-
2
-
-
33745859053
-
A probabilistic interpretation of canoncial correlation analysis
-
688, Department of Statistics, University of California, Berkeley
-
Bach, F. R., & Jordan, M. I. (2005). A probabilistic interpretation of canoncial correlation analysis (Technical Report 688). Department of Statistics, University of California, Berkeley.
-
(2005)
Technical Report
-
-
Bach, F.R.1
Jordan, M.I.2
-
3
-
-
0034849799
-
Robust principal component analysis for computer vision
-
de la Torre, F., & Black, M. J. (2001). Robust principal component analysis for computer vision. Int. Conf. on Computer Vision (pp. 362-369).
-
(2001)
Int. Conf. on Computer Vision
, pp. 362-369
-
-
de la Torre, F.1
Black, M.J.2
-
4
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm (with discussion)
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society B, 39, 1-38.
-
(1977)
Journal of the Royal Statistical Society B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
5
-
-
58149421595
-
Analysis of a complex of statistical variables into principal components
-
Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417-441.
-
(1933)
Journal of Educational Psychology
, vol.24
, pp. 417-441
-
-
Hotelling, H.1
-
6
-
-
0000107975
-
Relations between two sets of variates
-
Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28, 321-377.
-
(1936)
Biometrika
, vol.28
, pp. 321-377
-
-
Hotelling, H.1
-
8
-
-
0002864973
-
ML estimation of the t distribution using EM and its extensions, ECM and ECME
-
Liu, C., & Rubin, D. B. (1995). ML estimation of the t distribution using EM and its extensions, ECM and ECME. Statistica Sinica, 5, 19-39.
-
(1995)
Statistica Sinica
, vol.5
, pp. 19-39
-
-
Liu, C.1
Rubin, D.B.2
-
9
-
-
0002788893
-
A view of the EM algorithm that justifies incremental, sparse, and other variants
-
M. I. Jordan Ed, Kluwer
-
Neal, R. M., & Hinton, G. E. (1998). A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan (Ed.), Learning in graphical models, 355-368. Kluwer.
-
(1998)
Learning in graphical models
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
10
-
-
0041407143
-
Robust mixture modelling using the t distribution
-
Peel, D., & McLachlan, G. J. (2000). Robust mixture modelling using the t distribution. Statistics and Computing, 10, 339-348.
-
(2000)
Statistics and Computing
, vol.10
, pp. 339-348
-
-
Peel, D.1
McLachlan, G.J.2
-
12
-
-
0033556788
-
Mixtures of probabilistic principal component analyzers
-
Tipping, M. E., & Bishop, C. M. (1999a). Mixtures of probabilistic principal component analyzers. Neural Computation, 11, 443-482.
-
(1999)
Neural Computation
, vol.11
, pp. 443-482
-
-
Tipping, M.E.1
Bishop, C.M.2
-
15
-
-
0029184173
-
Robust principal component analysis by self-organizing rules based on statistical physics approach
-
Xu, L., & Yuille, A. L. (1995). Robust principal component analysis by self-organizing rules based on statistical physics approach. IEEE Transactions on Neural Networks, 6, 131-143.
-
(1995)
IEEE Transactions on Neural Networks
, vol.6
, pp. 131-143
-
-
Xu, L.1
Yuille, A.L.2
|