메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1299-1306

Using feature construction to avoid large feature spaces in text classification

Author keywords

Feature space design; Sentiment analysis; Text classification

Indexed keywords

ARBITRARY NUMBER; CLASSIFICATION ACCURACY; COMBINED FEATURES; CRITICAL PARTS; DATA SPARSITY; FEATURE CONSTRUCTION; FEATURE SPACE; MACHINE-LEARNING; PRE-PROCESSING STEP; PREDICTIVE POWER; SENTIMENT ANALYSIS; SOPHISTICATED MACHINES; TEXT CLASSIFICATION;

EID: 77955900354     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1830483.1830714     Document Type: Conference Paper
Times cited : (9)

References (26)
  • 3
    • 84862292344 scopus 로고    scopus 로고
    • Interactive annotation learning with indirect feature voting
    • S. Arora andE. Nyberg. Interactive annotation learning with indirect feature voting. In Proceedings of NAACL-HLT, 2009.
    • (2009) Proceedings of NAACL-HLT
    • Arora, S.1    Nyberg, E.2
  • 4
  • 11
    • 27144450271 scopus 로고    scopus 로고
    • Genetic programming-based construction of features for machine learning and knowledge discovery tasks
    • K. Krawiec. Genetic programming-based construction of features for machine learning and knowledge discovery tasks. In Genetic Programming and Evolvable Machines, 2002.
    • (2002) Genetic Programming and Evolvable Machines
    • Krawiec, K.1
  • 16
    • 85141280473 scopus 로고    scopus 로고
    • A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts
    • B. Pang andL. Lee. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of the ACL, pages 271-278, 2004.
    • (2004) Proceedings of the ACL , pp. 271-278
    • Pang, B.1    Lee, L.2
  • 18
    • 1942484786 scopus 로고    scopus 로고
    • Tackling the poor assumptions of naive bayes text classifiers
    • J. Rennie, L. Shih, J. Teevan, andD. Karger. Tackling the poor assumptions of naive bayes text classifiers. In Machine Learning, 2003.
    • (2003) Machine Learning
    • Rennie, J.1    Shih, L.2    Teevan, J.3    Karger, D.4
  • 20
    • 67651209062 scopus 로고    scopus 로고
    • A genetic programming approach for robust language interpretation. In
    • C. Rose. A genetic programming approach for robust language interpretation. In Advances in Genetic Programming, Volume 3, 1999.
    • (1999) Advances in Genetic Programming , vol.3
    • Rose, C.1
  • 21
    • 27944437848 scopus 로고    scopus 로고
    • Genetic programming with a genetic algorithm for feature construction and selection
    • M. Smith andL. Bull. Genetic programming with a genetic algorithm for feature construction and selection. In Genetic Programming and Evolvable Machines, 2005.
    • (2005) Genetic Programming and Evolvable Machines
    • Smith, M.1    Bull, L.2
  • 26
    • 77957858975 scopus 로고    scopus 로고
    • Annotator rationales to improve machine learning for text categorization
    • O. F. Zaidan andJ. Eisner. Using "annotator rationales" to improve machine learning for text categorization. In Proceedings of NAACL-HLT, 2007.
    • (2007) Proceedings of NAACL-HLT
    • Zaidan, O.F.1    Eisner Using, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.