-
2
-
-
85027958263
-
Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining
-
Zhu JY, Zhuang XS. Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Prog Energy Combust Sci. 2012;38:583-589.
-
(2012)
Prog Energy Combust Sci
, vol.38
, pp. 583-589
-
-
Zhu, J.Y.1
Zhuang, X.S.2
-
3
-
-
29144475803
-
-
Oak Ridge: Oak Ridge National Laboratory, US Dept. of Energy
-
Perlack RD, Wright LL, Turhollow A, Graham RL, Stokes B, Erbach DC. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply. Oak Ridge: Oak Ridge National Laboratory, US Dept. of Energy; 2005.
-
(2005)
Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply
-
-
Perlack, R.D.1
Wright, L.L.2
Turhollow, A.3
Graham, R.L.4
Stokes, B.5
Erbach, D.C.6
-
4
-
-
77949875394
-
Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation
-
Zhu JY, Pan XJ. Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol. 2010;101:4992-5002.
-
(2010)
Bioresour Technol
, vol.101
, pp. 4992-5002
-
-
Zhu, J.Y.1
Pan, X.J.2
-
5
-
-
58549107993
-
Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine
-
Zhu JY, Pan XJ, Wang GS, Gleisner R. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol. 2009;100:2411-2418.
-
(2009)
Bioresour Technol
, vol.100
, pp. 2411-2418
-
-
Zhu, J.Y.1
Pan, X.J.2
Wang, G.S.3
Gleisner, R.4
-
6
-
-
84878306139
-
Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses
-
Wang ZJ, Lan TQ, Zhu JY. Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses. Biotechnol Biofuels. 2013;6:9.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 9
-
-
Wang, Z.J.1
Lan, T.Q.2
Zhu, J.Y.3
-
7
-
-
84887084208
-
Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin
-
Wang Z, Zhu JY, Fu Y, Qin M, Shao Z, Jiang J, Yang F. Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin. Biotechnol Biofuels. 2013;6:156.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 156
-
-
Wang, Z.1
Zhu, J.Y.2
Fu, Y.3
Qin, M.4
Shao, Z.5
Jiang, J.6
Yang, F.7
-
8
-
-
84879522765
-
Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: role of molecular weight and substrate lignin
-
Zhou H, Lou H, Yang D, Zhu JY, Qiu X. Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: role of molecular weight and substrate lignin. Ind Eng Chem Res. 2013;52:8464-8470.
-
(2013)
Ind Eng Chem Res
, vol.52
, pp. 8464-8470
-
-
Zhou, H.1
Lou, H.2
Yang, D.3
Zhu, J.Y.4
Qiu, X.5
-
11
-
-
77955170807
-
Robust cellulosic ethanol production from SPORL-pretreated lodgepolep pine using an adapted strain S. cerevisiae without detoxification
-
Tian S, Luo XL, Yang XS, Zhu JY. Robust cellulosic ethanol production from SPORL-pretreated lodgepolep pine using an adapted strain S. cerevisiae without detoxification. Bioresour Technol. 2010;101:8678-8685.
-
(2010)
Bioresour Technol
, vol.101
, pp. 8678-8685
-
-
Tian, S.1
Luo, X.L.2
Yang, X.S.3
Zhu, J.Y.4
-
12
-
-
84868332258
-
High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation
-
Lan TQ, Gleisner R, Zhu JY, Dien BS, Hector RE. High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation. Bioresour Technol. 2013;127:291-297.
-
(2013)
Bioresour Technol
, vol.127
, pp. 291-297
-
-
Lan, T.Q.1
Gleisner, R.2
Zhu, J.Y.3
Dien, B.S.4
Hector, R.E.5
-
13
-
-
77952890864
-
Ethanol production from sporl-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency
-
Zhu JY, Zhu W, OBryan P, Dien BS, Tian S, Gleisner R, Pan XJ. Ethanol production from sporl-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency. Appl Microbiol Biotechnol. 2010;86:1355-1365.
-
(2010)
Appl Microbiol Biotechnol
, vol.86
, pp. 1355-1365
-
-
Zhu, J.Y.1
Zhu, W.2
O'Bryan, P.3
Dien, B.S.4
Tian, S.5
Gleisner, R.6
Pan, X.J.7
-
14
-
-
84887583666
-
Bioconversion of beetle-killed lodgepole pine using SPORL: process scale-up design, lignin coproduct, and high solids fermentation without detoxification
-
Zhou H, Zhu JY, Luo X, Leu S-Y, Wu X, Gleisner R, Dien BS, Hector RE, Yang D, Qiu X, Horn E, Negron J. Bioconversion of beetle-killed lodgepole pine using SPORL: process scale-up design, lignin coproduct, and high solids fermentation without detoxification. Ind Eng Chem Res. 2013;52:8464-8470.
-
(2013)
Ind Eng Chem Res
, vol.52
, pp. 8464-8470
-
-
Zhou, H.1
Zhu, J.Y.2
Luo, X.3
Leu, S.-Y.4
Wu, X.5
Gleisner, R.6
Dien, B.S.7
Hector, R.E.8
Yang, D.9
Qiu, X.10
Horn, E.11
Negron, J.12
-
15
-
-
2242426285
-
Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents
-
Weil JR, Dien B, Bothast R, Hendrickson R, Mosier NS, Ladisch MR. Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents. Ind Eng Chem Res. 2002;41:6132-6138.
-
(2002)
Ind Eng Chem Res
, vol.41
, pp. 6132-6138
-
-
Weil, J.R.1
Dien, B.2
Bothast, R.3
Hendrickson, R.4
Mosier, N.S.5
Ladisch, M.R.6
-
16
-
-
80052513736
-
Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion
-
Hector RE, Dien BS, Cotta MA, Qureshi N. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J Ind Microbiol Biotechnol. 2011;38:1193-1202.
-
(2011)
J Ind Microbiol Biotechnol
, vol.38
, pp. 1193-1202
-
-
Hector, R.E.1
Dien, B.S.2
Cotta, M.A.3
Qureshi, N.4
-
18
-
-
1242264261
-
Metabolic engineering for improved fermentation of xylose by yeasts
-
Jeffries TW, Jin Y-S. Metabolic engineering for improved fermentation of xylose by yeasts. Appl Microbiol Biotechnol. 2004;63:495-509.
-
(2004)
Appl Microbiol Biotechnol
, vol.63
, pp. 495-509
-
-
Jeffries, T.W.1
Jin, Y.-S.2
-
19
-
-
3142640534
-
Characterization of a unique ethanologenic yeast capable of fermenting galactose
-
Keating JD, Robinson J, Bothast RJ, Saddler JN, Mansfield SD. Characterization of a unique ethanologenic yeast capable of fermenting galactose. Enzyme Microb Technol. 2004;35:242-253.
-
(2004)
Enzyme Microb Technol
, vol.35
, pp. 242-253
-
-
Keating, J.D.1
Robinson, J.2
Bothast, R.J.3
Saddler, J.N.4
Mansfield, S.D.5
-
20
-
-
77956086090
-
Evaluation of mountain beetle infested lodgepole pine for cellulosic ethanol production by SPORL pretreatment
-
Luo X, Gleisner R, Tian S, Negron J, Horn E, Pan XJ, Zhu JY. Evaluation of mountain beetle infested lodgepole pine for cellulosic ethanol production by SPORL pretreatment. Ind Eng Chem Res. 2010;49:8258-8266.
-
(2010)
Ind Eng Chem Res
, vol.49
, pp. 8258-8266
-
-
Luo, X.1
Gleisner, R.2
Tian, S.3
Negron, J.4
Horn, E.5
Pan, X.J.6
Zhu, J.Y.7
-
21
-
-
84878298601
-
pH-induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses
-
Lou H, Zhu JY, Lan TQ, Lai H, Qiu X. pH-induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. ChemSusChem. 2013;6:919-927.
-
(2013)
ChemSusChem
, vol.6
, pp. 919-927
-
-
Lou, H.1
Zhu, J.Y.2
Lan, T.Q.3
Lai, H.4
Qiu, X.5
-
22
-
-
84876956111
-
Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2-6.2
-
Lan TQ, Lou H, Zhu JY. Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2-6.2. Bioenerg Res. 2013;6:476-485.
-
(2013)
Bioenerg Res
, vol.6
, pp. 476-485
-
-
Lan, T.Q.1
Lou, H.2
Zhu, J.Y.3
-
23
-
-
84857056043
-
Ethanol production form poplar wood the rough enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments
-
Wang ZJ, Zhu JY, Gleisner R, Chen KF. Ethanol production form poplar wood the rough enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel. 2012;95:606-614.
-
(2012)
Fuel
, vol.95
, pp. 606-614
-
-
Wang, Z.J.1
Zhu, J.Y.2
Gleisner, R.3
Chen, K.F.4
-
24
-
-
0343618697
-
Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
-
Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74:25-33.
-
(2000)
Bioresour Technol
, vol.74
, pp. 25-33
-
-
Palmqvist, E.1
Hahn-Hägerdal, B.2
-
25
-
-
0141788811
-
Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetially engineered strain of S
-
Helle SS, Cameron DR, Lam J, White B, Duff SJB. Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetially engineered strain of S. Cerevisiae. Enzyme Microb Technol. 2003;33:786-792.
-
(2003)
Cerevisiae. Enzyme Microb Technol
, vol.33
, pp. 786-792
-
-
Helle, S.S.1
Cameron, D.R.2
Lam, J.3
White, B.4
Duff, S.J.B.5
-
26
-
-
4644229547
-
Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran
-
Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2, 5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol. 2004;31:345-352.
-
(2004)
J Ind Microbiol Biotechnol
, vol.31
, pp. 345-352
-
-
Liu, Z.L.1
Slininger, P.J.2
Dien, B.S.3
Berhow, M.A.4
Kurtzman, C.P.5
Gorsich, S.W.6
-
27
-
-
0027048930
-
Microbial transformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae
-
Villa GP, Bartrolli R, Lopez R, Guerra R, Enrique M, Penas M, Rodriquez E, Redondo D, Iglesias I, Diaz M. Microbial transformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae. Acta Biotechnol. 1992;12:509-512.
-
(1992)
Acta Biotechnol
, vol.12
, pp. 509-512
-
-
Villa, G.P.1
Bartrolli, R.2
Lopez, R.3
Guerra, R.4
Enrique, M.5
Penas, M.6
Rodriquez, E.7
Redondo, D.8
Iglesias, I.9
Diaz, M.10
-
28
-
-
79952181277
-
Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae
-
Almeida JRM, Runquist D, Sànchez Nogué V, Lidén G, Gorwa-Grauslund MF. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J. 2011;6:286-299.
-
(2011)
Biotechnol J
, vol.6
, pp. 286-299
-
-
Almeida, J.R.M.1
Runquist, D.2
Sànchez Nogué, V.3
Lidén, G.4
Gorwa-Grauslund, M.F.5
-
29
-
-
0028270664
-
Effects of furfural on ethanol fermentation by Saccharomyces cerevisiae: mathematical models
-
Navarro AR. Effects of furfural on ethanol fermentation by Saccharomyces cerevisiae: mathematical models. Curr Microbiol. 1994;29:87-90.
-
(1994)
Curr Microbiol
, vol.29
, pp. 87-90
-
-
Navarro, A.R.1
-
30
-
-
33646048327
-
Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds
-
Keating JD, Panganiban C, Mansfield SD. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng. 2006;93:1196-1206.
-
(2006)
Biotechnol Bioeng
, vol.93
, pp. 1196-1206
-
-
Keating, J.D.1
Panganiban, C.2
Mansfield, S.D.3
-
31
-
-
84866294476
-
Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose
-
Huisjes EH, de Hulster E, van Dam JC, Pronk JT, van Maris AJA. Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose. Appl Environ Microbiol. 2012;78:5052-5059.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 5052-5059
-
-
Huisjes, E.H.1
de Hulster, E.2
van Dam, J.C.3
Pronk, J.T.4
van Maris, A.J.A.5
-
32
-
-
77952169542
-
Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae
-
Casey E, Sedlak M, Ho NWY, Mosier NS. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res. 2010;10:385-393.
-
(2010)
FEMS Yeast Res
, vol.10
, pp. 385-393
-
-
Casey, E.1
Sedlak, M.2
Ho, N.W.Y.3
Mosier, N.S.4
-
33
-
-
75749134466
-
Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
-
Medina VG, Almering MJH, Van Maris AJA, Pronk JT. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol. 2010;76:190-195.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 190-195
-
-
Medina, V.G.1
Almering, M.J.H.2
Van Maris, A.J.A.3
Pronk, J.T.4
-
34
-
-
79954706261
-
Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae
-
Hasunuma T, Sung KM, Sanda T, Yoshimura K, Matsuda F, Kondo A. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2011;90:997-1004.
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, pp. 997-1004
-
-
Hasunuma, T.1
Sung, K.M.2
Sanda, T.3
Yoshimura, K.4
Matsuda, F.5
Kondo, A.6
-
35
-
-
0026452057
-
Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling
-
Russell JB. Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol. 1992;73:363-370.
-
(1992)
J Appl Bacteriol
, vol.73
, pp. 363-370
-
-
Russell, J.B.1
-
36
-
-
0033118507
-
Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1
-
Meinander NQ, Boels I, Hahn-Hägerdal B. Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour Technol. 1999;68:79-87.
-
(1999)
Bioresour Technol
, vol.68
, pp. 79-87
-
-
Meinander, N.Q.1
Boels, I.2
Hahn-Hägerdal, B.3
-
37
-
-
0037228901
-
Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity
-
Jin YS, Ni H, Laplaza JM, Jeffries TW. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl Environ Microbiol. 2003;69:495-503.
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 495-503
-
-
Jin, Y.S.1
Ni, H.2
Laplaza, J.M.3
Jeffries, T.W.4
-
38
-
-
33750621979
-
Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status
-
van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek. 2006;90:391-418.
-
(2006)
Antonie Van Leeuwenhoek
, vol.90
, pp. 391-418
-
-
van Maris, A.J.A.1
Abbott, D.A.2
Bellissimi, E.3
van den Brink, J.4
Kuyper, M.5
Luttik, M.A.H.6
Wisselink, H.W.7
Scheffers, W.A.8
van Dijken, J.P.9
Pronk, J.T.10
-
39
-
-
77951127992
-
Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
-
Runquist D, Hahn-Hägerdal B, Rådström P. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels. 2010;3(1).
-
(2010)
Biotechnol Biofuels.
, vol.3
, Issue.1
-
-
Runquist, D.1
Hahn-Hägerdal, B.2
Rådström, P.3
-
40
-
-
0027395082
-
Xylose fermentation by Saccharomyces cerevisiae
-
Kotter P, Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1993;38:776-783.
-
(1993)
Appl Microbiol Biotechnol
, vol.38
, pp. 776-783
-
-
Kotter, P.1
Ciriacy, M.2
-
41
-
-
33947192191
-
Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases
-
Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttilä M, Ruohonen L. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol. 2007;74:1041-1052.
-
(2007)
Appl Microbiol Biotechnol
, vol.74
, pp. 1041-1052
-
-
Saloheimo, A.1
Rauta, J.2
Stasyk, O.V.3
Sibirny, A.A.4
Penttilä, M.5
Ruohonen, L.6
-
42
-
-
84858262547
-
Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
-
Subtil T, Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels. 2012;5.
-
(2012)
Biotechnol Biofuels.
, vol.5
-
-
Subtil, T.1
Boles, E.2
-
43
-
-
0019985559
-
Saccharomyces cerevisiae mutants resistant to catabolite repression: use in cheese whey hydrolysate fermentation
-
Bailey RB, Benitez T, Woodward A. Saccharomyces cerevisiae mutants resistant to catabolite repression: use in cheese whey hydrolysate fermentation. Appl Environ Microbiol. 1982;44:631-639.
-
(1982)
Appl Environ Microbiol
, vol.44
, pp. 631-639
-
-
Bailey, R.B.1
Benitez, T.2
Woodward, A.3
-
44
-
-
4043127461
-
An ethanologenic yeast exhibiting unusual metabolism in the fermentation of lignocellulosic hexose sugars
-
Keating JD, Robinson J, Cotta MA, Saddler JN, Mansfield SD. An ethanologenic yeast exhibiting unusual metabolism in the fermentation of lignocellulosic hexose sugars. J Ind Microbiol Biotechnol. 2004;31:235-244.
-
(2004)
J Ind Microbiol Biotechnol
, vol.31
, pp. 235-244
-
-
Keating, J.D.1
Robinson, J.2
Cotta, M.A.3
Saddler, J.N.4
Mansfield, S.D.5
-
45
-
-
84862800120
-
A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae
-
Young EM, Comer AD, Huang H, Alper HS. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab Eng. 2012;14:401-411.
-
(2012)
Metab Eng
, vol.14
, pp. 401-411
-
-
Young, E.M.1
Comer, A.D.2
Huang, H.3
Alper, H.S.4
-
46
-
-
84878237818
-
Growth and fermentation of d-xylose by Saccharomyces cerevisiae expressing a novel d-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
-
Hector RE, Dien BS, Cotta MA, Mertens JA. Growth and fermentation of d-xylose by Saccharomyces cerevisiae expressing a novel d-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnol Biofuels. 2013;6(1).
-
(2013)
Biotechnol Biofuels.
, vol.6
, Issue.1
-
-
Hector, R.E.1
Dien, B.S.2
Cotta, M.A.3
Mertens, J.A.4
-
47
-
-
50849109464
-
Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption
-
Hector RE, Qureshi N, Hughes SR, Cotta MA. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol. 2008;80:675-684.
-
(2008)
Appl Microbiol Biotechnol
, vol.80
, pp. 675-684
-
-
Hector, R.E.1
Qureshi, N.2
Hughes, S.R.3
Cotta, M.A.4
|