-
1
-
-
0015859467
-
Principles that govern the folding of protein chains
-
Anfinsen, C. B. (1973) Principles that govern the folding of protein chains. Science 181, 223-230
-
(1973)
Science
, vol.181
, pp. 223-230
-
-
Anfinsen, C.B.1
-
2
-
-
0347357617
-
Protein folding and misfolding
-
Dobson, C. M. (2003) Protein folding and misfolding. Nature 426, 884-890
-
(2003)
Nature
, vol.426
, pp. 884-890
-
-
Dobson, C.M.1
-
3
-
-
79960652801
-
Molecular chaperones in protein folding and proteostasis
-
Hartl, F. U., Bracher, A., and Hayer-Hartl, M. (2011) Molecular chaperones in protein folding and proteostasis. Nature 475, 324-332
-
(2011)
Nature
, vol.475
, pp. 324-332
-
-
Hartl, F.U.1
Bracher, A.2
Hayer-Hartl, M.3
-
4
-
-
63149130741
-
Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins
-
Niwa, T., Ying, B. W., Saito, K., Jin, W., Takada, S., Ueda, T., and Taguchi, H. (2009) Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proc. Natl. Acad. Sci. U.S.A. 106, 4201-4206
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 4201-4206
-
-
Niwa, T.1
Ying, B.W.2
Saito, K.3
Jin, W.4
Takada, S.5
Ueda, T.6
Taguchi, H.7
-
5
-
-
33746099650
-
Protein aggregation in crowded environments
-
Ellis, R. J., and Minton, A. P. (2006) Protein aggregation in crowded environments. Biol. Chem. 387, 485-497
-
(2006)
Biol. Chem.
, vol.387
, pp. 485-497
-
-
Ellis, R.J.1
Minton, A.P.2
-
6
-
-
79551687316
-
Protein folding in the cell: Challenges and progress
-
Gershenson, A., and Gierasch, L. M. (2011) Protein folding in the cell: challenges and progress. Curr. Opin. Struct. Biol. 21, 32-41
-
(2011)
Curr. Opin. Struct. Biol.
, vol.21
, pp. 32-41
-
-
Gershenson, A.1
Gierasch, L.M.2
-
7
-
-
70349901079
-
Stability effects of mutations and protein evolvability
-
Tokuriki, N., and Tawfik, D. S. (2009) Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596-604
-
(2009)
Curr. Opin. Struct. Biol.
, vol.19
, pp. 596-604
-
-
Tokuriki, N.1
Tawfik, D.S.2
-
8
-
-
0023668329
-
Proteins as molecular chaperones
-
Ellis, J. (1987) Proteins as molecular chaperones. Nature 328, 378-379
-
(1987)
Nature
, vol.328
, pp. 378-379
-
-
Ellis, J.1
-
9
-
-
77958487260
-
Cellular strategies for controlling protein aggregation
-
Tyedmers, J., Mogk, A., and Bukau, B. (2010) Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11, 777-788
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 777-788
-
-
Tyedmers, J.1
Mogk, A.2
Bukau, B.3
-
10
-
-
78649346692
-
The heat shock response: Life on the verge of death
-
Richter, K., Haslbeck, M., and Buchner, J. (2010) The heat shock response: life on the verge of death. Mol. Cell 40, 253-266
-
(2010)
Mol. Cell
, vol.40
, pp. 253-266
-
-
Richter, K.1
Haslbeck, M.2
Buchner, J.3
-
11
-
-
84861850079
-
Global analysis of chaperone effects using a reconstituted cell-free translation system
-
Niwa, T., Kanamori, T., Ueda, T., and Taguchi, H. (2012) Global analysis of chaperone effects using a reconstituted cell-free translation system. Proc. Natl. Acad. Sci. U.S.A. 109, 8937-8942
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 8937-8942
-
-
Niwa, T.1
Kanamori, T.2
Ueda, T.3
Taguchi, H.4
-
12
-
-
22744447508
-
Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli
-
Kerner, M. J., Naylor, D. J., Ishihama, Y., Maier, T., Chang, H. C., Stines, A. P., Georgopoulos, C., Frishman, D., Hayer-Hartl, M., Mann, M., and Hartl, F. U. (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122, 209-220
-
(2005)
Cell
, vol.122
, pp. 209-220
-
-
Kerner, M.J.1
Naylor, D.J.2
Ishihama, Y.3
Maier, T.4
Chang, H.C.5
Stines, A.P.6
Georgopoulos, C.7
Frishman, D.8
Hayer-Hartl, M.9
Mann, M.10
Hartl, F.U.11
-
13
-
-
77951974784
-
A systematic survey of in vivo obligate chaperonin-dependent substrates
-
Fujiwara, K., Ishihama, Y., Nakahigashi, K., Soga, T., and Taguchi, H. (2010) A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J. 29, 1552-1564
-
(2010)
Embo J.
, vol.29
, pp. 1552-1564
-
-
Fujiwara, K.1
Ishihama, Y.2
Nakahigashi, K.3
Soga, T.4
Taguchi, H.5
-
14
-
-
84861139210
-
DnaK functions as a central hub in the E. Coli chaperone network
-
Calloni, G., Chen, T., Schermann, S. M., Chang, H. C., Genevaux, P., Agostini, F., Tartaglia, G. G., Hayer-Hartl, M., and Hartl, F. U. (2012) DnaK functions as a central hub in the E. coli chaperone network. Cell Rep. 1, 251-264
-
(2012)
Cell Rep.
, vol.1
, pp. 251-264
-
-
Calloni, G.1
Chen, T.2
Schermann, S.M.3
Chang, H.C.4
Genevaux, P.5
Agostini, F.6
Tartaglia, G.G.7
Hayer-Hartl, M.8
Hartl, F.U.9
-
15
-
-
0024554107
-
The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures
-
Fayet, O., Ziegelhoffer, T., and Georgopoulos, C. (1989) The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171, 1379-1385
-
(1989)
J. Bacteriol.
, vol.171
, pp. 1379-1385
-
-
Fayet, O.1
Ziegelhoffer, T.2
Georgopoulos, C.3
-
16
-
-
84900341259
-
GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding
-
Georgescauld, F., Popova, K., Gupta, A. J., Bracher, A., Engen, J. R., Hayer-Hartl, M., and Hartl, F. U. (2014) GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 157, 922-934
-
(2014)
Cell
, vol.157
, pp. 922-934
-
-
Georgescauld, F.1
Popova, K.2
Gupta, A.J.3
Bracher, A.4
Engen, J.R.5
Hayer-Hartl, M.6
Hartl, F.U.7
-
17
-
-
84859115512
-
Mechanism of methionine synthase over expression in chaperonin-depleted Escherichia coli
-
Fujiwara, K., and Taguchi, H. (2012) Mechanism of methionine synthase over expression in chaperonin-depleted Escherichia coli. Microbiology 158, 917-924
-
(2012)
Microbiology
, vol.158
, pp. 917-924
-
-
Fujiwara, K.1
Taguchi, H.2
-
18
-
-
33750489742
-
Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL
-
Chapman, E., Farr, G. W., Usaite, R., Furtak, K., Fenton, W. A., Chaudhuri, T. K., Hondorp, E. R., Matthews, R. G., Wolf, S. G., Yates, J. R., Pypaert, M., and Horwich, A. L. (2006) Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL. Proc. Natl. Acad. Sci. U.S.A. 103, 15800-15805
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 15800-15805
-
-
Chapman, E.1
Farr, G.W.2
Usaite, R.3
Furtak, K.4
Fenton, W.A.5
Chaudhuri, T.K.6
Hondorp, E.R.7
Matthews, R.G.8
Wolf, S.G.9
Yates, J.R.10
Pypaert, M.11
Horwich, A.L.12
-
19
-
-
67349171092
-
Protein folding in Escherichia coli: The chaperonin GroE and its substrates
-
Masters, M., Blakely, G., Coulson, A., McLennan, N., Yerko, V., and Acord, J. (2009) Protein folding in Escherichia coli: the chaperonin GroE and its substrates. Res. Microbiol. 160, 267-277
-
(2009)
Res. Microbiol.
, vol.160
, pp. 267-277
-
-
Masters, M.1
Blakely, G.2
Coulson, A.3
McLennan, N.4
Yerko, V.5
Acord, J.6
-
20
-
-
34547743871
-
Filamentous morphology in GroE-depleted Escherichia coli induced by impaired folding of FtsE
-
Fujiwara, K., and Taguchi, H. (2007) Filamentous morphology in GroE-depleted Escherichia coli induced by impaired folding of FtsE.J. Bacteriol. 189, 5860-5866
-
(2007)
J. Bacteriol.
, vol.189
, pp. 5860-5866
-
-
Fujiwara, K.1
Taguchi, H.2
-
21
-
-
84885578609
-
A bacterial salt sensor created by multiplying phenotypes of GroE-depleted Escherichia coli
-
Fujiwara, K., Aoi, K. B., and Nomura, S. M. (2013) A bacterial salt sensor created by multiplying phenotypes of GroE-depleted Escherichia coli. Anal. Methods 5, 5918-5922
-
(2013)
Anal. Methods
, vol.5
, pp. 5918-5922
-
-
Fujiwara, K.1
Aoi, K.B.2
Nomura, S.M.3
-
22
-
-
2642659387
-
GroE is vital for cell-wall synthesis
-
McLennan, N., and Masters, M. (1998) GroE is vital for cell-wall synthesis. Nature 392, 139
-
(1998)
Nature
, vol.392
, pp. 139
-
-
McLennan, N.1
Masters, M.2
-
23
-
-
0028366080
-
Monomeric chaper-onin-60 and its 50-kDa fragment possess the ability to interact with nonnative proteins, to suppress aggregation, and to promote protein folding
-
Taguchi, H., Makino, Y., and Yoshida, M. (1994) Monomeric chaper-onin-60 and its 50-kDa fragment possess the ability to interact with nonnative proteins, to suppress aggregation, and to promote protein folding. J. Biol. Chem. 269, 8529-8534
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 8529-8534
-
-
Taguchi, H.1
Makino, Y.2
Yoshida, M.3
-
24
-
-
30544433196
-
Engineering and characterization of a superfolder green fluorescent protein
-
Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., and Waldo, G. S. (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79-88
-
(2006)
Nat. Biotechnol.
, vol.24
, pp. 79-88
-
-
Pédelacq, J.D.1
Cabantous, S.2
Tran, T.3
Terwilliger, T.C.4
Waldo, G.S.5
-
25
-
-
0030068803
-
Crystal structure of S-adenosylmethionine synthetase
-
Takusagawa, F., Kamitori, S., Misaki, S., and Markham, G. D. (1996) Crystal structure of S-adenosylmethionine synthetase. J. Biol. Chem. 271, 136-147
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 136-147
-
-
Takusagawa, F.1
Kamitori, S.2
Misaki, S.3
Markham, G.D.4
-
26
-
-
33646897305
-
Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein
-
Tang, Y. C., Chang, H. C., Roeben, A., Wischnewski, D., Wischnewski, N., Kerner, M. J., Hartl, F. U., and Hayer-Hartl, M. (2006) Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125, 903-914
-
(2006)
Cell
, vol.125
, pp. 903-914
-
-
Tang, Y.C.1
Chang, H.C.2
Roeben, A.3
Wischnewski, D.4
Wischnewski, N.5
Kerner, M.J.6
Hartl, F.U.7
Hayer-Hartl, M.8
-
27
-
-
33645237456
-
Residues in substrate proteins that interact with GroEL in the capture process are buried in the native state
-
Stan, G., Brooks, B. R., Lorimer, G. H., and Thirumalai, D. (2006) Residues in substrate proteins that interact with GroEL in the capture process are buried in the native state. Proc. Natl. Acad. Sci. U.S.A. 103, 4433-4438
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 4433-4438
-
-
Stan, G.1
Brooks, B.R.2
Lorimer, G.H.3
Thirumalai, D.4
-
28
-
-
77954385581
-
Physicochemical determinants of chaperone requirements
-
Tartaglia, G. G., Dobson, C. M., Hartl, F. U., and Vendruscolo, M. (2010) Physicochemical determinants of chaperone requirements. J. Mol. Biol. 400, 579-588
-
(2010)
J. Mol. Biol.
, vol.400
, pp. 579-588
-
-
Tartaglia, G.G.1
Dobson, C.M.2
Hartl, F.U.3
Vendruscolo, M.4
-
29
-
-
84856357054
-
What distinguishes GroEL substrates from other Escherichia coli proteins?
-
Azia, A., Unger, R., and Horovitz, A. (2012) What distinguishes GroEL substrates from other Escherichia coli proteins? FEES J. 279, 543-550
-
(2012)
Fees J.
, vol.279
, pp. 543-550
-
-
Azia, A.1
Unger, R.2
Horovitz, A.3
-
30
-
-
0025727072
-
GroE facilitates refolding of citrate synthase by suppressing aggregation
-
Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F. X., and Kiefhaber, T. (1991) GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586-1591
-
(1991)
Biochemistry
, vol.30
, pp. 1586-1591
-
-
Buchner, J.1
Schmidt, M.2
Fuchs, M.3
Jaenicke, R.4
Rudolph, R.5
Schmid, F.X.6
Kiefhaber, T.7
-
31
-
-
0029975103
-
Dynamics of the GroEL-protein complex: Effects of nucleotides and folding mutants
-
Sparrer, H., Lilie, H., and Buchner, J. (1996) Dynamics of the GroEL-protein complex: effects of nucleotides and folding mutants. J. Mol. Biol. 258, 74-87
-
(1996)
J. Mol. Biol.
, vol.258
, pp. 74-87
-
-
Sparrer, H.1
Lilie, H.2
Buchner, J.3
-
32
-
-
84883283836
-
GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates
-
Wyganowski, K. T., Kaltenbach, M., and Tokuriki, N. (2013) GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates. J. Mol. Biol. 425, 3403-3414
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 3403-3414
-
-
Wyganowski, K.T.1
Kaltenbach, M.2
Tokuriki, N.3
-
33
-
-
40149099484
-
How protein stability and new functions trade off
-
Tokuriki, N., Stricher, F., Serrano, L., and Tawfik, D.S. (2008) How protein stability and new functions trade off. PLoS Comput. Biol. 4, e1000002
-
(2008)
Plos Comput. Biol.
, vol.4
, pp. e1000002
-
-
Tokuriki, N.1
Stricher, F.2
Serrano, L.3
Tawfik, D.S.4
-
34
-
-
0032569851
-
Hsp90 as a capacitor for morphological evolution
-
Rutherford, S. L., and Lindquist, S. (1998) Hsp90 as a capacitor for morphological evolution. Nature 396, 336-342
-
(1998)
Nature
, vol.396
, pp. 336-342
-
-
Rutherford, S.L.1
Lindquist, S.2
-
35
-
-
0037161813
-
Endosymbiotic bacteria: GroEL buffers against deleterious mutations
-
Fares, M. A., Ruiz-González, M. X., Moya, A., Elena, S. F., and Barrio, E. (2002) Endosymbiotic bacteria: GroEL buffers against deleterious mutations. Nature 417, 398
-
(2002)
Nature
, vol.417
, pp. 398
-
-
Fares, M.A.1
Ruiz-González, M.X.2
Moya, A.3
Elena, S.F.4
Barrio, E.5
-
36
-
-
66649132872
-
Chaperonin overexpression promotes genetic variation and enzyme evolution
-
Tokuriki, N., and Tawfik, D. S. (2009) Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459, 668-673
-
(2009)
Nature
, vol.459
, pp. 668-673
-
-
Tokuriki, N.1
Tawfik, D.S.2
-
37
-
-
84871267951
-
Cumulative impact of chaperone-mediated folding on genome evolution
-
Bogumil, D., and Dagan, T. (2012) Cumulative impact of chaperone-mediated folding on genome evolution. Biochemistry 51, 9941-9953
-
(2012)
Biochemistry
, vol.51
, pp. 9941-9953
-
-
Bogumil, D.1
Dagan, T.2
-
38
-
-
79959419872
-
Difference in the distribution pattern of substrate enzymes in the metabolic network of Escherichia coli, according to chaperonin requirement
-
Takemoto, K., Niwa, T., and Taguchi, H. (2011) Difference in the distribution pattern of substrate enzymes in the metabolic network of Escherichia coli, according to chaperonin requirement. BMC Syst. Biol. 5, 98
-
(2011)
Bmc Syst. Biol.
, vol.5
, pp. 98
-
-
Takemoto, K.1
Niwa, T.2
Taguchi, H.3
|