메뉴 건너뛰기




Volumn 47, Issue 48, 2014, Pages

A parametric study of non-thermal plasma synthesis of silicon nanoparticles from a chlorinated precursor

Author keywords

crystallinity; hydrogen chloride; non thermal plasma; silicon nanocrystals; silicon tetrachloride

Indexed keywords

AMORPHOUS MATERIALS; CHLORINE COMPOUNDS; DECHLORINATION; FILM GROWTH; FLOW OF GASES; MASS SPECTROMETRY; NANOPARTICLES; SEEBECK EFFECT; SILICON; SYNTHESIS (CHEMICAL);

EID: 84910677264     PISSN: 00223727     EISSN: 13616463     Source Type: Journal    
DOI: 10.1088/0022-3727/47/48/485202     Document Type: Article
Times cited : (30)

References (32)
  • 1
    • 0008813837 scopus 로고    scopus 로고
    • Electronic states and luminescence in porous silicon quantum dots: The role of oxygen
    • Wolkin M, Jorne J, Fauchet P, Allan G and Delerue C 1999 Electronic states and luminescence in porous silicon quantum dots: the role of oxygen Phys. Rev. Lett. 82 197
    • (1999) Phys. Rev. Lett. , vol.82 , pp. 197
    • Wolkin, M.1    Jorne, J.2    Fauchet, P.3    Allan, G.4    Delerue, C.5
  • 2
    • 84875769026 scopus 로고    scopus 로고
    • Synthesis, properties, and applications of silicon nanocrystals
    • Mangolini L 2013 Synthesis, properties, and applications of silicon nanocrystals J. Vac. Sci. Technol. B 31 020801
    • (2013) J. Vac. Sci. Technol. , vol.31
    • Mangolini, L.1
  • 3
    • 0000881332 scopus 로고    scopus 로고
    • Fabrication of nanocrystalline silicon with small spread of particle size by pulsed gas plasma
    • Ifuku T, Otobe M, Itoh A and Oda S 1997 Fabrication of nanocrystalline silicon with small spread of particle size by pulsed gas plasma Japan. J. Appl. Phys. 36 4031-4
    • (1997) Japan. J. Appl. Phys. , vol.36 , pp. 4031-4034
    • Ifuku, T.1    Otobe, M.2    Itoh, A.3    Oda, S.4
  • 4
    • 84875821622 scopus 로고    scopus 로고
    • Surface-engineered silicon nanocrystals
    • Mariotti D, Mitra S and Švrček V 2013 Surface-engineered silicon nanocrystals Nanoscale 5 1385-98
    • (2013) Nanoscale , vol.5 , pp. 1385-1398
    • Mariotti, D.1    Mitra, S.2    Švrček, V.3
  • 6
    • 34249018565 scopus 로고    scopus 로고
    • Microplasma synthesis of tunable photoluminescent silicon nanocrystals
    • Nozaki T, Sasaki K, Ogino T, Asahi D and Okazaki K 2007 Microplasma synthesis of tunable photoluminescent silicon nanocrystals Nanotechnology 18 235603
    • (2007) Nanotechnology , vol.18 , Issue.23
    • Nozaki, T.1    Sasaki, K.2    Ogino, T.3    Asahi, D.4    Okazaki, K.5
  • 7
    • 79960405037 scopus 로고    scopus 로고
    • Synthesis and oxidation of luminescent silicon nanocrystals from silicon tetrachloride by very high frequency nonthermal plasma
    • Gresback R, Nozaki T and Okazaki K 2011 Synthesis and oxidation of luminescent silicon nanocrystals from silicon tetrachloride by very high frequency nonthermal plasma Nanotechnology 22 305605
    • (2011) Nanotechnology , vol.22 , Issue.30
    • Gresback, R.1    Nozaki, T.2    Okazaki, K.3
  • 8
    • 84881192270 scopus 로고    scopus 로고
    • Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals
    • Wheeler L M, Neale N R, Chen T and Kortshagen U R 2013 Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals Nat. Commun. 4 2197
    • (2013) Nat. Commun. , vol.4 , pp. 2197
    • Wheeler, L.M.1    Neale, N.R.2    Chen, T.3    Kortshagen, U.R.4
  • 9
    • 84873690418 scopus 로고    scopus 로고
    • Optical extinction spectra of silicon nanocrystals: Size dependence upon the lowest direct transition
    • Gresback R, Murakami Y, Ding Y, Yamada R, Okazaki K and Nozaki T 2013 Optical extinction spectra of silicon nanocrystals: size dependence upon the lowest direct transition Langmuir 29 1802-7
    • (2013) Langmuir , vol.29 , pp. 1802-1807
    • Gresback, R.1    Murakami, Y.2    Ding, Y.3    Yamada, R.4    Okazaki, K.5    Nozaki, T.6
  • 10
    • 77955311486 scopus 로고    scopus 로고
    • Germanium and silicon nanocrystal thin-film field-effect transistors from solution
    • Holman Z C, Liu C-Y and Kortshagen U R 2010 Germanium and silicon nanocrystal thin-film field-effect transistors from solution Nano Lett. 10 2661-6
    • (2010) Nano Lett. , vol.10 , pp. 2661-2666
    • Holman, Z.C.1    Liu, C.-Y.2    Kortshagen, U.R.3
  • 13
    • 79955899658 scopus 로고    scopus 로고
    • Nanocrystal inks without ligands: Stable colloids of bare germanium nanocrystals
    • Holman Z C and Kortshagen U R 2011 Nanocrystal inks without ligands: stable colloids of bare germanium nanocrystals Nano Lett. 11 2133-6
    • (2011) Nano Lett. , vol.11 , pp. 2133-2136
    • Holman, Z.C.1    Kortshagen, U.R.2
  • 14
    • 84867512130 scopus 로고    scopus 로고
    • Enhancing the efficiency of multicrystalline silicon solar cells by the inkjet printing of silicon-quantum-dot ink
    • Pi X D, Zhang L and Yang D 2012 Enhancing the efficiency of multicrystalline silicon solar cells by the inkjet printing of silicon-quantum-dot ink J. Phys. Chem. C 116 21240-3
    • (2012) J. Phys. Chem. , vol.116 , pp. 21240-21243
    • Pi, X.D.1    Zhang, L.2    Yang, D.3
  • 15
    • 18144362893 scopus 로고    scopus 로고
    • High-yield plasma synthesis of luminescent silicon nanocrystals
    • Mangolini L, Thimsen E and Kortshagen U 2005 High-yield plasma synthesis of luminescent silicon nanocrystals Nano Lett. 5 655-9
    • (2005) Nano Lett. , vol.5 , pp. 655-659
    • Mangolini, L.1    Thimsen, E.2    Kortshagen, U.3
  • 16
    • 79954577461 scopus 로고    scopus 로고
    • Plasma-enhanced chemical vapour deposition of inorganic nanomaterials using a chloride precursor
    • Yang R, Zheng J, Li W, Qu J and Li X 2011 Plasma-enhanced chemical vapour deposition of inorganic nanomaterials using a chloride precursor J. Phys. D: Appl. Phys. 44 174015
    • (2011) J. Phys. D: Appl. Phys. , vol.44 , Issue.17
    • Yang, R.1    Zheng, J.2    Li, W.3    Qu, J.4    Li, X.5
  • 17
    • 84889075596 scopus 로고    scopus 로고
    • Hybrid silicon nanocrystal/poly(3-hexylthiophene-2,5-diyl) solar cells from a chlorinated silicon precursor
    • Ding Y, Gresback R, Yamada R, Okazaki K and Nozaki T 2013 Hybrid silicon nanocrystal/poly(3-hexylthiophene-2,5-diyl) solar cells from a chlorinated silicon precursor Japan. J. Appl. Phys. 52 11NM04
    • (2013) Japan. J. Appl. Phys. , vol.52
    • Ding, Y.1    Gresback, R.2    Yamada, R.3    Okazaki, K.4    Nozaki, T.5
  • 18
    • 84904361072 scopus 로고    scopus 로고
    • Development of efficient sillicon nanocrystal and conjugated polymer hybrid solar cells
    • Ding Y, Gresback R, Liu Q, Zhou S, Pi X D and Nozaki T 2014 Development of efficient sillicon nanocrystal and conjugated polymer hybrid solar cells Nano Energy 9 25-31
    • (2014) Nano Energy , vol.9 , pp. 25-31
    • Ding, Y.1    Gresback, R.2    Liu, Q.3    Zhou, S.4    Pi, X.D.5    Nozaki, T.6
  • 19
    • 84857843187 scopus 로고    scopus 로고
    • Silicon nanocrystals in liquid media: Optical properties and surface stabilization by microplasma-induced non-equilibrium liquid chemistry
    • Mariotti D, Švrček V, Hamilton J W, Schmidt M and Kondo M 2012 Silicon nanocrystals in liquid media: optical properties and surface stabilization by microplasma-induced non-equilibrium liquid chemistry Adv. Funct. Mater. 22 954-64
    • (2012) Adv. Funct. Mater. , vol.22 , pp. 954-964
    • Mariotti, D.1    Švrček, V.2    Hamilton, J.W.3    Schmidt, M.4    Kondo, M.5
  • 20
    • 84903482348 scopus 로고    scopus 로고
    • Controlled doping of silicon nanocrystals invesigated by solution-processed field effect transistors
    • Gresback R, Kramer N, Ding Y, Chen T, Kortshagen U and Nozaki T 2014 Controlled doping of silicon nanocrystals invesigated by solution-processed field effect transistors ACS Nano 8 5650-56
    • (2014) ACS Nano , vol.8 , pp. 5650-5656
    • Gresback, R.1    Kramer, N.2    Ding, Y.3    Chen, T.4    Kortshagen, U.5    Nozaki, T.6
  • 21
    • 0036724681 scopus 로고    scopus 로고
    • Low temperature growth and structural characterization of nanocrystalline silicon films
    • Wong T-C, Yu C-C and Wu J-J 2002 Low temperature growth and structural characterization of nanocrystalline silicon films J. Cryst. Growth 243 419-26
    • (2002) J. Cryst. Growth , vol.243 , pp. 419-426
    • Wong, T.-C.1    Yu, C.-C.2    Wu, J.-J.3
  • 23
    • 84885154106 scopus 로고    scopus 로고
    • Plasma synthesis of silicon nanoparticles: Optimization of yield, size distribution, and crystallinity
    • Yamada R, Gresback R, Yi D, Okazaki K and Nozaki T 2013 Plasma synthesis of silicon nanoparticles: optimization of yield, size distribution, and crystallinity Trans. Jpn. Soc. Mech. Eng. 79 1616-23 (in Japanese)
    • (2013) Trans. Jpn. Soc. Mech. Eng. , vol.79 , pp. 1616-1623
    • Yamada, R.1    Gresback, R.2    Yi, D.3    Okazaki, K.4    Nozaki, T.5
  • 24
    • 84861875496 scopus 로고    scopus 로고
    • Silicon nanocrystal production through non-thermal plasma synthesis: A comparative study between silicon tetrachloride and silane precursors
    • Yasar-Inceoglu O, Lopez T, Farshihagro E and Mangolini L 2012 Silicon nanocrystal production through non-thermal plasma synthesis: a comparative study between silicon tetrachloride and silane precursors Nanotechnology 23 255604
    • (2012) Nanotechnology , vol.23 , Issue.25
    • Yasar-Inceoglu, O.1    Lopez, T.2    Farshihagro, E.3    Mangolini, L.4
  • 26
    • 0021443991 scopus 로고
    • Mechanism and kinetics of tetrachlorosilane reactions in an argon-hydrogen microwave plasma
    • Mayo N, Carmi U, Rosenthal I and Avni R 1984 Mechanism and kinetics of tetrachlorosilane reactions in an argon-hydrogen microwave plasma J. Appl. Phys. 55 4404-12
    • (1984) J. Appl. Phys. , vol.55 , pp. 4404-4412
    • Mayo, N.1    Carmi, U.2    Rosenthal, I.3    Avni, R.4
  • 27
    • 0001095853 scopus 로고
    • Theory, production and mechanism of formation of monodispersed hydrosols
    • LaMer V K and Dinegar R H 1950 Theory, production and mechanism of formation of monodispersed hydrosols J. Am. Chem. Soc. 72 4847-54
    • (1950) J. Am. Chem. Soc. , vol.72 , pp. 4847-4854
    • Lamer, V.K.1    Dinegar, R.H.2
  • 28
    • 79959833673 scopus 로고    scopus 로고
    • Theoretical study of chlorine for silicon nanocrystals
    • Ma Y S, Chen X B, Pi X D and Yang D 2011 Theoretical study of chlorine for silicon nanocrystals J. Phys. Chem. C 115 12822-25
    • (2011) J. Phys. Chem. , vol.115 , pp. 12822-12825
    • Ma, Y.S.1    Chen, X.B.2    Pi, X.D.3    Yang, D.4
  • 29
    • 63049125784 scopus 로고    scopus 로고
    • Selective nanoparticle heating: Another form of nonequilibrium in dusty plasmas
    • Mangolini L and Kortshagen U 2009 Selective nanoparticle heating: another form of nonequilibrium in dusty plasmas Phys. Rev. E 79 026405
    • (2009) Phys. Rev. , vol.79
    • Mangolini, L.1    Kortshagen, U.2
  • 31
    • 42949103124 scopus 로고    scopus 로고
    • Seasoning of plasma etching reactors: Ion energy distributions to walls and real-time and run-to-run control strategies
    • Agarwal A and Kushner M J 2008 Seasoning of plasma etching reactors: Ion energy distributions to walls and real-time and run-to-run control strategies J. Vac. Sci. Technol. A 26 498-512
    • (2008) J. Vac. Sci. Technol. , vol.26 , pp. 498-512
    • Agarwal, A.1    Kushner, M.J.2
  • 32
    • 84865510274 scopus 로고    scopus 로고
    • Cl atom recombination on silicon oxy-chloride layers deposited on chamber walls in chlorine-oxygen plasmas
    • Khare R, Srivastava A and Donnelly V M 2012 Cl atom recombination on silicon oxy-chloride layers deposited on chamber walls in chlorine-oxygen plasmas J. Vac. Sci. Technol. A 30 051307
    • (2012) J. Vac. Sci. Technol. , vol.30
    • Khare, R.1    Srivastava, A.2    Donnelly, V.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.