메뉴 건너뛰기




Volumn 30, Issue 5, 2014, Pages 1076-1083

Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL-pretreated lodgepole pine

Author keywords

Ethanol; Inhibitors; Pretreatment; Toxicity; Yeast fermentation

Indexed keywords

BIOETHANOL; CORROSION INHIBITORS; ETHANOL; FERMENTATION; TOXICITY;

EID: 84914170018     PISSN: 87567938     EISSN: 15206033     Source Type: Journal    
DOI: 10.1002/btpr.1937     Document Type: Article
Times cited : (16)

References (47)
  • 2
    • 85027958263 scopus 로고    scopus 로고
    • Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining
    • Zhu JY, Zhuang XS. Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Prog Energy Combust Sci. 2012;38:583-589.
    • (2012) Prog Energy Combust Sci , vol.38 , pp. 583-589
    • Zhu, J.Y.1    Zhuang, X.S.2
  • 4
    • 77949875394 scopus 로고    scopus 로고
    • Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation
    • Zhu JY, Pan XJ. Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol. 2010;101:4992-5002.
    • (2010) Bioresour Technol , vol.101 , pp. 4992-5002
    • Zhu, J.Y.1    Pan, X.J.2
  • 5
    • 58549107993 scopus 로고    scopus 로고
    • Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine
    • Zhu JY, Pan XJ, Wang GS, Gleisner R. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol. 2009;100:2411-2418.
    • (2009) Bioresour Technol , vol.100 , pp. 2411-2418
    • Zhu, J.Y.1    Pan, X.J.2    Wang, G.S.3    Gleisner, R.4
  • 6
    • 84878306139 scopus 로고    scopus 로고
    • Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses
    • Wang ZJ, Lan TQ, Zhu JY. Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses. Biotechnol Biofuels. 2013;6:9.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 9
    • Wang, Z.J.1    Lan, T.Q.2    Zhu, J.Y.3
  • 7
    • 84887084208 scopus 로고    scopus 로고
    • Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin
    • Wang Z, Zhu JY, Fu Y, Qin M, Shao Z, Jiang J, Yang F. Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin. Biotechnol Biofuels. 2013;6:156.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 156
    • Wang, Z.1    Zhu, J.Y.2    Fu, Y.3    Qin, M.4    Shao, Z.5    Jiang, J.6    Yang, F.7
  • 8
    • 84879522765 scopus 로고    scopus 로고
    • Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: role of molecular weight and substrate lignin
    • Zhou H, Lou H, Yang D, Zhu JY, Qiu X. Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: role of molecular weight and substrate lignin. Ind Eng Chem Res. 2013;52:8464-8470.
    • (2013) Ind Eng Chem Res , vol.52 , pp. 8464-8470
    • Zhou, H.1    Lou, H.2    Yang, D.3    Zhu, J.Y.4    Qiu, X.5
  • 10
    • 38149091795 scopus 로고    scopus 로고
    • Optimization of spent sulfite liquor fermentation
    • Helle SS, Lin T, Duff SJB. Optimization of spent sulfite liquor fermentation. Enzyme Microb Technol. 2008;42:259-264.
    • (2008) Enzyme Microb Technol , vol.42 , pp. 259-264
    • Helle, S.S.1    Lin, T.2    Duff, S.J.B.3
  • 11
    • 77955170807 scopus 로고    scopus 로고
    • Robust cellulosic ethanol production from SPORL-pretreated lodgepolep pine using an adapted strain S. cerevisiae without detoxification
    • Tian S, Luo XL, Yang XS, Zhu JY. Robust cellulosic ethanol production from SPORL-pretreated lodgepolep pine using an adapted strain S. cerevisiae without detoxification. Bioresour Technol. 2010;101:8678-8685.
    • (2010) Bioresour Technol , vol.101 , pp. 8678-8685
    • Tian, S.1    Luo, X.L.2    Yang, X.S.3    Zhu, J.Y.4
  • 12
    • 84868332258 scopus 로고    scopus 로고
    • High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation
    • Lan TQ, Gleisner R, Zhu JY, Dien BS, Hector RE. High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation. Bioresour Technol. 2013;127:291-297.
    • (2013) Bioresour Technol , vol.127 , pp. 291-297
    • Lan, T.Q.1    Gleisner, R.2    Zhu, J.Y.3    Dien, B.S.4    Hector, R.E.5
  • 13
    • 77952890864 scopus 로고    scopus 로고
    • Ethanol production from sporl-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency
    • Zhu JY, Zhu W, OBryan P, Dien BS, Tian S, Gleisner R, Pan XJ. Ethanol production from sporl-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency. Appl Microbiol Biotechnol. 2010;86:1355-1365.
    • (2010) Appl Microbiol Biotechnol , vol.86 , pp. 1355-1365
    • Zhu, J.Y.1    Zhu, W.2    O'Bryan, P.3    Dien, B.S.4    Tian, S.5    Gleisner, R.6    Pan, X.J.7
  • 14
    • 84887583666 scopus 로고    scopus 로고
    • Bioconversion of beetle-killed lodgepole pine using SPORL: process scale-up design, lignin coproduct, and high solids fermentation without detoxification
    • Zhou H, Zhu JY, Luo X, Leu S-Y, Wu X, Gleisner R, Dien BS, Hector RE, Yang D, Qiu X, Horn E, Negron J. Bioconversion of beetle-killed lodgepole pine using SPORL: process scale-up design, lignin coproduct, and high solids fermentation without detoxification. Ind Eng Chem Res. 2013;52:8464-8470.
    • (2013) Ind Eng Chem Res , vol.52 , pp. 8464-8470
    • Zhou, H.1    Zhu, J.Y.2    Luo, X.3    Leu, S.-Y.4    Wu, X.5    Gleisner, R.6    Dien, B.S.7    Hector, R.E.8    Yang, D.9    Qiu, X.10    Horn, E.11    Negron, J.12
  • 15
    • 2242426285 scopus 로고    scopus 로고
    • Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents
    • Weil JR, Dien B, Bothast R, Hendrickson R, Mosier NS, Ladisch MR. Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents. Ind Eng Chem Res. 2002;41:6132-6138.
    • (2002) Ind Eng Chem Res , vol.41 , pp. 6132-6138
    • Weil, J.R.1    Dien, B.2    Bothast, R.3    Hendrickson, R.4    Mosier, N.S.5    Ladisch, M.R.6
  • 16
    • 80052513736 scopus 로고    scopus 로고
    • Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion
    • Hector RE, Dien BS, Cotta MA, Qureshi N. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J Ind Microbiol Biotechnol. 2011;38:1193-1202.
    • (2011) J Ind Microbiol Biotechnol , vol.38 , pp. 1193-1202
    • Hector, R.E.1    Dien, B.S.2    Cotta, M.A.3    Qureshi, N.4
  • 18
    • 1242264261 scopus 로고    scopus 로고
    • Metabolic engineering for improved fermentation of xylose by yeasts
    • Jeffries TW, Jin Y-S. Metabolic engineering for improved fermentation of xylose by yeasts. Appl Microbiol Biotechnol. 2004;63:495-509.
    • (2004) Appl Microbiol Biotechnol , vol.63 , pp. 495-509
    • Jeffries, T.W.1    Jin, Y.-S.2
  • 20
    • 77956086090 scopus 로고    scopus 로고
    • Evaluation of mountain beetle infested lodgepole pine for cellulosic ethanol production by SPORL pretreatment
    • Luo X, Gleisner R, Tian S, Negron J, Horn E, Pan XJ, Zhu JY. Evaluation of mountain beetle infested lodgepole pine for cellulosic ethanol production by SPORL pretreatment. Ind Eng Chem Res. 2010;49:8258-8266.
    • (2010) Ind Eng Chem Res , vol.49 , pp. 8258-8266
    • Luo, X.1    Gleisner, R.2    Tian, S.3    Negron, J.4    Horn, E.5    Pan, X.J.6    Zhu, J.Y.7
  • 21
    • 84878298601 scopus 로고    scopus 로고
    • pH-induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses
    • Lou H, Zhu JY, Lan TQ, Lai H, Qiu X. pH-induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. ChemSusChem. 2013;6:919-927.
    • (2013) ChemSusChem , vol.6 , pp. 919-927
    • Lou, H.1    Zhu, J.Y.2    Lan, T.Q.3    Lai, H.4    Qiu, X.5
  • 22
    • 84876956111 scopus 로고    scopus 로고
    • Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2-6.2
    • Lan TQ, Lou H, Zhu JY. Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2-6.2. Bioenerg Res. 2013;6:476-485.
    • (2013) Bioenerg Res , vol.6 , pp. 476-485
    • Lan, T.Q.1    Lou, H.2    Zhu, J.Y.3
  • 23
    • 84857056043 scopus 로고    scopus 로고
    • Ethanol production form poplar wood the rough enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments
    • Wang ZJ, Zhu JY, Gleisner R, Chen KF. Ethanol production form poplar wood the rough enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel. 2012;95:606-614.
    • (2012) Fuel , vol.95 , pp. 606-614
    • Wang, Z.J.1    Zhu, J.Y.2    Gleisner, R.3    Chen, K.F.4
  • 24
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
    • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74:25-33.
    • (2000) Bioresour Technol , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 25
    • 0141788811 scopus 로고    scopus 로고
    • Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetially engineered strain of S
    • Helle SS, Cameron DR, Lam J, White B, Duff SJB. Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetially engineered strain of S. Cerevisiae. Enzyme Microb Technol. 2003;33:786-792.
    • (2003) Cerevisiae. Enzyme Microb Technol , vol.33 , pp. 786-792
    • Helle, S.S.1    Cameron, D.R.2    Lam, J.3    White, B.4    Duff, S.J.B.5
  • 26
    • 4644229547 scopus 로고    scopus 로고
    • Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran
    • Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2, 5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol. 2004;31:345-352.
    • (2004) J Ind Microbiol Biotechnol , vol.31 , pp. 345-352
    • Liu, Z.L.1    Slininger, P.J.2    Dien, B.S.3    Berhow, M.A.4    Kurtzman, C.P.5    Gorsich, S.W.6
  • 29
    • 0028270664 scopus 로고
    • Effects of furfural on ethanol fermentation by Saccharomyces cerevisiae: mathematical models
    • Navarro AR. Effects of furfural on ethanol fermentation by Saccharomyces cerevisiae: mathematical models. Curr Microbiol. 1994;29:87-90.
    • (1994) Curr Microbiol , vol.29 , pp. 87-90
    • Navarro, A.R.1
  • 30
    • 33646048327 scopus 로고    scopus 로고
    • Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds
    • Keating JD, Panganiban C, Mansfield SD. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng. 2006;93:1196-1206.
    • (2006) Biotechnol Bioeng , vol.93 , pp. 1196-1206
    • Keating, J.D.1    Panganiban, C.2    Mansfield, S.D.3
  • 31
  • 32
    • 77952169542 scopus 로고    scopus 로고
    • Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae
    • Casey E, Sedlak M, Ho NWY, Mosier NS. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res. 2010;10:385-393.
    • (2010) FEMS Yeast Res , vol.10 , pp. 385-393
    • Casey, E.1    Sedlak, M.2    Ho, N.W.Y.3    Mosier, N.S.4
  • 33
    • 75749134466 scopus 로고    scopus 로고
    • Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
    • Medina VG, Almering MJH, Van Maris AJA, Pronk JT. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol. 2010;76:190-195.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 190-195
    • Medina, V.G.1    Almering, M.J.H.2    Van Maris, A.J.A.3    Pronk, J.T.4
  • 34
    • 79954706261 scopus 로고    scopus 로고
    • Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae
    • Hasunuma T, Sung KM, Sanda T, Yoshimura K, Matsuda F, Kondo A. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2011;90:997-1004.
    • (2011) Appl Microbiol Biotechnol , vol.90 , pp. 997-1004
    • Hasunuma, T.1    Sung, K.M.2    Sanda, T.3    Yoshimura, K.4    Matsuda, F.5    Kondo, A.6
  • 35
    • 0026452057 scopus 로고
    • Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling
    • Russell JB. Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol. 1992;73:363-370.
    • (1992) J Appl Bacteriol , vol.73 , pp. 363-370
    • Russell, J.B.1
  • 36
    • 0033118507 scopus 로고    scopus 로고
    • Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1
    • Meinander NQ, Boels I, Hahn-Hägerdal B. Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour Technol. 1999;68:79-87.
    • (1999) Bioresour Technol , vol.68 , pp. 79-87
    • Meinander, N.Q.1    Boels, I.2    Hahn-Hägerdal, B.3
  • 37
    • 0037228901 scopus 로고    scopus 로고
    • Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity
    • Jin YS, Ni H, Laplaza JM, Jeffries TW. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl Environ Microbiol. 2003;69:495-503.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 495-503
    • Jin, Y.S.1    Ni, H.2    Laplaza, J.M.3    Jeffries, T.W.4
  • 39
    • 77951127992 scopus 로고    scopus 로고
    • Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
    • Runquist D, Hahn-Hägerdal B, Rådström P. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels. 2010;3(1).
    • (2010) Biotechnol Biofuels. , vol.3 , Issue.1
    • Runquist, D.1    Hahn-Hägerdal, B.2    Rådström, P.3
  • 40
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae
    • Kotter P, Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1993;38:776-783.
    • (1993) Appl Microbiol Biotechnol , vol.38 , pp. 776-783
    • Kotter, P.1    Ciriacy, M.2
  • 41
    • 33947192191 scopus 로고    scopus 로고
    • Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases
    • Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttilä M, Ruohonen L. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol. 2007;74:1041-1052.
    • (2007) Appl Microbiol Biotechnol , vol.74 , pp. 1041-1052
    • Saloheimo, A.1    Rauta, J.2    Stasyk, O.V.3    Sibirny, A.A.4    Penttilä, M.5    Ruohonen, L.6
  • 42
    • 84858262547 scopus 로고    scopus 로고
    • Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
    • Subtil T, Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels. 2012;5.
    • (2012) Biotechnol Biofuels. , vol.5
    • Subtil, T.1    Boles, E.2
  • 43
    • 0019985559 scopus 로고
    • Saccharomyces cerevisiae mutants resistant to catabolite repression: use in cheese whey hydrolysate fermentation
    • Bailey RB, Benitez T, Woodward A. Saccharomyces cerevisiae mutants resistant to catabolite repression: use in cheese whey hydrolysate fermentation. Appl Environ Microbiol. 1982;44:631-639.
    • (1982) Appl Environ Microbiol , vol.44 , pp. 631-639
    • Bailey, R.B.1    Benitez, T.2    Woodward, A.3
  • 44
    • 4043127461 scopus 로고    scopus 로고
    • An ethanologenic yeast exhibiting unusual metabolism in the fermentation of lignocellulosic hexose sugars
    • Keating JD, Robinson J, Cotta MA, Saddler JN, Mansfield SD. An ethanologenic yeast exhibiting unusual metabolism in the fermentation of lignocellulosic hexose sugars. J Ind Microbiol Biotechnol. 2004;31:235-244.
    • (2004) J Ind Microbiol Biotechnol , vol.31 , pp. 235-244
    • Keating, J.D.1    Robinson, J.2    Cotta, M.A.3    Saddler, J.N.4    Mansfield, S.D.5
  • 45
    • 84862800120 scopus 로고    scopus 로고
    • A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae
    • Young EM, Comer AD, Huang H, Alper HS. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab Eng. 2012;14:401-411.
    • (2012) Metab Eng , vol.14 , pp. 401-411
    • Young, E.M.1    Comer, A.D.2    Huang, H.3    Alper, H.S.4
  • 46
    • 84878237818 scopus 로고    scopus 로고
    • Growth and fermentation of d-xylose by Saccharomyces cerevisiae expressing a novel d-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
    • Hector RE, Dien BS, Cotta MA, Mertens JA. Growth and fermentation of d-xylose by Saccharomyces cerevisiae expressing a novel d-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnol Biofuels. 2013;6(1).
    • (2013) Biotechnol Biofuels. , vol.6 , Issue.1
    • Hector, R.E.1    Dien, B.S.2    Cotta, M.A.3    Mertens, J.A.4
  • 47
    • 50849109464 scopus 로고    scopus 로고
    • Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption
    • Hector RE, Qureshi N, Hughes SR, Cotta MA. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol. 2008;80:675-684.
    • (2008) Appl Microbiol Biotechnol , vol.80 , pp. 675-684
    • Hector, R.E.1    Qureshi, N.2    Hughes, S.R.3    Cotta, M.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.