Mesenchymal stem cells: A perspective from in vitro cultures to in vivo migration and niches
    • Augello A, Kurth TB, De Bari C. Mesenchymal stem cells: A perspective from in vitro cultures to in vivo migration and niches. Eur Cell Mater 2010;20:121-133.
    • (2010) Eur Cell Mater , vol.20 , pp. 121-133
    • Augello, A.1    Kurth, T.B.2    de Bari, C.3
  • 43
    • 79957587096 scopus 로고    scopus 로고
    • Periosteum as a source of mesenchymal stem cells: The effects of TGF-3 on chondrogenesis
    • Mara CS, Sartori AR, Duarte AS et al. Periosteum as a source of mesenchymal stem cells: The effects of TGF-3 on chondrogenesis. Clinics (Sao Paulo) 2011;66:487-492.
    • (2011) Clinics (Sao Paulo) , vol.66 , pp. 487-492
    • Mara, C.S.1    Sartori, A.R.2    Duarte, A.S.3
  • 44
    • 80052657988 scopus 로고    scopus 로고
    • Enhancing bone formation by transplantation of a scaffold-free tissue-engineered periosteum in a rabbit model
    • Ma D, Yao H, Tian W et al. Enhancing bone formation by transplantation of a scaffold-free tissue-engineered periosteum in a rabbit model. Clin Oral Implants Res 2011;22: 1193-1199.
    • (2011) Clin Oral Implants Res , vol.22 , pp. 1193-1199
    • Ma, D.1    Yao, H.2    Tian, W.3
  • 45
    • 33846520017 scopus 로고    scopus 로고
    • Effective bone engineering with periosteum-derived cells
    • Agata H, Asahina I, Yamazaki Y et al. Effective bone engineering with periosteum-derived cells. J Dent Res 2007;86:79-83.
    • (2007) J Dent Res , vol.86 , pp. 79-83
    • Agata, H.1    Asahina, I.2    Yamazaki, Y.3
  • 46
    • 77953244658 scopus 로고    scopus 로고
    • Periosteum-derived cells as an alternative to bone marrow cells for bone tissue engineering around dental implants. A histomorphometric study in beagle dogs
    • Ribeiro FV, Suaid FF, Ruiz KGS et al. Periosteum-derived cells as an alternative to bone marrow cells for bone tissue engineering around dental implants. A histomorphometric study in beagle dogs. J Periodontol 2010;81:907-916.
    • (2010) J Periodontol , vol.81 , pp. 907-916
    • Ribeiro, F.V.1    Suaid, F.F.2    Ruiz, K.G.S.3
  • 47
    • 41049086500 scopus 로고    scopus 로고
    • Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue
    • Hayashi O, Katsube Y, Hirose M et al. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int 2008;82:238-247.
    • (2008) Calcif Tissue Int , vol.82 , pp. 238-247
    • Hayashi, O.1    Katsube, Y.2    Hirose, M.3
  • 48
    • 84855259631 scopus 로고    scopus 로고
    • Sources of adult mesenchymal stem cells applicable for musculoskeletal applications: A systematic review of the literature
    • Mafi R, Hindocha S, Mafi P et al. Sources of adult mesenchymal stem cells applicable for musculoskeletal applications: A systematic review of the literature. Open Orthop J 2011;5: 242-248.
    • (2011) Open Orthop J , vol.5 , pp. 242-248
    • Mafi, R.1    Hindocha, S.2    Mafi, P.3
  • 49
    • 83155183277 scopus 로고    scopus 로고
    • Surgical membranes as directional delivery devices to generate tissue: Testing in an ovine critical sized defect model
    • Knothe Tate ML, Chang H, Moore SR et al. Surgical membranes as directional delivery devices to generate tissue: Testing in an ovine critical sized defect model. PLoS One 2011;6:e28702.
    • (2011) PLoS One , vol.6
    • Knothe, T.M.L.1    Chang, H.2    Moore, S.R.3
  • 51
    • 84857034933 scopus 로고    scopus 로고
    • Effects of extensive circumferential periosteal stripping on the microstructure and mechanical properties of the murine femoral cortex
    • Mercurio AD, Motta T, Green E et al. Effects of extensive circumferential periosteal stripping on the microstructure and mechanical properties of the murine femoral cortex. J Orthop Res 2012;30:561-568.
    • (2012) J Orthop Res , vol.30 , pp. 561-568
    • Mercurio, A.D.1    Motta, T.2    Green, E.3
  • 53
    • 84867860611 scopus 로고    scopus 로고
    • Periosteum regenerates on periosteum-denuded, transported bone segment
    • Merritt FJW, Erinc AM, Knothe Tate ML. Periosteum regenerates on periosteum-denuded, transported bone segment. Trans Orthop Res Soc 2012;37:1570.
    • (2012) Trans Orthop Res Soc , vol.37 , pp. 1570
    • Merritt, F.J.W.1    Erinc, A.M.2    Knothe, T.M.L.3
  • 54
    • 79956352380 scopus 로고    scopus 로고
    • Elucidation of cellular mechanisms underlying efficacy of a periosteal replacement membrane
    • Moore S, Knothe U, Knothe Tate ML. Elucidation of cellular mechanisms underlying efficacy of a periosteal replacement membrane. Trans Orthop Res Soc 2011;36:1454.
    • (2011) Trans Orthop Res Soc , vol.36 , pp. 1454
    • Moore, S.1    Knothe, U.2    Knothe, T.M.L.3
  • 55
    • 0031012465 scopus 로고    scopus 로고
    • Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation
    • Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;64:278-294.
    • (1997) J Cell Biochem , vol.64 , pp. 278-294
    • Bruder, S.P.1    Jaiswal, N.2    Haynesworth, S.E.3
  • 56
    • 0028365114 scopus 로고
    • Age-related increase in collagen production in cultured human osteoblast-like periosteal cells
    • Koshihara Y, Honda Y. Age-related increase in collagen production in cultured human osteoblast-like periosteal cells. Mech Ageing Dev 1994;74:89-101.
    • (1994) Mech Ageing Dev , vol.74 , pp. 89-101
    • Koshihara, Y.1    Honda, Y.2
  • 58
    • 0035154270 scopus 로고    scopus 로고
    • Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age
    • De Bari C, Dell'Accio F, Luyten FP. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 2001;44:85-95.
    • (2001) Arthritis Rheum , vol.44 , pp. 85-95
    • de Bari, C.1    Dell'accio, F.2    Luyten, F.P.3
  • 59
    • 33646358697 scopus 로고    scopus 로고
    • Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis
    • De Bari C, Dell'Accio F, Vanlauwe J et al. Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 2006;54:1209-1221.
    • (2006) Arthritis Rheum , vol.54 , pp. 1209-1221
    • de Bari, C.1    Dell'accio, F.2    Vanlauwe, J.3
  • 60
    • 79954449018 scopus 로고    scopus 로고
    • Net change in periosteal strain during stance shift loading after surgery correlates to rapid de novo bone generation in critically sized defects
    • McBride SH, Dolejs S, Brianza S et al. Net change in periosteal strain during stance shift loading after surgery correlates to rapid de novo bone generation in critically sized defects. Ann Biomed Eng 2011;39:1570-1581.
    • (2011) Ann Biomed Eng , vol.39 , pp. 1570-1581
    • McBride, S.H.1    Dolejs, S.2    Brianza, S.3
  • 61
    • 42049105542 scopus 로고    scopus 로고
    • Osteogenic capacities of tibial and cranial periosteum: A biochemical and histologic study
    • Bilkay U, Tokat C, Helvaci E et al. Osteogenic capacities of tibial and cranial periosteum: A biochemical and histologic study. J Craniofac Surg 2008;19:453-458.
    • (2008) J Craniofac Surg , vol.19 , pp. 453-458
    • Bilkay, U.1    Tokat, C.2    Helvaci, E.3
  • 62
    • 37349043960 scopus 로고    scopus 로고
    • Structural and cellular differences between metaphyseal and diaphyseal periosteum in different aged rats
    • Fan W, Crawford R, Xiao Y. Structural and cellular differences between metaphyseal and diaphyseal periosteum in different aged rats. Bone 2008;42:81-89.
    • (2008) Bone , vol.42 , pp. 81-89
    • Fan, W.1    Crawford, R.2    Xiao, Y.3
  • 63
    • 0028464237 scopus 로고
    • Relationship of donor site to chondrogenic potential of periosteum in vitro
    • Gallay SH, Miura Y, Commisso CN et al. Relationship of donor site to chondrogenic potential of periosteum in vitro. J Orthop Res 1994;12:515-525.
    • (1994) J Orthop Res , vol.12 , pp. 515-525
    • Gallay, S.H.1    Miura, Y.2    Commisso, C.N.3
  • 64
    • 72549108631 scopus 로고    scopus 로고
    • Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics
    • Srisa-Art M, Bonzani IC, Williams A et al. Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst 2009;134:2239-2245.
    • (2009) Analyst , vol.134 , pp. 2239-2245
    • Srisa-Art, M.1    Bonzani, I.C.2    Williams, A.3
  • 65
    • 54349084787 scopus 로고    scopus 로고
    • Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration
    • Ogita M, Rached MT, Dworakowski E et al. Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration. Endocrinology 2008;149:5713-5723.
    • (2008) Endocrinology , vol.149 , pp. 5713-5723
    • Ogita, M.1    Rached, M.T.2    Dworakowski, E.3
  • 66
    • 68349158880 scopus 로고    scopus 로고
    • LNGFR induction during osteogenesis of human jaw periosteum-derived cells
    • Alexander D, Schäfer F, Munz A et al. LNGFR induction during osteogenesis of human jaw periosteum-derived cells. Cell Physiol Biochem 2009;24:283-290.
    • (2009) Cell Physiol Biochem , vol.24 , pp. 283-290
    • Alexander, D.1    Schäfer, F.2    Munz, A.3
  • 67
    • 0031147690 scopus 로고    scopus 로고
    • Regulation of the expression of the type-II collagen gene in periosteum-derived cells by three members of the transforming growth factor-beta superfamily
    • Ballock RT, Heydemann A, Izumi T et al. Regulation of the expression of the type-II collagen gene in periosteum-derived cells by three members of the transforming growth factor-beta superfamily. J Orthop Res 1997;15: 463-467.
    • (1997) J Orthop Res , vol.15 , pp. 463-467
    • Ballock, R.T.1    Heydemann, A.2    Izumi, T.3
  • 68
    • 35948972840 scopus 로고    scopus 로고
    • Growing the mandible: Role of the periosteum and its cells
    • Ochareon P, Herring SW. Growing the mandible: Role of the periosteum and its cells. Anat Rec (Hoboken) 2007;290:1366-1376.
    • (2007) Anat Rec (Hoboken) , vol.290 , pp. 1366-1376
    • Ochareon, P.1    Herring, S.W.2
  • 69
    • 32944472894 scopus 로고    scopus 로고
    • Isolation and osteogenic differentiation of rat periosteum-derived cells
    • Declercq HA, De Ridder LI, Cornelissen MJ. Isolation and osteogenic differentiation of rat periosteum-derived cells. Cytotechnology 2005;49:39-50.
    • (2005) Cytotechnology , vol.49 , pp. 39-50
    • Declercq, H.A.1    de Ridder, L.I.2    Cornelissen, M.J.3
  • 70
    • 79960993951 scopus 로고    scopus 로고
    • Does tranexamic acid stabilised fibrin support the osteogenic differentiation of human periosteum derived cells?
    • Demol J, Eyckmans J, Roberts SJ et al. Does tranexamic acid stabilised fibrin support the osteogenic differentiation of human periosteum derived cells? Eur Cell Mater 2011;21:272-285.
    • (2011) Eur Cell Mater , vol.21 , pp. 272-285
    • Demol, J.1    Eyckmans, J.2    Roberts, S.J.3
  • 71
    • 33750947378 scopus 로고    scopus 로고
    • Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells
    • Eyckmans J, Luyten FP. Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells. Tissue Eng 2006;12:2203-2213.
    • (2006) Tissue Eng , vol.12 , pp. 2203-2213
    • Eyckmans, J.1    Luyten, F.P.2
  • 72
    • 0026528869 scopus 로고
    • Transforming growth factor beta 1 stimulates type II collagen expression in cultured periosteum-derived cells
    • Izumi T, Scully SP, Heydemann A et al. Transforming growth factor beta 1 stimulates type II collagen expression in cultured periosteum-derived cells. J Bone Miner Res 1992;7: 115-121.
    • (1992) J Bone Miner Res , vol.7 , pp. 115-121
    • Izumi, T.1    Scully, S.P.2    Heydemann, A.3
  • 73
    • 0026024480 scopus 로고
    • Biochemical signal transduction of mechanical strain in osteoblast-like cells
    • Jones DB, Nolte H, Scholübbers JG et al. Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials 1991;12:101-110.
    • (1991) Biomaterials , vol.12 , pp. 101-110
    • Jones, D.B.1    Nolte, H.2    Scholübbers, J.G.3
  • 74
    • 53549084878 scopus 로고    scopus 로고
    • Microtopography of titanium suppresses osteoblastic differentiation but enhances chondroblastic differentiation of rat femoral periosteum-derived cells
    • Kubo K, Att W, Yamada M et al. Microtopography of titanium suppresses osteoblastic differentiation but enhances chondroblastic differentiation of rat femoral periosteum-derived cells. J Biomed Mater Res A 2008;87:380-391.
    • (2008) J Biomed Mater Res A , vol.87 , pp. 380-391
    • Kubo, K.1    Att, W.2    Yamada, M.3
  • 75
    • 0026606821 scopus 로고
    • Collagen gene expression during chondrogenesis from chick periosteum-derived cells
    • Nakata K, Nakahara H, Kimura T et al. Collagen gene expression during chondrogenesis from chick periosteum-derived cells. FEBS Lett 1992;299:278-282.
    • (1992) FEBS Lett , vol.299 , pp. 278-282
    • Nakata, K.1    Nakahara, H.2    Kimura, T.3
  • 76
    • 0027442409 scopus 로고
    • Clonal analysis for developmental potential of chick periosteum-derived cells: Agar gel culture system
    • Nakase T, Nakahara H, Iwasaki M et al. Clonal analysis for developmental potential of chick periosteum-derived cells: Agar gel culture system. Biochem Biophys Res Commun 1993;195:1422-1428.
    • (1993) Biochem Biophys Res Commun , vol.195 , pp. 1422-1428
    • Nakase, T.1    Nakahara, H.2    Iwasaki, M.3
  • 77
    • 31644434203 scopus 로고    scopus 로고
    • Transgeneactivated mesenchymal cells for articular cartilage repair: A comparison of primary bone marrow-, perichondrium/periosteumand fatderived cells
    • Park J, Gelse K, Frank S et al. Transgeneactivated mesenchymal cells for articular cartilage repair: A comparison of primary bone marrow-, perichondrium/periosteumand fatderived cells. J Gene Med 2006;8:112-125.
    • (2006) J Gene Med , vol.8 , pp. 112-125
    • Park, J.1    Gelse, K.2    Frank, S.3
  • 78
    • 79960309216 scopus 로고    scopus 로고
    • Enhancement of osteogenic gene expression for the differentiation of human periosteal derived cells
    • Roberts SJ, Chen Y, Moesen M et al. Enhancement of osteogenic gene expression for the differentiation of human periosteal derived cells. Stem Cell Res 2011;7:137-144.
    • (2011) Stem Cell Res , vol.7 , pp. 137-144
    • Roberts, S.J.1    Chen, Y.2    Moesen, M.3
  • 79
    • 0031711206 scopus 로고    scopus 로고
    • Different response to osteo-inductive agents in bone marrowand periosteum-derived cell preparations
    • Solchaga LA, Cassiède P, Caplan AI. Different response to osteo-inductive agents in bone marrowand periosteum-derived cell preparations. Acta Orthop Scand 1998;69:426-432.
    • (1998) Acta Orthop Scand , vol.69 , pp. 426-432
    • Solchaga, L.A.1    Cassiède, P.2    Caplan, A.I.3
  • 80
    • 67650658780 scopus 로고    scopus 로고
    • Effects of DMEM and RPMI 1640 on the biological behavior of dog periosteum-derived cells
    • Wu X, Lin M, Li Y et al. Effects of DMEM and RPMI 1640 on the biological behavior of dog periosteum-derived cells. Cytotechnology 2009;59:103-111.
    • (2009) Cytotechnology , vol.59 , pp. 103-111
    • Wu, X.1    Lin, M.2    Li, Y.3
  • 81
    • 0034190397 scopus 로고    scopus 로고
    • Anatomical effects of periosteal elevation
    • Brownlow HC, Reed A, Joyner C et al. Anatomical effects of periosteal elevation. J Orthop Res 2000;18:500-502.
    • (2000) J Orthop Res , vol.18 , pp. 500-502
    • Brownlow, H.C.1    Reed, A.2    Joyner, C.3
  • 82
    • 80052835209 scopus 로고    scopus 로고
    • Remodeling of actin cytoskeleton in mouse periosteal cells under mechanical loading induces periosteal cell proliferation during bone formation
    • Sakai D, Kii I, Nakagawa K et al. Remodeling of actin cytoskeleton in mouse periosteal cells under mechanical loading induces periosteal cell proliferation during bone formation. PLoS One 2011;6:e24847.
    • (2011) PLoS One , vol.6
    • Sakai, D.1    Kii, I.2    Nakagawa, K.3
  • 83
    • 0042827858 scopus 로고    scopus 로고
    • Periosteal cells in bone tissue engineering
    • Hutmacher DW, Sittinger M. Periosteal cells in bone tissue engineering. Tissue Eng 2003;9:S45-S64.
    • (2003) Tissue Eng , vol.9
    • Hutmacher, D.W.1    Sittinger, M.2
  • 84
    • 33846135143 scopus 로고    scopus 로고
    • Chondrogenesis of human periosteum-derived progenitor cells in atelocollagen
    • Choi YS, Lim SM, Shin HC et al. Chondrogenesis of human periosteum-derived progenitor cells in atelocollagen. Biotechnol Lett 2007;29:323-329.
    • (2007) Biotechnol Lett , vol.29 , pp. 323-329
    • Choi, Y.S.1    Lim, S.M.2    Shin, H.C.3
  • 85
    • 52949105668 scopus 로고    scopus 로고
    • Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation
    • Samee M, Kasugai S, Kondo H et al. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. J Pharmacol Sci 2008;108: 18-31.
    • (2008) J Pharmacol Sci , vol.108 , pp. 18-31
    • Samee, M.1    Kasugai, S.2    Kondo, H.3
  • 87
    • 80054718528 scopus 로고    scopus 로고
    • Human periosteum is a source of cells for orthopaedic tissue engineering: A pilot study
    • Ball MD, Bonzani IC, Bovis MJ et al. Human periosteum is a source of cells for orthopaedic tissue engineering: A pilot study. Clin Orthop Relat Res 2011;469:3085-3093.
    • (2011) Clin Orthop Relat Res , vol.469 , pp. 3085-3093
    • Ball, M.D.1    Bonzani, I.C.2    Bovis, M.J.3
  • 88
    • 33846935035 scopus 로고    scopus 로고
    • Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle
    • Yoshimura H, Muneta T, Nimura A et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007;327:449-462.
    • (2007) Cell Tissue Res , vol.327 , pp. 449-462
    • Yoshimura, H.1    Muneta, T.2    Nimura, A.3
  • 89
    • 0025635645 scopus 로고
    • Temporal and spatial distribution of type XII collagen in high cell density culture of periosteal-derived cells
    • Nakahara H, Watanabe K, Sugrue SP et al. Temporal and spatial distribution of type XII collagen in high cell density culture of periosteal-derived cells. Dev Biol 1990;142:481-485.
    • (1990) Dev Biol , vol.142 , pp. 481-485
    • Nakahara, H.1    Watanabe, K.2    Sugrue, S.P.3
  • 90
    • 0025887905 scopus 로고
    • In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells
    • Nakahara H, Dennis JE, Bruder SP et al. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res 1991;195:492-503.
    • (1991) Exp Cell Res , vol.195 , pp. 492-503
    • Nakahara, H.1    Dennis, J.E.2    Bruder, S.P.3
  • 91
    • 0035067737 scopus 로고    scopus 로고
    • The chondrogenic potential of periosteum decreases with age
    • O'Driscoll SW, Saris DB, Ito Y et al. The chondrogenic potential of periosteum decreases with age. J Orthop Res 2001;19:95-103.
    • (2001) J Orthop Res , vol.19 , pp. 95-103
    • O'Driscoll, S.W.1    Saris, D.B.2    Ito, Y.3
  • 92
    • 0036651815 scopus 로고    scopus 로고
    • Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures
    • Justesen J, Stenderup K, Eriksen EF et al. Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcif Tissue Int 2002;71:36-44.
    • (2002) Calcif Tissue Int , vol.71 , pp. 36-44
    • Justesen, J.1    Stenderup, K.2    Eriksen, E.F.3
  • 93
    • 0347627149 scopus 로고    scopus 로고
    • Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells
    • Stenderup K, Justesen J, Clausen C et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003;33:919-926.
    • (2003) Bone , vol.33 , pp. 919-926
    • Stenderup, K.1    Justesen, J.2    Clausen, C.3
  • 94
    • 39149093357 scopus 로고    scopus 로고
    • Age-related changes in human bone marrowderived mesenchymal stem cells: Consequences for cell therapies
    • Stolzing A, Jones E, McGonagle D et al. Age-related changes in human bone marrowderived mesenchymal stem cells: Consequences for cell therapies. Mech Ageing Dev 2008;129:163-173.
    • (2008) Mech Ageing Dev , vol.129 , pp. 163-173
    • Stolzing, A.1    Jones, E.2    McGonagle, D.3
  • 95
    • 46249104674 scopus 로고    scopus 로고
    • Agerelated changes in the osteogenic differentiation potential of mouse bone marrow stromal cells
    • Zhang W, Ou G, Hamrick M et al. Agerelated changes in the osteogenic differentiation potential of mouse bone marrow stromal cells. J Bone Miner Res 2008;23:1118-1128.
    • (2008) J Bone Miner Res , vol.23 , pp. 1118-1128
    • Zhang, W.1    Ou, G.2    Hamrick, M.3
  • 96
    • 64249154184 scopus 로고    scopus 로고
    • Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss
    • Bellantuono I, Aldahmash A, Kassem M. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss. Biochim Biophys Acta 2009;1792:364-370.
    • (2009) Biochim Biophys Acta , vol.1792 , pp. 364-370
    • Bellantuono, I.1    Aldahmash, A.2    Kassem, M.3
  • 97
    • 38049095046 scopus 로고    scopus 로고
    • Multilineage differentiation of porcine bone marrow stromal cells associated with specific gene expression pattern
    • Zou L, Zou X, Chen L et al. Multilineage differentiation of porcine bone marrow stromal cells associated with specific gene expression pattern. J Orthop Res 2008;26:56-64.
    • (2008) J Orthop Res , vol.26 , pp. 56-64
    • Zou, L.1    Zou, X.2    Chen, L.3
  • 98
    • 0031012411 scopus 로고    scopus 로고
    • Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro
    • Jaiswal N, Haynesworth SE, Caplan AI et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997;64:295-312.
    • (1997) J Cell Biochem , vol.64 , pp. 295-312
    • Jaiswal, N.1    Haynesworth, S.E.2    Caplan, A.I.3
  • 99
    • 0033515827 scopus 로고    scopus 로고
    • Multilineage potential of adult human mesenchymal stem cells
    • Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284: 143-147.
    • (1999) Science , vol.284 , pp. 143-147
    • Pittenger, M.F.1    Mackay, A.M.2    Beck, S.C.3
  • 100
    • 78651508186 scopus 로고    scopus 로고
    • Comparing the chondrogenic potential in vivo of autogeneic mesenchymal stem cells derived from different tissues
    • Li Q, Tang J, Wang R et al. Comparing the chondrogenic potential in vivo of autogeneic mesenchymal stem cells derived from different tissues. Artif Cells Blood Substit Immobil Biotechnol 2011;39:31-38.
    • (2011) Artif Cells Blood Substit Immobil Biotechnol , vol.39 , pp. 31-38
    • Li, Q.1    Tang, J.2    Wang, R.3
  • 101
    • 51449109388 scopus 로고    scopus 로고
    • Mechanical modulation of osteochondroprogenitor cell fate
    • Knothe Tate ML, Falls TD, McBride SH et al. Mechanical modulation of osteochondroprogenitor cell fate. Int J Biochem Cell Biol 2008;40:2720-2738.
    • (2008) Int J Biochem Cell Biol , vol.40 , pp. 2720-2738
    • Knothe, T.M.L.1    Falls, T.D.2    McBride, S.H.3
  • 102
    • 35348881723 scopus 로고    scopus 로고
    • Design of tissue engineering scaffolds as delivery devices for mechanical and mechanically modulated signals
    • Anderson EA, Knothe Tate ML. Design of tissue engineering scaffolds as delivery devices for mechanical and mechanically modulated signals. Tissue Eng 2007;13: 2525-2538.
    • (2007) Tissue Eng , vol.13 , pp. 2525-2538
    • Anderson, E.A.1    Knothe, T.M.L.2
  • 103
    • 51349098584 scopus 로고    scopus 로고
    • Modulation of stem cell shape and fate A: Role of density and seeding protocol on nucleus shape and gene expression
    • McBride SH, Knothe Tate ML. Modulation of stem cell shape and fate A: Role of density and seeding protocol on nucleus shape and gene expression. Tissue Eng 2008;14:1561-1572.
    • (2008) Tissue Eng , vol.14 , pp. 1561-1572
    • McBride, S.H.1    Knothe, T.M.L.2
  • 104
    • 51349129820 scopus 로고    scopus 로고
    • Modulation of stem cell shape and fate B: Mechanical modulation of cell shape and gene expression
    • McBride SH, Falls T, Knothe Tate ML. Modulation of stem cell shape and fate B: Mechanical modulation of cell shape and gene expression. Tissue Eng Part A 2008;14:1573-1580.
    • (2008) Tissue Eng Part A , vol.14 , pp. 1573-1580
    • McBride, S.H.1    Falls, T.2    Knothe, T.M.L.3
  • 105
    • 84555190224 scopus 로고    scopus 로고
    • Structure-function relationships in the stem cell's mechanical world A: Seeding protocols as a means to control shape and fate of live stem cells
    • Zimmermann JA, Knothe Tate ML. Structure-function relationships in the stem cell's mechanical world A: Seeding protocols as a means to control shape and fate of live stem cells. Mol Cell Biomech 2011;8:275-296.
    • (2011) Mol Cell Biomech , vol.8 , pp. 275-296
    • Zimmermann, J.A.1    Knothe, T.M.L.2
  • 106
    • 84555217837 scopus 로고    scopus 로고
    • Structurefunction relationships in the stem cell's mechanical world B: Emergent anisotropy of the cytoskeleton correlates to volume and shape changing stress exposure
    • Chang H, Knothe Tate ML. Structurefunction relationships in the stem cell's mechanical world B: Emergent anisotropy of the cytoskeleton correlates to volume and shape changing stress exposure. Mol Cell Biomech 2011;8:297-318.
    • (2011) Mol Cell Biomech , vol.8 , pp. 297-318
    • Chang, H.1    Knothe, T.M.L.2
  • 107
    • 78651095492 scopus 로고    scopus 로고
    • Top down and bottom up engineering of bone
    • Knothe Tate ML. Top down and bottom up engineering of bone. J Biomech 2011;44: 304-312.
    • (2011) J Biomech , vol.44 , pp. 304-312
    • Knothe, T.M.L.1
  • 108
    • 79955047958 scopus 로고    scopus 로고
    • Combined effects of surface morphology and mechanical straining magnitudes on the differentiation of mesenchymal stem cells without using biochemical reagents
    • Jang JY, Lee SW, Park SH et al. Combined effects of surface morphology and mechanical straining magnitudes on the differentiation of mesenchymal stem cells without using biochemical reagents. J Biomed Biotechnol 2011;2011:860652.
    • (2011) J Biomed Biotechnol , vol.2011 , pp. 860652
    • Jang, J.Y.1    Lee, S.W.2    Park, S.H.3
  • 109
    • 78651157497 scopus 로고
    • The effects of extraperiosteal injections of blood components on periosteal cell proliferation
    • Tonna EA, Cronkite EP. The effects of extraperiosteal injections of blood components on periosteal cell proliferation. J Cell Biol 1964;23:79-87.
    • (1964) J Cell Biol , vol.23 , pp. 79-87
    • Tonna, E.A.1    Cronkite, E.P.2
  • 110
    • 77958153384 scopus 로고    scopus 로고
    • Effects of mechanical loading patterns, bone graft, and proximity to periosteum on bone defect healing
    • Knothe UR, Dolejs S, Miller MR et al. Effects of mechanical loading patterns, bone graft, and proximity to periosteum on bone defect healing. J Biomech 2010;43:2728-2737.
    • (2010) J Biomech , vol.43 , pp. 2728-2737
    • Knothe, U.R.1    Dolejs, S.2    Miller, M.R.3
  • 111
    • 0024241605 scopus 로고
    • Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading
    • Pead MJ, Skerry TM, Lanyon LE. Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading. J Bone Miner Res 1988;3:647-656.
    • (1988) J Bone Miner Res , vol.3 , pp. 647-656
    • Pead, M.J.1    Skerry, T.M.2    Lanyon, L.E.3
  • 112
    • 0027994786 scopus 로고
    • Mechanical loading stimulates rapid changes in periosteal gene expression
    • Raab-Cullen DM, Thiede MA, Petersen DN et al. Mechanical loading stimulates rapid changes in periosteal gene expression. Calcif Tissue Int 1994;55:473-478.
    • (1994) Calcif Tissue Int , vol.55 , pp. 473-478
    • Raab-Cullen, D.M.1    Thiede, M.A.2    Petersen, D.N.3
  • 113
    • 0037729068 scopus 로고    scopus 로고
    • Cambium cell stimulation from surgical release of the periosteum
    • Simon TM, Van Sickle DC, Kunishima DH et al. Cambium cell stimulation from surgical release of the periosteum. J Orthop Res 2003; 21:470-480.
    • (2003) J Orthop Res , vol.21 , pp. 470-480
    • Simon, T.M.1    van Sickle, D.C.2    Kunishima, D.H.3
  • 114
    • 0033231887 scopus 로고    scopus 로고
    • Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds
    • Thomson RC, Mikos AG, Beahm E et al. Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds. Biomaterials 1999;20:2007-2018.
    • (1999) Biomaterials , vol.20 , pp. 2007-2018
    • Thomson, R.C.1    Mikos, A.G.2    Beahm, E.3
  • 115
    • 0033197574 scopus 로고    scopus 로고
    • Periosteum responds to dynamic fluid pressure by proliferating in vitro
    • Saris DB, Sanyal A, An KN et al. Periosteum responds to dynamic fluid pressure by proliferating in vitro. J Orthop Res 1999;17: 668-677.
    • (1999) J Orthop Res , vol.17 , pp. 668-677
    • Saris, D.B.1    Sanyal, A.2    An, K.N.3
  • 116
    • 0034913555 scopus 로고    scopus 로고
    • The enhancement of periosteal chondrogenesis in organ culture by dynamic fluid pressure
    • Mukherjee N, Saris DB, Schultz FM et al. The enhancement of periosteal chondrogenesis in organ culture by dynamic fluid pressure. J Orthop Res 2001;19:524-530.
    • (2001) J Orthop Res , vol.19 , pp. 524-530
    • Mukherjee, N.1    Saris, D.B.2    Schultz, F.M.3
  • 117
    • 79956350986 scopus 로고    scopus 로고
    • Modeling the mechanobiology of the periosteum to predict and harness its regenerative capacity
    • Miller RM, McBride SH, Dolejs S et al. Modeling the mechanobiology of the periosteum to predict and harness its regenerative capacity. Trans Orthop Res Soc 2011;36: 2213.
    • (2011) Trans Orthop Res Soc , vol.36 , pp. 2213
    • Miller, R.M.1    McBride, S.H.2    Dolejs, S.3
  • 118
    • 80051545408 scopus 로고    scopus 로고
    • Extracorporeal shock wave-induced proliferation of periosteal cells
    • Kearney CJ, Lee JY, Padera RF et al. Extracorporeal shock wave-induced proliferation of periosteal cells. J Orthop Res 2011;29:1536-1543.
    • (2011) J Orthop Res , vol.29 , pp. 1536-1543
    • Kearney, C.J.1    Lee, J.Y.2    Padera, R.F.3
  • 119
    • 80052475717 scopus 로고    scopus 로고
    • Osteogenic differentiation of human periostealderived cells in a three-dimensional collagen scaffold
    • Ryu YM, Hah YS, Park BW et al. Osteogenic differentiation of human periostealderived cells in a three-dimensional collagen scaffold. Mol Biol Rep 2011;38:2887-2894.
    • (2011) Mol Biol Rep , vol.38 , pp. 2887-2894
    • Ryu, Y.M.1    Hah, Y.S.2    Park, B.W.3
  • 120
    • 13944250924 scopus 로고    scopus 로고
    • Enhanced intrinsic biomechanical properties of osteoblastic mineralized tissue on roughened titanium surface
    • Takeuchi K, Saruwatari L, Nakamura HK et al. Enhanced intrinsic biomechanical properties of osteoblastic mineralized tissue on roughened titanium surface. J Biomed Mater Res A 2005;72:296-305.
    • (2005) J Biomed Mater Res A , vol.72 , pp. 296-305
    • Takeuchi, K.1    Saruwatari, L.2    Nakamura, H.K.3
  • 121
    • 8644219769 scopus 로고    scopus 로고
    • Culture shock from the bone cell's perspective: Emulating physiological conditions for mechanobiological investigations
    • Sorkin AM, Dee KC, Knothe Tate ML. "Culture shock" from the bone cell's perspective: Emulating physiological conditions for mechanobiological investigations. Am J Physiol Cell Physiol 2004;287:C1527-C1536.
    • (2004) Am J Physiol Cell Physiol , vol.287
    • Sorkin, A.M.1    Dee, K.C.2    Knothe, T.M.L.3
  • 122
    • 33746870049 scopus 로고    scopus 로고
    • The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction
    • Anderson EJ, Falls TD, Sorkin A et al. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction. Biomed Eng Online 2006;5:27.
    • (2006) Biomed Eng Online , vol.5 , pp. 27
    • Anderson, E.J.1    Falls, T.D.2    Sorkin, A.3
  • 123
    • 39049115486 scopus 로고    scopus 로고
    • Open access to novel flow chamber technology for in vitro cell mechanotransduction, toxicity and pharmacokinetic studies
    • Anderson EJ, Knothe Tate ML. Open access to novel flow chamber technology for in vitro cell mechanotransduction, toxicity and pharmacokinetic studies. Biomed Eng Online 2007;6:46.
    • (2007) Biomed Eng Online , vol.6 , pp. 46
    • Anderson, E.J.1    Knothe, T.M.L.2
  • 124
    • 0031939414 scopus 로고    scopus 로고
    • Tissue engineered bone repair of calvarial defects using cultured periosteal cells
    • Breitbart AS, Grande DA, Kessler R et al. Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast Reconstr Surg 1998;101:567-574.
    • (1998) Plast Reconstr Surg , vol.101 , pp. 567-574
    • Breitbart, A.S.1    Grande, D.A.2    Kessler, R.3
  • 125
    • 0034013979 scopus 로고    scopus 로고
    • Experimental use of fibrin glue to induce sitedirected osteogenesis from cultured periosteal cells
    • Isogai N, Landis WJ, Mori R et al. Experimental use of fibrin glue to induce sitedirected osteogenesis from cultured periosteal cells. Plast Reconstr Surg 2000;105: 953-963.
    • (2000) Plast Reconstr Surg , vol.105 , pp. 953-963
    • Isogai, N.1    Landis, W.J.2    Mori, R.3
  • 126
    • 28244492272 scopus 로고    scopus 로고
    • In vitro osteogenic differentiation and in vivo bone-forming capacity of human isogenic jaw periosteal cells and bone marrow stromal cells
    • Jaquiéry C, Schaeren S, Farhadi J et al. In vitro osteogenic differentiation and in vivo bone-forming capacity of human isogenic jaw periosteal cells and bone marrow stromal cells. Ann Surg 2005;242:859-867.
    • (2005) Ann Surg , vol.242 , pp. 859-867
    • Jaquiéry, C.1    Schaeren, S.2    Farhadi, J.3
  • 127
    • 0025188116 scopus 로고
    • A morphological study on the response between primary periosteum cultures and synthetic hydroxyapatite particles
    • Ono T, Yoshida T, Hoh C et al. A morphological study on the response between primary periosteum cultures and synthetic hydroxyapatite particles. Shika Kiso Igakkai Zasshi 1990;32:83-86.
    • (1990) Shika Kiso Igakkai Zasshi , vol.32 , pp. 83-86
    • Ono, T.1    Yoshida, T.2    Hoh, C.3
  • 128
    • 0034073485 scopus 로고    scopus 로고
    • Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits
    • Perka C, Schultz O, Spitzer RS et al. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 2000;21:1145-1153.
    • (2000) Biomaterials , vol.21 , pp. 1145-1153
    • Perka, C.1    Schultz, O.2    Spitzer, R.S.3
  • 129
    • 0033382362 scopus 로고    scopus 로고
    • Bone engineering on the basis of periosteal cells cultured in polymer fleeces
    • Redlich A, Perka C, Schultz O et al. Bone engineering on the basis of periosteal cells cultured in polymer fleeces. J Mater Sci Mater Med 1999;10:767-772.
    • (1999) J Mater Sci Mater Med , vol.10 , pp. 767-772
    • Redlich, A.1    Perka, C.2    Schultz, O.3
  • 130
    • 0028236527 scopus 로고
    • Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage
    • Wakitani S, Goto T, Pineda SJ et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 1994;76:579-592.
    • (1994) J Bone Joint Surg Am , vol.76 , pp. 579-592
    • Wakitani, S.1    Goto, T.2    Pineda, S.J.3
  • 131
    • 0035450165 scopus 로고    scopus 로고
    • Osteoblastic differentiation of periosteum-derived cells is promoted by the physical contact with the bone matrix in vivo
    • Shimizu T, Sasano Y, Nakajo S et al. Osteoblastic differentiation of periosteum-derived cells is promoted by the physical contact with the bone matrix in vivo. Anat Rec 2001; 264:72-81.
    • (2001) Anat Rec , vol.264 , pp. 72-81
    • Shimizu, T.1    Sasano, Y.2    Nakajo, S.3
  • 132
    • 79951577222 scopus 로고    scopus 로고
    • Vascular endothelial growth factor stimulates osteoblastic differentiation of cultured human periosteal-derived cells expressing vascular endothelial growth factor receptors
    • Hah YS, Jun JS, Lee SG et al. Vascular endothelial growth factor stimulates osteoblastic differentiation of cultured human periosteal-derived cells expressing vascular endothelial growth factor receptors. Mol Biol Rep 2011;38:1443-1450.
    • (2011) Mol Biol Rep , vol.38 , pp. 1443-1450
    • Hah, Y.S.1    Jun, J.S.2    Lee, S.G.3
  • 133
    • 85027220109 scopus 로고    scopus 로고
    • Optimization of tissue engineering scaffold geometry, seeding and flow conditions to steer stem cell shape and fate. TERMIS (Tissue Engineering Regenerative Medicine International Society) North America, Houston, TX
    • Song MJ, Dean D, Brady-Kalnay S et al. Optimization of tissue engineering scaffold geometry, seeding and flow conditions to steer stem cell shape and fate. TERMIS (Tissue Engineering Regenerative Medicine International Society) North America, Houston, TX. December 11-14, 2011.
    • (2011) December , pp. 11-14
    • Song, M.J.1    Dean, D.2    Brady-Kalnay, S.3
  • 134
    • 75149118776 scopus 로고    scopus 로고
    • Cord blood banking for clinical transplantation
    • Rubinstein P. Cord blood banking for clinical transplantation. Bone Marrow Transplant 2009;44:635-642.
    • (2009) Bone Marrow Transplant , vol.44 , pp. 635-642
    • Rubinstein, P.1
  • 135
    • 84857804023 scopus 로고    scopus 로고
    • Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy
    • Bieback K, Brinkmann I. Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy. World J Stem Cells 2010;2:81-92.
    • (2010) World J Stem Cells , vol.2 , pp. 81-92
    • Bieback, K.1    Brinkmann, I.2
  • 136
    • 80053029199 scopus 로고    scopus 로고
    • Total hip arthroplasty and bone fragility
    • Cherubino P, Ratti C, Fagetti A et al. Total hip arthroplasty and bone fragility. Aging Clin Exp Res 2011;23(suppl):76-77.
    • (2011) Aging Clin Exp Res , vol.23 , Issue.SUPPL. , pp. 76-77
    • Cherubino, P.1    Ratti, C.2    Fagetti, A.3
  • 138
    • 48849085525 scopus 로고    scopus 로고
    • A perspective: Engineering periosteum for structural bone graft healing
    • Zhang X, Awad HA, O'Keefe RJ et al. A perspective: Engineering periosteum for structural bone graft healing. Clin Orthop Relat Res 2008;466:1777-1787.
    • (2008) Clin Orthop Relat Res , vol.466 , pp. 1777-1787
    • Zhang, X.1    Awad, H.A.2    O'Keefe, R.J.3
  • 139
    • 81755161439 scopus 로고    scopus 로고
    • Cell sources for bone tissue engineering: Insights From Basic Science
    • Colnot C. Cell sources for bone tissue engineering: Insights from basic science. Tissue Eng Part B Rev 2011;17:449-457.
    • (2011) Tissue Eng Part B Rev , vol.17 , pp. 449-457
    • Colnot, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.