메뉴 건너뛰기




Volumn 14, Issue 10, 2014, Pages 19806-19842

Survey on fall detection and fall prevention using wearable and external sensors

Author keywords

Environment awareness; Kinect; Machine learning; Mobile applications

Indexed keywords

ARTIFICIAL INTELLIGENCE; FINITE DIFFERENCE METHOD; LEARNING SYSTEMS; SURVEYS; UBIQUITOUS COMPUTING;

EID: 84908519591     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s141019806     Document Type: Review
Times cited : (273)

References (73)
  • 1
    • 84908524515 scopus 로고    scopus 로고
    • (accessed on 10 December 2013)
    • Nihseniorhealth: About falls. Available online: http://nihseniorhealth.gov/falls/aboutfalls/01.html (accessed on 10 December 2013).
    • Nihseniorhealth: About falls.
  • 2
    • 84908501350 scopus 로고    scopus 로고
    • (accessed on 10 January 2014)
    • Nihseniorhealth: Causes and Risk Factors. Available online: http://nihseniorhealth.gov/falls/ causesandriskfactors/01.html (accessed on 10 January 2014).
    • Nihseniorhealth: Causes and Risk Factors.
  • 3
    • 33750630736 scopus 로고    scopus 로고
    • Home environment risk factors for falls in older people and the efficacy of home modifications
    • Lord, S.R.; Menz, H.B.; Sherrington, C. Home environment risk factors for falls in older people and the efficacy of home modifications. Age Ageing 2006, 35 (Suppl 2), ii55-ii59.
    • (2006) Age Ageing , vol.35 , pp. ii55-ii59
    • Lord, S.R.1    Menz, H.B.2    Sherrington, C.3
  • 4
    • 84908524514 scopus 로고    scopus 로고
    • (accessed on 11 January 2014)
    • Health: 10Ways to Prevent Falls at Home. Available online: http://www.health.com/health/gallery/ 0,20364937_2,00.html (accessed on 11 January 2014).
    • Health: 10Ways to Prevent Falls at Home.
  • 6
    • 84908500646 scopus 로고    scopus 로고
    • (accessed on January 15 2014)
    • CDC: Preventing Falls among Older Adults. Available online: http://www.news.colostate.edu/ Release/452 (accessed on January 15 2014).
    • CDC: Preventing Falls among Older Adults.
  • 7
    • 84908524512 scopus 로고    scopus 로고
    • (accessed on 19 January 2014)
    • Nihseniorhealth: Fall Proofing Your Home. Available online: http://nihseniorhealth.gov/falls/ homesafety/01.html (accessed on 19 January 2014).
    • Nihseniorhealth: Fall Proofing Your Home.
  • 9
    • 84870913034 scopus 로고    scopus 로고
    • A posture recognition based fall detection system for monitoring an elderly person in a smart home environment
    • Yu, M.; Rhuma, A.; Naqvi, S.M.;Wang, L.; Chambers, J. A posture recognition based fall detection system for monitoring an elderly person in a smart home environment. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 1274-1286.
    • (2012) IEEE Trans. Inf. Technol. Biomed. , vol.16 , pp. 1274-1286
    • Yu, M.1    Rhuma, A.2    Naqvi, S.M.3    Wang, L.4    Chambers, J.5
  • 11
    • 75449099590 scopus 로고    scopus 로고
    • Human activity recognition and pattern discovery
    • Kim, E.; Helal, S.; Cook, D. Human activity recognition and pattern discovery. IEEE Pervasive Comput. 2010, 9, 48-53.
    • (2010) IEEE Pervasive Comput. , vol.9 , pp. 48-53
    • Kim, E.1    Helal, S.2    Cook, D.3
  • 12
    • 84881311778 scopus 로고    scopus 로고
    • A survey on human activity recognition using wearable sensors
    • Lara, O.D.; Labrador, M.A. A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 2013, 15, 1192-1209.
    • (2013) IEEE Commun. Surv. Tutor. , vol.15 , pp. 1192-1209
    • Lara, O.D.1    Labrador, M.A.2
  • 14
    • 52949149759 scopus 로고    scopus 로고
    • Approaches and principles of fall detection for elderly and patient
    • Applications and Services, Singapore, 7-9 July
    • Yu, X. Approaches and principles of fall detection for elderly and patient. In Proceedings of the 10th International Conference on e-health Networking, Applications and Services, Singapore, 7-9 July 2008; pp. 42-47.
    • (2008) Proceedings of the 10th International Conference on e-health Networking , pp. 42-47
    • Yu, X.1
  • 17
    • 34047113813 scopus 로고    scopus 로고
    • An Introduction to Feature Extraction
    • Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L., Eds.; Springer Berlin Heidelberg: Zurich, Switzerland
    • Guyon, I.; Elisseeff, A. An Introduction to Feature Extraction. In Feature Extraction; Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L., Eds.; Springer Berlin Heidelberg: Zurich, Switzerland, 2006; Volume 207, pp. 1-25.
    • (2006) Feature Extraction , vol.207 , pp. 1-25
    • Guyon, I.1    Elisseeff, A.2
  • 21
    • 0003500248 scopus 로고
    • 1st ed.; Morgan Kaufmann Publishers Inc.: San Mateo, CA, USA
    • Quinlan, J.R. C4.5: Programs for Machine Learning, 1st ed.; Morgan Kaufmann Publishers Inc.: San Mateo, CA, USA, 1993.
    • (1993) C4.5: Programs for Machine Learning
    • Quinlan, J.R.1
  • 23
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • Chapelle, O. Training a support vector machine in the primal. Neural Comput. 2007, 19, 1155-1178.
    • (2007) Neural Comput. , vol.19 , pp. 1155-1178
    • Chapelle, O.1
  • 24
    • 75249088154 scopus 로고    scopus 로고
    • A Survey of accuracy evaluation metrics of recommendation tasks
    • Gunawardana, A.; Shani, G. A Survey of accuracy evaluation metrics of recommendation tasks. J. Mach. Learn. Res. 2009, 10, 2935-2962.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 2935-2962
    • Gunawardana, A.1    Shani, G.2
  • 26
    • 84893910725 scopus 로고    scopus 로고
    • A depth-based fall detection system using a Kinect sensor
    • Gasparrini, S.; Cippitelli, E.; Spinsante, S.; Gambi, E. A depth-based fall detection system using a Kinect sensor. Sensors 2014, 14, 2756-2775.
    • (2014) Sensors , vol.14 , pp. 2756-2775
    • Gasparrini, S.1    Cippitelli, E.2    Spinsante, S.3    Gambi, E.4
  • 30
    • 33845661594 scopus 로고    scopus 로고
    • Motion control of intelligent passive-type walker for fall-prevention function based on estimation of user state
    • Orlando, FL, USA, 15-19 May
    • Hirata, Y.; Muraki, A.; Kosuge, K. Motion control of intelligent passive-type walker for fall-prevention function based on estimation of user state. In Proceedings of the International Conference on Robotics and Automation, Orlando, FL, USA, 15-19 May 2006; pp. 3498-3503.
    • (2006) Proceedings of the International Conference on Robotics and Automation , pp. 3498-3503
    • Hirata, Y.1    Muraki, A.2    Kosuge, K.3
  • 31
    • 37849000453 scopus 로고    scopus 로고
    • Aging in place: Fall detection and localization in a distributed smart camera network
    • Bavaria, Germany, 23-28 September
    • Williams, A.; Ganesan, D.; Hanson, A. Aging in place: Fall detection and localization in a distributed smart camera network. In Proceedings of the 15th International Conference on Multimedia, Bavaria, Germany, 23-28 September 2007; pp. 892-901.
    • (2007) Proceedings of the 15th International Conference on Multimedia , pp. 892-901
    • Williams, A.1    Ganesan, D.2    Hanson, A.3
  • 36
    • 25644458384 scopus 로고    scopus 로고
    • Pyroelectric IR sensor arrays for fall detection in the older population
    • Sixsmith, A.; Johnson, N.; Whatmore, R. Pyroelectric IR sensor arrays for fall detection in the older population. J. Phys. 2005, 128, 153-160.
    • (2005) J. Phys. , vol.128 , pp. 153-160
    • Sixsmith, A.1    Johnson, N.2    Whatmore, R.3
  • 37
    • 3042640871 scopus 로고    scopus 로고
    • A smart sensor to detect the falls of the elderly
    • Sixsmith, A.; Johnson, N. A smart sensor to detect the falls of the elderly. IEEE Pervasive Comput. 2004, 3, 42-47.
    • (2004) IEEE Pervasive Comput. , vol.3 , pp. 42-47
    • Sixsmith, A.1    Johnson, N.2
  • 38
    • 84893497468 scopus 로고    scopus 로고
    • Google Patents, (accessed on 19 January 2014)
    • Scott, T. Bed Exit Detection Apparatus. Google Patents, 2000. Available online: http://www. google.com/patents/US6067019 (accessed on 19 January 2014).
    • (2000) Bed Exit Detection Apparatus.
    • Scott, T.1
  • 39
    • 72949107607 scopus 로고    scopus 로고
    • The future of integrated circuits: A survey of nanoelectronics
    • Haselman, M.; Hauck, S. The future of integrated circuits: A survey of nanoelectronics. Proc. IEEE 2010, 98, 11-38.
    • (2010) Proc. IEEE , vol.98 , pp. 11-38
    • Haselman, M.1    Hauck, S.2
  • 40
    • 77955461176 scopus 로고    scopus 로고
    • A reliable Fall Detection System Based on Wearable Sensor and Signal Magnitude Area for Elderly Residents
    • Lee, Y., Bien, Z.Z., Mokhtari, M., Kim, J.T., Park, M., Kim, J., Lee, H., Khalil, I., Eds.; Springer Berlin Heidelberg: Berlin Heidelberg, Germany
    • Chen, G.; Huang, C.; Chiang, C. A reliable Fall Detection System Based on Wearable Sensor and Signal Magnitude Area for Elderly Residents. In Aging Friendly Technology for Health and Independence; Lee, Y., Bien, Z.Z., Mokhtari, M., Kim, J.T., Park, M., Kim, J., Lee, H., Khalil, I., Eds.; Springer Berlin Heidelberg: Berlin Heidelberg, Germany, 2010; pp. 267-270.
    • (2010) Aging Friendly Technology for Health and Independence , pp. 267-270
    • Chen, G.1    Huang, C.2    Chiang, C.3
  • 44
    • 0032826957 scopus 로고    scopus 로고
    • Ageing of population and health care expenditure: A red herring?
    • Zweifel, P.; Felder, S.; Meiers, M. Ageing of population and health care expenditure: A red herring? Health Econ. 1999, 8, 485-496.
    • (1999) Health Econ. , vol.8 , pp. 485-496
    • Zweifel, P.1    Felder, S.2    Meiers, M.3
  • 50
    • 33947405182 scopus 로고    scopus 로고
    • Psychosocial factors associated with fall-related hip fractures
    • Peel, N.M.; McClure, R.J.; Hendrikz, J.K. Psychosocial factors associated with fall-related hip fractures. Age Ageing 2007, 36, 145-151.
    • (2007) Age Ageing , vol.36 , pp. 145-151
    • Peel, N.M.1    McClure, R.J.2    Hendrikz, J.K.3
  • 51
    • 84891318649 scopus 로고    scopus 로고
    • A data mining approach for fall detection by using k-nearest neighbour algorithm on wireless sensor network data
    • Bilgin, T.; Erdogan, S. A data mining approach for fall detection by using k-nearest neighbour algorithm on wireless sensor network data. IET Commun. 2012, 6, 3281-3287.
    • (2012) IET Commun. , vol.6 , pp. 3281-3287
    • Bilgin, T.1    Erdogan, S.2
  • 52
    • 84888332545 scopus 로고    scopus 로고
    • An online one class support vector machine-based person-specific fall detection system for monitoring an elderly individual in a room environment
    • Yu, M.; Yu, Y.; Rhuma, A.; Naqvi, S.M.R.; Wang, L.; Chambers, J.A. An online one class support vector machine-based person-specific fall detection system for monitoring an elderly individual in a room environment. IEEE J. Biomed. Health Inf. 2013, 17, 1002-1014.
    • (2013) IEEE J. Biomed. Health Inf. , vol.17 , pp. 1002-1014
    • Yu, M.1    Yu, Y.2    Rhuma, A.3    Naqvi, S.M.R.4    Wang, L.5    Chambers, J.A.6
  • 53
    • 84876002132 scopus 로고    scopus 로고
    • Real life applicable fall detection system based on wireless body area network
    • Las Vegas, NV, USA, 11-14 January
    • Bashir, F. Real life applicable fall detection system based on wireless body area network. In Proceedings of the 10th Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 11-14 January 2013; pp. 62-67.
    • (2013) Proceedings of the 10th Consumer Communications and Networking Conference (CCNC) , pp. 62-67
    • Bashir, F.1
  • 56
    • 80054937219 scopus 로고    scopus 로고
    • Fall detection with distributed floor-mounted accelerometers: An overview of the development and evaluation of a fall detection system within the project eHome
    • Dublin, Ireland, 23-26 May
    • Werner, F.; Diermaier, J.; Panek, P.; Schmid, S. Fall detection with distributed floor-mounted accelerometers: An overview of the development and evaluation of a fall detection system within the project eHome. In Proceedings of the 5th International ICST Conference on Pervasive Computing Technologies for Healthcare, Dublin, Ireland, 23-26 May 2011; pp. 354-361.
    • (2011) Proceedings of the 5th International ICST Conference on Pervasive Computing Technologies for Healthcare , pp. 354-361
    • Werner, F.1    Diermaier, J.2    Panek, P.3    Schmid, S.4
  • 57
    • 84875105596 scopus 로고    scopus 로고
    • Human falling detection algorithm using back propagation neural network
    • Ubon Ratchathani, Thailand, 5-7 December 2012 ; IEEE: Ubon Ratchathani, Thailand
    • Sengto, A.; Leauhatong, T. Human falling detection algorithm using back propagation neural network. In Proceedings of the 5th Biomedical Engineering International Conference, Ubon Ratchathani, Thailand, 5-7 December 2012 ; IEEE: Ubon Ratchathani, Thailand, 2012; pp. 1-5.
    • (2012) Proceedings of the 5th Biomedical Engineering International Conference , pp. 1-5
    • Sengto, A.1    Leauhatong, T.2
  • 60
    • 84863973401 scopus 로고    scopus 로고
    • Fall detection using a gaussian distribution of clustered knowledge, augmented radial basis neural-network, and multilayer perceptron
    • Melbourne, VIC, Australia, 21-24 November
    • Yuwono, M.; Su, S.W.; Moulton, B. Fall detection using a gaussian distribution of clustered knowledge, augmented radial basis neural-network, and multilayer perceptron. In Proceedings of the 7th International Conference on Broadband Communications and Biomedical Applications, Melbourne, VIC, Australia, 21-24 November 2011; pp. 145-150.
    • (2011) Proceedings of the 7th International Conference on Broadband Communications and Biomedical Applications , pp. 145-150
    • Yuwono, M.1    Su, S.W.2    Moulton, B.3
  • 65
    • 0030698119 scopus 로고    scopus 로고
    • Development and evaluation of evidence based risk assessment tool (STRATIFY) to predict which elderly inpatients will fall: Case-control and cohort studies
    • Oliver, D.; Britton, M.; Seed, P.; Martin, F.C.; Hopper, A.H. Development and evaluation of evidence based risk assessment tool (STRATIFY) to predict which elderly inpatients will fall: Case-control and cohort studies. BMJ (Clin. Res. ed.) 1997, 315, 1049-1053.
    • (1997) BMJ (Clin. Res. ed.) , vol.315 , pp. 1049-1053
    • Oliver, D.1    Britton, M.2    Seed, P.3    Martin, F.C.4    Hopper, A.H.5
  • 66
    • 56749174212 scopus 로고    scopus 로고
    • A systematic review and meta-analysis of studies using the STRATIFY tool for prediction of falls in hospital patients: How well does it work?
    • Oliver, D.; Papaioannou, A.; Giangregorio, L.; Thabane, L.; Reizgys, K.; Foster, G. A systematic review and meta-analysis of studies using the STRATIFY tool for prediction of falls in hospital patients: How well does it work? Age Ageing 2008, 37, 621-627.
    • (2008) Age Ageing , vol.37 , pp. 621-627
    • Oliver, D.1    Papaioannou, A.2    Giangregorio, L.3    Thabane, L.4    Reizgys, K.5    Foster, G.6
  • 70
    • 85013928017 scopus 로고    scopus 로고
    • SHIMMER-Sensing Health with Intelligence, Modularity, Mobility, and Experimental Reusability
    • Kuris, B.; Dishongh, T. SHIMMER-Sensing Health with Intelligence, Modularity, Mobility, and Experimental Reusability. Intel Corp. 2006, 23, 104-107.
    • (2006) Intel Corp. , vol.23 , pp. 104-107
    • Kuris, B.1    Dishongh, T.2
  • 72
    • 24944451092 scopus 로고    scopus 로고
    • On space-time interest points
    • Laptev, I. On space-time interest points. Int. J. Comput. Vis. 2005, 64, 107-123.
    • (2005) Int. J. Comput. Vis. , vol.64 , pp. 107-123
    • Laptev, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.