-
1
-
-
84856772032
-
Key signaling nodes in mammary gland development and cancer: Smad signal integration in epithelial cell plasticity
-
Sundqvist A, Ten Dijke P, van Dam H. 2012. Key signaling nodes in mammary gland development and cancer: Smad signal integration in epithelial cell plasticity. Breast Cancer Res. 14:204. http://dx.doi.org/10.1186 /bcr3066.
-
(2012)
Breast Cancer Res.
, vol.14
, pp. 204
-
-
Sundqvist, A.1
Ten Dijke, P.2
van Dam, H.3
-
4
-
-
47549090432
-
TGFbeta in cancer
-
Massague J. 2008. TGFbeta in cancer. Cell 134:215-230. http://dx.doi.org /10.1016/j.cell.2008.07.001.
-
(2008)
Cell
, vol.134
, pp. 215-230
-
-
Massague, J.1
-
5
-
-
0030974040
-
Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells
-
Sandhu C, Garbe J, Bhattacharya N, Daksis J, Pan CH, Yaswen P, Koh J, Slingerland JM, Stampfer MR. 1997. Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells. Mol. Cell. Biol. 17:2458-2467.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 2458-2467
-
-
Sandhu, C.1
Garbe, J.2
Bhattacharya, N.3
Daksis, J.4
Pan, C.H.5
Yaswen, P.6
Koh, J.7
Slingerland, J.M.8
Stampfer, M.R.9
-
6
-
-
0030978315
-
Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15
-
Iavarone A, Massague J. 1997. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature 387:417-422. http://dx.doi.org/10.1038/387417a0.
-
(1997)
Nature
, vol.387
, pp. 417-422
-
-
Iavarone, A.1
Massague, J.2
-
7
-
-
0035970035
-
Defective repression of c-myc in breast cancer cells:Aloss at the core of the transforming growth factor beta growth arrest program
-
Chen CR, Kang Y, Massague J. 2001. Defective repression of c-myc in breast cancer cells:Aloss at the core of the transforming growth factor beta growth arrest program. Proc. Natl. Acad. Sci. U. S. A. 98:992-999. http: //dx.doi.org/10.1073/pnas.98.3.992.
-
(2001)
Proc. Natl. Acad. Sci. U. S. A.
, vol.98
, pp. 992-999
-
-
Chen, C.R.1
Kang, Y.2
Massague, J.3
-
8
-
-
33750030758
-
The regulation of INK4/ARF in cancer and aging
-
Kim WY, Sharpless NE. 2006. The regulation of INK4/ARF in cancer and aging. Cell 127:265-275. http://dx.doi.org/10.1016/j.cell.2006.10.003.
-
(2006)
Cell
, vol.127
, pp. 265-275
-
-
Kim, W.Y.1
Sharpless, N.E.2
-
9
-
-
34250865564
-
CDC25 phosphatases in cancer cells: key players?Goodtargets?
-
Boutros R, Lobjois V, Ducommun B. 2007. CDC25 phosphatases in cancer cells: key players?Goodtargets? Nat. Rev. Cancer 7:495-507. http://dx.doi.org /10.1038/nrc2169.
-
(2007)
Nat. Rev. Cancer
, vol.7
, pp. 495-507
-
-
Boutros, R.1
Lobjois, V.2
Ducommun, B.3
-
10
-
-
0032933352
-
E2F and histone deacetylase mediate transforming growth factor beta repression of cdc25A during keratinocyte cell cycle arrest
-
Iavarone A, Massague J. 1999. E2F and histone deacetylase mediate transforming growth factor beta repression of cdc25A during keratinocyte cell cycle arrest. Mol. Cell. Biol. 19:916-922.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 916-922
-
-
Iavarone, A.1
Massague, J.2
-
11
-
-
20144389585
-
Transforming growth factor beta facilitates beta-TrCP-mediated degradation of Cdc25A in a Smad3-dependent manner
-
Ray D, Terao Y, Nimbalkar D, Chu LH, Donzelli M, Tsutsui T, Zou X, Ghosh AK, Varga J, Draetta GF, Kiyokawa H. 2005. Transforming growth factor beta facilitates beta-TrCP-mediated degradation of Cdc25A in a Smad3-dependent manner. Mol. Cell. Biol. 25:3338-3347. http://dx .doi.org/10.1128/MCB.25.8.3338-3347.2005.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 3338-3347
-
-
Ray, D.1
Terao, Y.2
Nimbalkar, D.3
Chu, L.H.4
Donzelli, M.5
Tsutsui, T.6
Zou, X.7
Ghosh, A.K.8
Varga, J.9
Draetta, G.F.10
Kiyokawa, H.11
-
12
-
-
79251534433
-
Deregulation of micro- RNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia
-
Caporali A, Meloni M, Vollenkle C, Bonci D, Sala-Newby GB, Addis R, Spinetti G, Losa S, Masson R, Baker AH, Agami R, le Sage C, Condorelli G, Madeddu P, Martelli F, Emanueli C. 2011. Deregulation of micro- RNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123:282-291. http://dx.doi.org/10.1161/CIRCULATIONAHA.110 .952325.
-
(2011)
Circulation
, vol.123
, pp. 282-291
-
-
Caporali, A.1
Meloni, M.2
Vollenkle, C.3
Bonci, D.4
Sala-Newby, G.B.5
Addis, R.6
Spinetti, G.7
Losa, S.8
Masson, R.9
Baker, A.H.10
Agami, R.11
le Sage, C.12
Condorelli, G.13
Madeddu, P.14
Martelli, F.15
Emanueli, C.16
-
13
-
-
84880169915
-
MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation
-
Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z, Tao Z, Xu C, Song J, Ji X, Luo Y. 2013. MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 44:1706-1713. http://dx.doi.org/10.1161/STROKEAHA.111.000504.
-
(2013)
Stroke
, vol.44
, pp. 1706-1713
-
-
Zhao, H.1
Wang, J.2
Gao, L.3
Wang, R.4
Liu, X.5
Gao, Z.6
Tao, Z.7
Xu, C.8
Song, J.9
Ji, X.10
Luo, Y.11
-
14
-
-
77954210384
-
MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A
-
Sarkar S, Dey BK, Dutta A. 2010. MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol. Biol. Cell 21:2138- 2149. http://dx.doi.org/10.1091/mbc.E10-01-0062.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2138- 2149
-
-
Sarkar, S.1
Dey, B.K.2
Dutta, A.3
-
15
-
-
84898869604
-
The miR-424(322)/503 cluster orchestrates remodeling of the epithelium in the involuting mammary gland
-
Llobet-Navas D, Rodriguez-Barrueco R, Castro V, Ugalde AP, Sumazin P, Jacob-Sendler D, Demircan B, Castillo-Martin M, Putcha P, Marshall N, Villagrasa P, Chan J, Sanchez-Garcia F, Pe'er D, Rabadan R, Iavarone A, Cordon-Cardo C, Califano A, Lopez-Otin C, Ezhkova E, Silva JM. 2014. The miR-424(322)/503 cluster orchestrates remodeling of the epithelium in the involuting mammary gland. Genes Dev. 28:765-782. http://dx.doi.org/10.1101/gad.237404.114.
-
(2014)
Genes Dev.
, vol.28
, pp. 765-782
-
-
Llobet-Navas, D.1
Rodriguez-Barrueco, R.2
Castro, V.3
Ugalde, A.P.4
Sumazin, P.5
Jacob-Sendler, D.6
Demircan, B.7
Castillo-Martin, M.8
Putcha, P.9
Marshall, N.10
Villagrasa, P.11
Chan, J.12
Sanchez-Garcia, F.13
Pe'er, D.14
Rabadan, R.15
Iavarone, A.16
Cordon-Cardo, C.17
Califano, A.18
Lopez-Otin, C.19
Ezhkova, E.20
Silva, J.M.21
more..
-
16
-
-
0030670385
-
Dissociation between steroid receptor expression and cell proliferation in the human breast
-
Clarke RB, Howell A, Potten CS, Anderson E. 1997. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 57:4987-4991.
-
(1997)
Cancer Res.
, vol.57
, pp. 4987-4991
-
-
Clarke, R.B.1
Howell, A.2
Potten, C.S.3
Anderson, E.4
-
17
-
-
33846107166
-
Stop! In the name of transforming growth factor-beta: keeping estrogen receptor-alpha-positive mammary epithelial cells from proliferating
-
Grimm SL, Rosen JM. 2006. Stop! In the name of transforming growth factor-beta: keeping estrogen receptor-alpha-positive mammary epithelial cells from proliferating. Breast Cancer Res. 8:106. http://dx.doi.org/10 .1186/bcr1520.
-
(2006)
Breast Cancer Res.
, vol.8
, pp. 106
-
-
Grimm, S.L.1
Rosen, J.M.2
-
18
-
-
25144457206
-
Proliferation of estrogen receptor-alphapositive mammary epithelial cells is restrained by transforming growth factor-beta1 in adult mice
-
Ewan KB, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH. 2005. Proliferation of estrogen receptor-alphapositive mammary epithelial cells is restrained by transforming growth factor-beta1 in adult mice. Am. J. Pathol. 167:409-417. http://dx.doi.org /10.1016/S0002-9440(10)62985-9.
-
(2005)
Am. J. Pathol.
, vol.167
, pp. 409-417
-
-
Ewan, K.B.1
Oketch-Rabah, H.A.2
Ravani, S.A.3
Shyamala, G.4
Moses, H.L.5
Barcellos-Hoff, M.H.6
-
19
-
-
0034669932
-
High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors
-
Salmon P, Kindler V, Ducrey O, Chapuis B, Zubler RH, Trono D. 2000. High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood 96:3392-3398.
-
(2000)
Blood
, vol.96
, pp. 3392-3398
-
-
Salmon, P.1
Kindler, V.2
Ducrey, O.3
Chapuis, B.4
Zubler, R.H.5
Trono, D.6
-
20
-
-
32644439132
-
MicroRNA expression profiling of single whole embryonic stem cells
-
Tang F, Hajkova P, Barton SC, Lao K, Surani MA. 2006. MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res. 34:e9. http://dx.doi.org/10.1093/nar/gnj009.
-
(2006)
Nucleic Acids Res.
, vol.34
, pp. e9
-
-
Tang, F.1
Hajkova, P.2
Barton, S.C.3
Lao, K.4
Surani, M.A.5
-
21
-
-
29144470346
-
Real-time quantification of microRNAs by stem-loop RT-PCR
-
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33:e179. http://dx.doi.org/10.1093/nar/gni178.
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. e179
-
-
Chen, C.1
Ridzon, D.A.2
Broomer, A.J.3
Zhou, Z.4
Lee, D.H.5
Nguyen, J.T.6
Barbisin, M.7
Xu, N.L.8
Mahuvakar, V.R.9
Andersen, M.R.10
Lao, K.Q.11
Livak, K.J.12
Guegler, K.J.13
-
22
-
-
84867639947
-
Phenotypic and functional characterization of the luminal cell hierarchy of the mammary gland
-
Shehata M, Teschendorff A, Sharp G, Novcic N, Russell A, Avril S, Prater M, Eirew P, Caldas C, Watson CJ, Stingl J. 2012. Phenotypic and functional characterization of the luminal cell hierarchy of the mammary gland. Breast Cancer Res. 14:R134. http://dx.doi.org/10.1186/bcr3334.
-
(2012)
Breast Cancer Res.
, vol.14
, pp. R134
-
-
Shehata, M.1
Teschendorff, A.2
Sharp, G.3
Novcic, N.4
Russell, A.5
Avril, S.6
Prater, M.7
Eirew, P.8
Caldas, C.9
Watson, C.J.10
Stingl, J.11
-
23
-
-
77950920903
-
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PARCLIP
-
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T. 2010. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PARCLIP. Cell 141:129-141. http://dx.doi.org/10.1016/j.cell.2010.03.009.
-
(2010)
Cell
, vol.141
, pp. 129-141
-
-
Hafner, M.1
Landthaler, M.2
Burger, L.3
Khorshid, M.4
Hausser, J.5
Berninger, P.6
Rothballer, A.7
Ascano Jr., M.8
Jungkamp, A.C.9
Munschauer, M.10
Ulrich, A.11
Wardle, G.S.12
Dewell, S.13
Zavolan, M.14
Tuschl, T.15
-
24
-
-
52649088391
-
miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes
-
Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z, Zheng X. 2008. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res. 36:5391-5404. http://dx.doi.org/10.1093 /nar/gkn522.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 5391-5404
-
-
Liu, Q.1
Fu, H.2
Sun, F.3
Zhang, H.4
Tie, Y.5
Zhu, J.6
Xing, R.7
Sun, Z.8
Zheng, X.9
-
25
-
-
77956937207
-
The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases
-
Finnerty JR, Wang WX, Hebert SS, Wilfred BR, Mao G, Nelson PT. 2010. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J. Mol. Biol. 402:491-509. http://dx.doi.org/10.1016/j.jmb.2010.07.051.
-
(2010)
J. Mol. Biol.
, vol.402
, pp. 491-509
-
-
Finnerty, J.R.1
Wang, W.X.2
Hebert, S.S.3
Wilfred, B.R.4
Mao, G.5
Nelson, P.T.6
-
26
-
-
34250805982
-
MicroRNA targeting specificity in mammals: determinants beyond seed pairing
-
Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. 2007. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27:91-105. http://dx.doi.org/10.1016/j.molcel.2007.06 .017.
-
(2007)
Mol. Cell
, vol.27
, pp. 91-105
-
-
Grimson, A.1
Farh, K.K.2
Johnston, W.K.3
Garrett-Engele, P.4
Lim, L.P.5
Bartel, D.P.6
-
27
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis BP, Burge CB, Bartel DP. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15-20. http://dx.doi.org/10.1016/j.cell.2004.12.035.
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
28
-
-
79952146521
-
NAViGaTing the micronome- using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs
-
Shirdel EA, Xie W, Mak TW, Jurisica I. 2011. NAViGaTing the micronome- using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One 6:e17429. http://dx.doi .org/10.1371/journal.pone.0017429.
-
(2011)
PLoS One
, vol.6
, pp. e17429
-
-
Shirdel, E.A.1
Xie, W.2
Mak, T.W.3
Jurisica, I.4
-
29
-
-
33748421080
-
Interleukin-1 alpha mediates the growth proliferative effects of transforming growth factor-beta in p21 null MCF-10A human mammary epithelial cells
-
Karakas B, Weeraratna A, Abukhdeir A, Blair BG, Konishi H, Arena S, Becker K, Wood W, III, Argani P, De Marzo AM, Bachman KE, Park BH. 2006. Interleukin-1 alpha mediates the growth proliferative effects of transforming growth factor-beta in p21 null MCF-10A human mammary epithelial cells. Oncogene 25:5561-5569. http://dx.doi.org/10.1038/sj.onc .1209540.
-
(2006)
Oncogene
, vol.25
, pp. 5561-5569
-
-
Karakas, B.1
Weeraratna, A.2
Abukhdeir, A.3
Blair, B.G.4
Konishi, H.5
Arena, S.6
Becker, K.7
Wood III, W.8
Argani, P.9
De Marzo, A.M.10
Bachman, K.E.11
Park, B.H.12
-
30
-
-
0037603113
-
Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in threedimensional basement membrane cultures
-
Debnath J, Muthuswamy SK, Brugge JS. 2003. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in threedimensional basement membrane cultures. Methods 30:256-268. http: //dx.doi.org/10.1016/S1046-2023(03)00032-X.
-
(2003)
Methods
, vol.30
, pp. 256-268
-
-
Debnath, J.1
Muthuswamy, S.K.2
Brugge, J.S.3
-
31
-
-
0033629383
-
Cell cycle regulation by the Cdc25 phosphatase family
-
Nilsson I, Hoffmann I. 2000. Cell cycle regulation by the Cdc25 phosphatase family. Prog. Cell Cycle Res. 4:107-114. http://dx.doi.org/10.1007 /978-1-4615-4253-7_10.
-
(2000)
Prog. Cell Cycle Res.
, vol.4
, pp. 107-114
-
-
Nilsson, I.1
Hoffmann, I.2
-
32
-
-
0033858512
-
Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution
-
Nguyen AV, Pollard JW. 2000. Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 127:3107-3118.
-
(2000)
Development
, vol.127
, pp. 3107-3118
-
-
Nguyen, A.V.1
Pollard, J.W.2
-
33
-
-
0141537150
-
Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation
-
Gorska AE, Jensen RA, Shyr Y, Aakre ME, Bhowmick NA, Moses HL. 2003. Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am. J. Pathol. 163: 1539-1549. http://dx.doi.org/10.1016/S0002-9440(10)63510-9.
-
(2003)
Am. J. Pathol.
, vol.163
, pp. 1539-1549
-
-
Gorska, A.E.1
Jensen, R.A.2
Shyr, Y.3
Aakre, M.E.4
Bhowmick, N.A.5
Moses, H.L.6
-
34
-
-
80455144497
-
TGFbeta1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo
-
Bouquet F, Pal A, Pilones KA, Demaria S, Hann B, Akhurst RJ, Babb JS, Lonning SM, DeWyngaert JK, Formenti SC, Barcellos-Hoff MH. 2011. TGFbeta1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin. Cancer Res. 17:6754-6765. http://dx.doi.org/10.1158/1078-0432.CCR-11-0544.
-
(2011)
Clin. Cancer Res.
, vol.17
, pp. 6754-6765
-
-
Bouquet, F.1
Pal, A.2
Pilones, K.A.3
Demaria, S.4
Hann, B.5
Akhurst, R.J.6
Babb, J.S.7
Lonning, S.M.8
DeWyngaert, J.K.9
Formenti, S.C.10
Barcellos-Hoff, M.H.11
-
35
-
-
42249099019
-
LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis
-
Melisi D, Ishiyama S, Sclabas GM, Fleming JB, Xia Q, Tortora G, Abbruzzese JL, Chiao PJ. 2008. LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol. Cancer Ther. 7:829-840. http://dx.doi.org/10.1158/1535-7163.MCT-07-0337.
-
(2008)
Mol. Cancer Ther.
, vol.7
, pp. 829-840
-
-
Melisi, D.1
Ishiyama, S.2
Sclabas, G.M.3
Fleming, J.B.4
Xia, Q.5
Tortora, G.6
Abbruzzese, J.L.7
Chiao, P.J.8
-
36
-
-
0033575263
-
Interaction of Smad complexes with tripartite DNA-binding sites
-
Johnson K, Kirkpatrick H, Comer A, Hoffmann FM, Laughon A. 1999. Interaction of Smad complexes with tripartite DNA-binding sites. J. Biol. Chem. 274:20709-20716.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 20709-20716
-
-
Johnson, K.1
Kirkpatrick, H.2
Comer, A.3
Hoffmann, F.M.4
Laughon, A.5
-
37
-
-
84880770383
-
Diversifying microRNA sequence and function
-
Ameres SL, Zamore PD. 2013. Diversifying microRNA sequence and function. Nat. Rev. Mol. Cell. Biol. 14:475-488. http://dx.doi.org/10.1038 /nrm3611.
-
(2013)
Nat. Rev. Mol. Cell. Biol.
, vol.14
, pp. 475-488
-
-
Ameres, S.L.1
Zamore, P.D.2
-
38
-
-
77955644289
-
Mammalian microRNAs predominantly act to decrease target mRNA levels
-
Guo H, Ingolia NT, Weissman JS, Bartel DP. 2010. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466: 835-840. http://dx.doi.org/10.1038/nature09267.
-
(2010)
Nature
, vol.466
, pp. 835-840
-
-
Guo, H.1
Ingolia, N.T.2
Weissman, J.S.3
Bartel, D.P.4
-
39
-
-
74249084440
-
miR-15a and miR-16-1 in cancer: discovery, function and future perspectives
-
Aqeilan RI, Calin GA, Croce CM. 2010. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 17:215-220.
-
(2010)
Cell Death Differ.
, vol.17
, pp. 215-220
-
-
Aqeilan, R.I.1
Calin, G.A.2
Croce, C.M.3
-
40
-
-
74249084440
-
miR-15a and miR-16-1 in cancer: discovery, function and future perspectives
-
Aqeilan RI, Calin GA, Croce CM. 2010. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 17:215-220. http://dx.doi.org/10.1038/cdd.2009.69.
-
(2010)
Cell Death Differ.
, vol.17
, pp. 215-220
-
-
Aqeilan, R.I.1
Calin, G.A.2
Croce, C.M.3
-
41
-
-
84878113369
-
The shaping and functional consequences of the microRNA landscape in breast cancer
-
Dvinge H, Git A, Graf S, Salmon-Divon M, Curtis C, Sottoriva A, Zhao Y, Hirst M, Armisen J, Miska EA, Chin SF, Provenzano E, Turashvili G, Green A, Ellis I, Aparicio S, Caldas C. 2013. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497: 378-382. http://dx.doi.org/10.1038/nature12108.
-
(2013)
Nature
, vol.497
, pp. 378-382
-
-
Dvinge, H.1
Git, A.2
Graf, S.3
Salmon-Divon, M.4
Curtis, C.5
Sottoriva, A.6
Zhao, Y.7
Hirst, M.8
Armisen, J.9
Miska, E.A.10
Chin, S.F.11
Provenzano, E.12
Turashvili, G.13
Green, A.14
Ellis, I.15
Aparicio, S.16
Caldas, C.17
-
42
-
-
33847013064
-
Deregulated CDC25A expression promotes mammary tumorigenesis with genomic instability
-
Ray D, Terao Y, Fuhrken PG, Ma ZQ, DeMayo FJ, Christov K, Heerema NA, Franks R, Tsai SY, Papoutsakis ET, Kiyokawa H. 2007. Deregulated CDC25A expression promotes mammary tumorigenesis with genomic instability. Cancer Res. 67:984-991. http://dx.doi.org/10 .1158/0008-5472.CAN-06-3927.
-
(2007)
Cancer Res.
, vol.67
, pp. 984-991
-
-
Ray, D.1
Terao, Y.2
Fuhrken, P.G.3
Ma, Z.Q.4
DeMayo, F.J.5
Christov, K.6
Heerema, N.A.7
Franks, R.8
Tsai, S.Y.9
Papoutsakis, E.T.10
Kiyokawa, H.11
|