-
2
-
-
65349103899
-
Blinded by the light: The growing complexity of p53
-
Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413-431.
-
(2009)
Cell
, vol.137
, pp. 413-431
-
-
Vousden, K.H.1
Prives, C.2
-
3
-
-
84871830221
-
P53 mutations in cancer
-
Muller PAJ, Vousden KH. P53 mutations in cancer. Nat Cell Biol 2013; 15: 2-8.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 2-8
-
-
Paj, M.1
Vousden, K.H.2
-
4
-
-
77955363995
-
TP53 mutations in human cancers: Origins, consequences, and clinical use
-
Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010; 2: a001008.
-
(2010)
Cold Spring Harb Perspect Biol
, vol.2
, pp. a001008
-
-
Olivier, M.1
Hollstein, M.2
Hainaut, P.3
-
5
-
-
34047174813
-
Structural biology of the tumor suppressor p53 and cancerassociated mutants
-
Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53 and cancerassociated mutants. Adv Cancer Res 2007; 97: 1-23.
-
(2007)
Adv Cancer Res
, vol.97
, pp. 1-23
-
-
Joerger, A.C.1
Fersht, A.R.2
-
6
-
-
70349443284
-
When mutants gain new powers: News from the mutant p53 field
-
Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 2009; 9: 701-713.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 701-713
-
-
Brosh, R.1
Rotter, V.2
-
7
-
-
84862636275
-
Mutant p53: One name, many proteins
-
Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev 2012; 26: 1268-1286.
-
(2012)
Genes Dev
, vol.26
, pp. 1268-1286
-
-
Freed-Pastor, W.A.1
Prives, C.2
-
8
-
-
79955054710
-
Gain of function of mutant p53 by coaggregation with multiple tumor suppressors
-
Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 2011; 7: 285-295.
-
(2011)
Nat Chem Biol
, vol.7
, pp. 285-295
-
-
Xu, J.1
Reumers, J.2
Couceiro, J.R.3
De Smet, F.4
Gallardo, R.5
Rudyak, S.6
-
9
-
-
0035914335
-
Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1
-
Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH et al. Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem 2001; 276: 39359-39367.
-
(2001)
J Biol Chem
, vol.276
, pp. 39359-39367
-
-
Sampath, J.1
Sun, D.2
Kidd, V.J.3
Grenet, J.4
Gandhi, A.5
Shapiro, L.H.6
-
10
-
-
33748211158
-
Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation
-
Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 2006; 10: 191-202.
-
(2006)
Cancer Cell
, vol.10
, pp. 191-202
-
-
Di Agostino, S.1
Strano, S.2
Emiliozzi, V.3
Zerbini, V.4
Mottolese, M.5
Sacchi, A.6
-
11
-
-
13644260907
-
Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome
-
Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2004; 119: 861-872.
-
(2004)
Cell
, vol.119
, pp. 861-872
-
-
Lang, G.A.1
Iwakuma, T.2
Suh, Y.A.3
Liu, G.4
Rao, V.A.5
Parant, J.M.6
-
12
-
-
10944236962
-
Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome
-
Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004; 119: 847-860.
-
(2004)
Cell
, vol.119
, pp. 847-860
-
-
Olive, K.P.1
Tuveson, D.A.2
Ruhe, Z.C.3
Yin, B.4
Willis, N.A.5
Bronson, R.T.6
-
13
-
-
84880302677
-
Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis
-
Hanel W, Marchenko N, Xu S, Xiaofeng YS, Weng W, Moll U. Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ 2013; 7: 898-909.
-
(2013)
Cell Death Differ
, vol.7
, pp. 898-909
-
-
Hanel, W.1
Marchenko, N.2
Xu, S.3
Xiaofeng, Y.S.4
Weng, W.5
Moll, U.6
-
14
-
-
84884192068
-
The mutant p53 mouse as a pre-clinical model
-
Jackson JG, Lozano G. The mutant p53 mouse as a pre-clinical model. Oncogene 2013; 32: 4325-4330.
-
(2013)
Oncogene
, vol.32
, pp. 4325-4330
-
-
Jackson, J.G.1
Lozano, G.2
-
15
-
-
77955175360
-
Pharmacological reactivation of mutant p53: From protein structure to the cancer patient
-
Wiman KG. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene 2010; 29: 4245-4252.
-
(2010)
Oncogene
, vol.29
, pp. 4245-4252
-
-
Wiman, K.G.1
-
17
-
-
36249025723
-
Autophagy: Process and function
-
Mizushima N. Autophagy: process and function. Genes Dev 2007; 21: 2861-2873.
-
(2007)
Genes Dev
, vol.21
, pp. 2861-2873
-
-
Mizushima, N.1
-
18
-
-
77950994646
-
Autophagy: Cellular and molecular mechanisms
-
Glick D, Barth S, Mcleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; 221: 3-12.
-
(2010)
J Pathol
, vol.221
, pp. 3-12
-
-
Glick, D.1
Barth, S.2
McLeod, K.F.3
-
19
-
-
84870948750
-
Dietary downregulation of mutant p53 levels via glucose restriction: Mechanisms and implications for tumor therapy
-
Rodriguez OC, Choudhury S, Kolukula V, Vietsch EE, Catania J, Preet A et al. Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy. Cell Cycle 2012; 11: 4436-4446.
-
(2012)
Cell Cycle
, vol.11
, pp. 4436-4446
-
-
Rodriguez, O.C.1
Choudhury, S.2
Kolukula, V.3
Vietsch, E.E.4
Catania, J.5
Preet, A.6
-
20
-
-
0030905284
-
Mdm2 promotes the rapid degradation of p53
-
Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296-299.
-
(1997)
Nature
, vol.387
, pp. 296-299
-
-
Haupt, Y.1
Maya, R.2
Kazaz, A.3
Oren, M.4
-
21
-
-
84875906475
-
Dissecting the pathways that destabilize mutant p53: The proteasome or autophagy?
-
Choudhury S, Kolukula VK, Preet A, Albanese C, Avantaggiati ML. Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy? Cell Cycle 2013; 12: 1022-1029.
-
(2013)
Cell Cycle
, vol.12
, pp. 1022-1029
-
-
Choudhury, S.1
Kolukula, V.K.2
Preet, A.3
Albanese, C.4
Avantaggiati, M.L.5
-
22
-
-
45549086243
-
Reversible dysfunction of wild-type p53 following homeodomain-interacting protein kinase-2 knockdown
-
Puca R, Nardinocchi L, Gal H, Rechavi G, Amariglio N, Domany E et al. Reversible dysfunction of wild-type p53 following homeodomain-interacting protein kinase-2 knockdown. Cancer Res 2008; 68: 3707-3714.
-
(2008)
Cancer Res
, vol.68
, pp. 3707-3714
-
-
Puca, R.1
Nardinocchi, L.2
Gal, H.3
Rechavi, G.4
Amariglio, N.5
Domany, E.6
-
23
-
-
56949097013
-
Restoring wtp53 activity in HIPK2 depleted MCF7 cells by modulating metallothionein and zinc
-
Puca R, Nardinocchi L, Bossi G, Sacchi A, Rechavi G, Givol D et al. Restoring wtp53 activity in HIPK2 depleted MCF7 cells by modulating metallothionein and zinc. Exp Cell Res 2009; 315: 67-75.
-
(2009)
Exp Cell Res
, vol.315
, pp. 67-75
-
-
Puca, R.1
Nardinocchi, L.2
Bossi, G.3
Sacchi, A.4
Rechavi, G.5
Givol, D.6
-
24
-
-
79956022145
-
Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs
-
Puca R, Nardinocchi L, Porru M, Simon AJ, Rechavi G, Leonetti C et al. Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle 2011; 10: 1679-1689.
-
(2011)
Cell Cycle
, vol.10
, pp. 1679-1689
-
-
Puca, R.1
Nardinocchi, L.2
Porru, M.3
Simon, A.J.4
Rechavi, G.5
Leonetti, C.6
-
25
-
-
84862532394
-
Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function
-
Margalit O, Simon AJ, Yakubov E, Puca R, Yosepovich A, Avivi C et al. Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function. Int J Cancer 2012; 131: 562-568.
-
(2012)
Int J Cancer
, vol.131
, pp. 562-568
-
-
Margalit, O.1
Simon, A.J.2
Yakubov, E.3
Puca, R.4
Yosepovich, A.5
Avivi, C.6
-
26
-
-
84864379571
-
P53 reactivation: The link to zinc
-
D'Orazi G, Givol D. p53 reactivation: the link to zinc. Cell Cycle 2012; 11: 2581-2582.
-
(2012)
Cell Cycle
, vol.11
, pp. 2581-2582
-
-
D'orazi, G.1
Givol, D.2
-
27
-
-
84885002384
-
A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells
-
Garufi A, Trisciuoglio D, Porru M, Leonetti C, Stoppacciaro A, D'Orazi V et al. A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells. J Exp Clin Cancer Res 2013; 32: 72.
-
(2013)
J Exp Clin Cancer Res
, vol.32
, pp. 72
-
-
Garufi, A.1
Trisciuoglio, D.2
Porru, M.3
Leonetti, C.4
Stoppacciaro, A.5
D'orazi, V.6
-
28
-
-
84859388515
-
DNA binding and cytotoxicity of fluorescent curcumin-based Zn(II) complexes
-
Pucci D, Bellini T, Crispini A, D'Agnano I, Liguori PF, Garcia-Orduna P et al. DNA binding and cytotoxicity of fluorescent curcumin-based Zn(II) complexes. Med Chem Commun 2012; 3: 462-468.
-
(2012)
Med Chem Commun
, vol.3
, pp. 462-468
-
-
Pucci, D.1
Bellini, T.2
Crispini, A.3
D'agnano, I.4
Liguori, P.F.5
Garcia-Orduna, P.6
-
29
-
-
84881053590
-
Improving the bioactivity of Zn(II)-curcumin based complexes
-
Pucci D, Crispini A, Mendiguchía BS, Pirillo S, Ghedini M, Morelli S et al. Improving the bioactivity of Zn(II)-curcumin based complexes. Dalton Trans 2013; 42: 9679-9687.
-
(2013)
Dalton Trans
, vol.42
, pp. 9679-9687
-
-
Pucci, D.1
Crispini, A.2
Mendiguchía, B.S.3
Pirillo, S.4
Ghedini, M.5
Morelli, S.6
-
30
-
-
1842536849
-
Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes
-
Willis A, Jung EJ, Wakefield T, Chen X. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 2004; 23: 2330-2338.
-
(2004)
Oncogene
, vol.23
, pp. 2330-2338
-
-
Willis, A.1
Jung, E.J.2
Wakefield, T.3
Chen, X.4
-
31
-
-
0033543728
-
A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy
-
Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 1999; 285: 1733-1737.
-
(1999)
Science
, vol.285
, pp. 1733-1737
-
-
Komarov, P.G.1
Komarova, E.A.2
Kondratov, R.V.3
Christov-Tselkov, K.4
Coon, J.S.5
Chernov, M.V.6
-
32
-
-
77952766891
-
Autophagy: Assays and artifacts
-
Barth S, Glick D, Macleod KF. Autophagy: assays and artifacts. J Pathol 2010; 221: 117-124.
-
(2010)
J Pathol
, vol.221
, pp. 117-124
-
-
Barth, S.1
Glick, D.2
Macleod, K.F.3
-
34
-
-
53649086181
-
Mutant p53 protein localized in the cytoplasm inhibits autophagy
-
Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A et al. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 2008; 7: 3056-3061.
-
(2008)
Cell Cycle
, vol.7
, pp. 3056-3061
-
-
Morselli, E.1
Tasdemir, E.2
Maiuri, M.C.3
Galluzzi, L.4
Kepp, O.5
Criollo, A.6
-
35
-
-
33745885329
-
DRAM, a p53- induced modulator of autophagy, is critical for apoptosis
-
Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR et al. DRAM, a p53- induced modulator of autophagy, is critical for apoptosis. Cell 2006; 126: 121-134.
-
(2006)
Cell
, vol.126
, pp. 121-134
-
-
Crighton, D.1
Wilkinson, S.2
O'prey, J.3
Syed, N.4
Smith, P.5
Harrison, P.R.6
-
36
-
-
34047207337
-
TP53 mutations in human cancers: Functional selection and impact on cancer prognosis and outcomes
-
Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 2007; 26: 2157-2165.
-
(2007)
Oncogene
, vol.26
, pp. 2157-2165
-
-
Petitjean, A.1
Achatz, M.I.2
Borresen-Dale, A.L.3
Hainaut, P.4
Olivier, M.5
-
37
-
-
76249108357
-
Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer
-
Morton JP, Timpson P, Karim SA, Ridgway RA, Athineos D, Doyle B et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA 2010; 107: 246-251.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 246-251
-
-
Morton, J.P.1
Timpson, P.2
Karim, S.A.3
Ridgway, R.A.4
Athineos, D.5
Doyle, B.6
-
38
-
-
0035496607
-
Rescuing the function of mutant p53
-
Bullock AN, Fersht AR. Rescuing the function of mutant p53. Nat Rev Cancer 2001; 1: 68-76.
-
(2001)
Nat Rev Cancer
, vol.1
, pp. 68-76
-
-
Bullock, A.N.1
Fersht, A.R.2
-
40
-
-
79955945762
-
Mutant p53 protein is targeted by arsenic for degradation and plays a role in arsenic-mediated growth suppression
-
Yan W, Zhang Y, Zhang J, Liu S, Cho J, Chen X. Mutant p53 protein is targeted by arsenic for degradation and plays a role in arsenic-mediated growth suppression. J Biol Chem 2011; 286: 17478-17486.
-
(2011)
J Biol Chem
, vol.286
, pp. 17478-17486
-
-
Yan, W.1
Zhang, Y.2
Zhang, J.3
Liu, S.4
Cho, J.5
Chen, X.6
-
41
-
-
30544452870
-
Mutant p53 gain of function: Reduction of tumor malignancy of human cancer cells through abrogation of mutant p53 expression
-
Bossi G, Lapi E, Strano S, Rinaldo C, Blandino G, Sacchi A. Mutant p53 gain of function: reduction of tumor malignancy of human cancer cells through abrogation of mutant p53 expression. Oncogene 2006; 25: 304-309.
-
(2006)
Oncogene
, vol.25
, pp. 304-309
-
-
Bossi, G.1
Lapi, E.2
Strano, S.3
Rinaldo, C.4
Blandino, G.5
Sacchi, A.6
-
42
-
-
47249116180
-
Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor malignancy
-
Bossi G, Marampon F, Maor-Aloni R, Zani B, Rotter V, Oren M et al. Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor malignancy. Cell Cycle 2008; 7: 1870-1879.
-
(2008)
Cell Cycle
, vol.7
, pp. 1870-1879
-
-
Bossi, G.1
Marampon, F.2
Maor-Aloni, R.3
Zani, B.4
Rotter, V.5
Oren, M.6
-
43
-
-
0036247821
-
P53-Mdm2: The affair that never ends
-
Alarcon-Vargas D, Ronai Z. p53-Mdm2: the affair that never ends. Carcinogenesis 2002; 23: 541-547.
-
(2002)
Carcinogenesis
, vol.23
, pp. 541-547
-
-
Alarcon-Vargas, D.1
Ronai, Z.2
-
44
-
-
36849035345
-
Ubiquitination and degradation of mutant p53
-
Lukashchuk N, Vousden KH. Ubiquitination and degradation of mutant p53. Mol Cell Biol 2007; 27: 8284-8295.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 8284-8295
-
-
Lukashchuk, N.1
Vousden, K.H.2
-
45
-
-
79851505114
-
Selective depletion of mutant p53 by cancer chemopreventive isothiocyanates and its structure-activity relationships
-
Wang X, Di Pasqua AJ, Govind S, McCracken E, Hong C, Mi L et al. Selective depletion of mutant p53 by cancer chemopreventive isothiocyanates and its structure-activity relationships. J Med Chem 2011; 54: 809-816.
-
(2011)
J Med Chem
, vol.54
, pp. 809-816
-
-
Wang, X.1
Di Pasqua, A.J.2
Govind, S.3
McCracken, E.4
Hong, C.5
Mi, L.6
-
46
-
-
0025248598
-
Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form
-
Gannon JV, Greaves R, Iggo R, Lane DP. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J 1990; 9: 1595-1602.
-
(1990)
EMBO J
, vol.9
, pp. 1595-1602
-
-
Gannon, J.V.1
Greaves, R.2
Iggo, R.3
Lane, D.P.4
-
47
-
-
80655134737
-
Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53
-
Jing K, Song KS, Shin S, Kim N, Jeong S, Oh HR et al. Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy 2011; 7: 1348-1358.
-
(2011)
Autophagy
, vol.7
, pp. 1348-1358
-
-
Jing, K.1
Song, K.S.2
Shin, S.3
Kim, N.4
Jeong, S.5
Oh, H.R.6
-
48
-
-
0037418548
-
Structure, function and aggregation of the zinc-free form of the p53 DNA binding domain
-
Butler JS, Loh SN. Structure, function and aggregation of the zinc-free form of the p53 DNA binding domain. Biochemistry 2003; 42: 2396-2403.
-
(2003)
Biochemistry
, vol.42
, pp. 2396-2403
-
-
Butler, J.S.1
Loh, S.N.2
-
49
-
-
77954681706
-
The missing zinc: P53 misfolding and cancer
-
Loh SN. The missing zinc: p53 misfolding and cancer. Metallomics 2010; 2: 442-449.
-
(2010)
Metallomics
, vol.2
, pp. 442-449
-
-
Loh, S.N.1
-
51
-
-
84891939016
-
Evaluation of Zinc (II) chelators for inhibiting p53-mediated apoptosis
-
Morita A, Ariyasu S, Ohya S, Takahashi I, Wang B, Tanaka K et al. Evaluation of Zinc (II) chelators for inhibiting p53-mediated apoptosis. Oncotarget 2013; 4: 2439-2450.
-
(2013)
Oncotarget
, vol.4
, pp. 2439-2450
-
-
Morita, A.1
Ariyasu, S.2
Ohya, S.3
Takahashi, I.4
Wang, B.5
Tanaka, K.6
-
52
-
-
84883135484
-
Autophagy: Cancer's friend or foe?
-
Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK et al. Autophagy: cancer's friend or foe? Adv Cancer Res 2013; 118: 61-95.
-
(2013)
Adv Cancer Res
, vol.118
, pp. 61-95
-
-
Bhutia, S.K.1
Mukhopadhyay, S.2
Sinha, N.3
Das, D.N.4
Panda, P.K.5
Patra, S.K.6
-
53
-
-
79951847989
-
Principles and current strategies for targeting autophagy for cancer treatment
-
Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 2011; 17: 654-666.
-
(2011)
Clin Cancer Res
, vol.17
, pp. 654-666
-
-
Amaravadi, R.K.1
Lippincott-Schwartz, J.2
Yin, X.M.3
Weiss, W.A.4
Takebe, N.5
Timmer, W.6
-
54
-
-
0023392945
-
High-efficiency transformation of mammalian cells by plasmid DNA
-
Chen C, Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 1987; 7: 2754-2756.
-
(1987)
Mol Cell Biol
, vol.7
, pp. 2754-2756
-
-
Chen, C.1
Okayama, H.2
-
55
-
-
69949108875
-
Targeting hypoxia in cancer cells by restoring homeodomain-interacting protein kinase-2 and p53 activity and suppressing HIF-1alpha
-
Nardinocchi L, Puca R, Sacchi A, Rechavi G, Givol D, D'Orazi G. Targeting hypoxia in cancer cells by restoring homeodomain-interacting protein kinase-2 and p53 activity and suppressing HIF-1alpha. PLoS One 2009; 4: e6819.
-
(2009)
PLoS One
, vol.4
, pp. e6819
-
-
Nardinocchi, L.1
Puca, R.2
Sacchi, A.3
Rechavi, G.4
Givol, D.5
D'orazi, G.6
|