메뉴 건너뛰기




Volumn 31, Issue 9, 2009, Pages 1657-1669

Robust sequential data modeling using an outlier tolerant hidden markov model

Author keywords

Expectation maximization; Factor analysis; Hidden Markov models; Sequential data modeling; Student's t distribution

Indexed keywords

CONVENTIONAL APPROACH; COVARIANCE MATRICES; DATA SETS; EXPECTATION-MAXIMIZATION; FACTOR ANALYSIS; FINITE GAUSSIAN MIXTURE MODELS; FINITE MIXTURES; GAUSSIAN MIXTURE MODEL; HIDDEN STATE; MODEL PARAMETERS ESTIMATION; MULTIVARIATE STUDENT; SEQUENTIAL DATA; SEQUENTIAL DATA MODELING; T-MIXTURE MODELS;

EID: 67651005607     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2008.215     Document Type: Article
Times cited : (100)

References (27)
  • 2
    • 0024610919 scopus 로고
    • A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition
    • L. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proc. IEEE, vol. 77, pp. 245-255, 1989.
    • (1989) Proc. IEEE , vol.77 , pp. 245-255
    • Rabiner, L.1
  • 3
    • 0002629270 scopus 로고
    • Maximum Likelihood from Incomplete Data via the EM Algorithm
    • A. Dempster, N. Laird, and D. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," J. Royal Statistical Soc. B vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Royal Statistical Soc. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 4
    • 0041407143 scopus 로고    scopus 로고
    • Robust Mixture Modeling Using the t Distribution
    • D. Peel and G. McLachlan, "Robust Mixture Modeling Using the t Distribution," Statistics and Computing, vol. 10, pp. 335-344, 2000.
    • (2000) Statistics and Computing , vol.10 , pp. 335-344
    • Peel, D.1    McLachlan, G.2
  • 5
    • 40749103793 scopus 로고    scopus 로고
    • Signal Modeling and Classification Using a Robust Latent Space Model Based on t Distributions
    • S. Chatzis, D. Kosmopoulos, and T. Varvarigou, "Signal Modeling and Classification Using a Robust Latent Space Model Based on t Distributions," IEEE Trans. Signal Processing, vol. 56, no. 3, pp. 949-963, 2008.
    • (2008) IEEE Trans. Signal Processing , vol.56 , Issue.3 , pp. 949-963
    • Chatzis, S.1    Kosmopoulos, D.2    Varvarigou, T.3
  • 6
    • 15844362098 scopus 로고    scopus 로고
    • Robust Bayesian Mixture Modelling
    • M. Svense'n and C.M. Bishop, "Robust Bayesian Mixture Modelling," Neurocomputing, vol. 64, pp. 235-252, 2005.
    • (2005) Neurocomputing , vol.64 , pp. 235-252
    • Svense'n, M.1    Bishop, C.M.2
  • 7
    • 67149143365 scopus 로고    scopus 로고
    • Factor Analysis Latent Subspace Modeling and Robust Fuzzy Clustering Using t Distributions
    • to appear
    • S. Chatzis and T. Varvarigou, "Factor Analysis Latent Subspace Modeling and Robust Fuzzy Clustering Using t Distributions," IEEE Trans. Fuzzy Systems, to appear.
    • IEEE Trans. Fuzzy Systems
    • Chatzis, S.1    Varvarigou, T.2
  • 8
    • 0032762247 scopus 로고    scopus 로고
    • Selective Training for Hidden Markov Models with Applications to Speech Classification
    • L. Arslan and J. Hansen, "Selective Training for Hidden Markov Models with Applications to Speech Classification," IEEE Trans. Speech and Audio Processing, vol. 7, no. 1, pp. 46-54, 1999.
    • (1999) IEEE Trans. Speech and Audio Processing , vol.7 , Issue.1 , pp. 46-54
    • Arslan, L.1    Hansen, J.2
  • 9
    • 34347375731 scopus 로고    scopus 로고
    • Noise-Robust Speech Recognition Using Top-Down Selective Attention with an HMM Classifier
    • C.-H. Lee and S.-Y. Lee, "Noise-Robust Speech Recognition Using Top-Down Selective Attention with an HMM Classifier," IEEE Signal Processing Letters, vol. 14, no. 7, pp. 489-491, 2007.
    • (2007) IEEE Signal Processing Letters , vol.14 , Issue.7 , pp. 489-491
    • Lee, C.-H.1    Lee, S.-Y.2
  • 10
    • 42449120172 scopus 로고    scopus 로고
    • Maximum Confidence Hidden Markov Modeling for Face Recognition
    • Apr
    • J.-T. Chien and C.-P. Liao, "Maximum Confidence Hidden Markov Modeling for Face Recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 4, pp. 606-616, Apr. 2008.
    • (2008) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.30 , Issue.4 , pp. 606-616
    • Chien, J.-T.1    Liao, C.-P.2
  • 11
    • 84864038630 scopus 로고    scopus 로고
    • Large Margin Hidden Markov Models for Automatic Speech Recognition
    • B. Scholkopf, J. Platt, and T. Hoffman, eds, pp, MIT Press
    • F. Sha and L.K. Saul, "Large Margin Hidden Markov Models for Automatic Speech Recognition," Advances in Neural Information Processing Systems, vol. 19, B. Scho"lkopf, J. Platt, and T. Hoffman, eds., pp. 1249-1256, MIT Press, 2007.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 1249-1256
    • Sha, F.1    Saul, L.K.2
  • 12
    • 0002864973 scopus 로고
    • ML Estimation of the t Distribution Using EM and Its Extensions, ECM and ECME
    • C. Liu and D. Rubin, "ML Estimation of the t Distribution Using EM and Its Extensions, ECM and ECME," Statistica Sinica, vol. 5, no. 1, pp. 19-39, 1995.
    • (1995) Statistica Sinica , vol.5 , Issue.1 , pp. 19-39
    • Liu, C.1    Rubin, D.2
  • 13
    • 0003071947 scopus 로고
    • Scale Mixtures of Normal Distributions
    • D. Andrews and C. Mallows, "Scale Mixtures of Normal Distributions," J. Royal Stat. Soc. B, vol. 36, pp. 99-102, 1974.
    • (1974) J. Royal Stat. Soc. B , vol.36 , pp. 99-102
    • Andrews, D.1    Mallows, C.2
  • 14
    • 34247855883 scopus 로고    scopus 로고
    • Extension of the Mixture of Factor Analyzers Model to Incorporate the Multi- Variate t Distribution
    • G. McLachlan, R. Bean, and L.B.-T. Jones, "Extension of the Mixture of Factor Analyzers Model to Incorporate the Multi- Variate t Distribution," Computational Statistics and Data Analysis, vol. 51, no. 11, pp. 5327-5338, 2006.
    • (2006) Computational Statistics and Data Analysis , vol.51 , Issue.11 , pp. 5327-5338
    • McLachlan, G.1    Bean, R.2    Jones, L.B.-T.3
  • 15
    • 33845659662 scopus 로고    scopus 로고
    • Robust Bayesian Clustering
    • C. Archambeau and M. Verleysen, "Robust Bayesian Clustering," Neural Networks, vol. 20, pp. 129-138, 2007.
    • (2007) Neural Networks , vol.20 , pp. 129-138
    • Archambeau, C.1    Verleysen, M.2
  • 16
    • 34047259042 scopus 로고    scopus 로고
    • Gaussian Mixture Models with Covariances or Precisions in Shared Multiple Subspaces
    • S. Dharanipragada and K. Visweswariah, "Gaussian Mixture Models with Covariances or Precisions in Shared Multiple Subspaces," IEEE Trans. Audio, Speech, and Language Processing, vol. 14, no. 4, pp. 1255-1266, 2006.
    • (2006) IEEE Trans. Audio, Speech, and Language Processing , vol.14 , Issue.4 , pp. 1255-1266
    • Dharanipragada, S.1    Visweswariah, K.2
  • 17
    • 0037228685 scopus 로고    scopus 로고
    • Bounded Support Gaussian Mixture Modeling of Speech Spectra
    • J. Lindblom and J. Samuelsson, "Bounded Support Gaussian Mixture Modeling of Speech Spectra," IEEE Trans. Speech and Audio Processing vol. 11, no. 1, pp. 88-99, 2003.
    • (2003) IEEE Trans. Speech and Audio Processing , vol.11 , Issue.1 , pp. 88-99
    • Lindblom, J.1    Samuelsson, J.2
  • 19
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of Probabilistic Principal Component Analyzers
    • M. Tipping and C. Bishop, "Mixtures of Probabilistic Principal Component Analyzers," Neural Computation, vol. 11, no. 2, pp. 443-482, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.1    Bishop, C.2
  • 20
    • 0003744820 scopus 로고    scopus 로고
    • The EM Algorithm for Mixtures of Factor Analyzers,
    • Technical Report CRGTR-96-1, Dept. of Computer Science, Univ. of Toronto
    • Z. Ghahramani and G. Hinton, "The EM Algorithm for Mixtures of Factor Analyzers," Technical Report CRGTR-96-1, Dept. of Computer Science, Univ. of Toronto, 1997.
    • (1997)
    • Ghahramani, Z.1    Hinton, G.2
  • 21
    • 18244387717 scopus 로고    scopus 로고
    • The EM Algorithm - An Old Folk Song Sung to a Fast New Tune (with Discussion)
    • X. Meng and D. van Dyk, "The EM Algorithm - An Old Folk Song Sung to a Fast New Tune (with Discussion)," J. Royal Statistical Soc. B, vol. 59, no. 3, pp. 511-567, 1997.
    • (1997) J. Royal Statistical Soc. B , vol.59 , Issue.3 , pp. 511-567
    • Meng, X.1    van Dyk, D.2
  • 22
    • 51449123793 scopus 로고    scopus 로고
    • Hand Tracking for Gesture Recognition Tasks Using Dynamic Bayesian Network
    • D. Kosmopoulos and I. Maglogiannis, "Hand Tracking for Gesture Recognition Tasks Using Dynamic Bayesian Network," Int'l J. Intelligent Systems and Applications, vol. 1, nos. 3/4, pp. 359-375, 2006.
    • (2006) Int'l J. Intelligent Systems and Applications , vol.1 , Issue.3-4 , pp. 359-375
    • Kosmopoulos, D.1    Maglogiannis, I.2
  • 24
    • 0002583871 scopus 로고
    • Speech Database Development: Design and Analysis of the Acoustic-Phonetic Corpus
    • L.F. Lamel, R.H. Kassel, and S. Seneff, "Speech Database Development: Design and Analysis of the Acoustic-Phonetic Corpus," Proc. DARPA Speech Recognition Workshop, pp. 100-109, 1986.
    • (1986) Proc. DARPA Speech Recognition Workshop , pp. 100-109
    • Lamel, L.F.1    Kassel, R.H.2    Seneff, S.3
  • 25
    • 0024768209 scopus 로고
    • Speaker-Independent Phone Recognition Using Hidden Markov Models
    • K.F. Lee and H.W. Hon, "Speaker-Independent Phone Recognition Using Hidden Markov Models," IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 37, no. 11, pp. 1641-1648, 1988.
    • (1988) IEEE Trans. Acoustics, Speech, and Signal Processing , vol.37 , Issue.11 , pp. 1641-1648
    • Lee, K.F.1    Hon, H.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.