메뉴 건너뛰기




Volumn 3, Issue 2, 2013, Pages 125-136

Automatic fall detection and activity classification by a wearable embedded smart camera

Author keywords

Activity classification; embedded; fall detection; histogram of oriented gradients; optical flow; smart cameras

Indexed keywords

ACTIVITY CLASSIFICATIONS; EMBEDDED; FALL DETECTION; HISTOGRAM OF ORIENTED GRADIENTS; SMART CAMERAS;

EID: 84879111230     PISSN: 21563357     EISSN: None     Source Type: Journal    
DOI: 10.1109/JETCAS.2013.2256832     Document Type: Article
Times cited : (88)

References (45)
  • 3
    • 80055098323 scopus 로고    scopus 로고
    • Deaths: Leading causes 2007
    • Aug. 21-22
    • M. Heron, "Deaths: Leading causes 2007," Nat. Vital Stat. Rep., vol. 59, no. 8, p. 17, Aug. 21-22, 2011.
    • (2011) Nat. Vital Stat. Rep , vol.59 , Issue.8 , pp. 17
    • Heron, M.1
  • 5
    • 47249088265 scopus 로고    scopus 로고
    • Fall risk vestibular schwannoma and anticoagulation therapy
    • J. Shelfer, D. Zapala, and L. Lundy, "Fall risk, vestibular schwannoma, and anticoagulation therapy," J. Am. Acad. Audiol., vol. 19, no. 3, pp. 237-45, 2008.
    • (2008) J. Am. Acad. Audiol , vol.19 , Issue.3 , pp. 237-245
    • Shelfer, J.1    Zapala, D.2    Lundy, L.3
  • 9
    • 84870913034 scopus 로고    scopus 로고
    • A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment
    • Nov.
    • M. Yu, A. Rhuma, S. M. Naqvi, L.Wang, and J. Chambers, "A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment," IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 6, pp. 1274-1286, Nov. 2012.
    • (2012) IEEE Trans. Inf. Technol. Biomed , vol.16 , Issue.6 , pp. 1274-1286
    • Yu, M.1    Rhuma, A.2    Naqvi, S.M.3    Wang, L.4    Chambers, J.5
  • 11
    • 84868627131 scopus 로고    scopus 로고
    • A survey on fall detection: Principles and approaches
    • M. Mubashir, L. Shao, and L. Seed, "A survey on fall detection: Principles and approaches," Neurocomputing, vol. 100, pp. 144-152, 2013.
    • (2013) Neurocomputing , vol.100 , pp. 144-152
    • Mubashir, M.1    Shao, L.2    Seed, L.3
  • 12
    • 30744436064 scopus 로고    scopus 로고
    • Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatorymonitoring
    • Jan
    • D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G. Celler, "Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatorymonitoring," IEEE Trans. Inf. Technol. Biomed., vol. 10, no. 1, pp. 156-167, Jan. 2006.
    • (2006) IEEE Trans. Inf. Technol. Biomed , vol.10 , Issue.1 , pp. 156-167
    • Karantonis, D.M.1    Narayanan, M.R.2    Mathie, M.3    Lovell, N.H.4    Celler, B.G.5
  • 13
    • 78650577090 scopus 로고    scopus 로고
    • Survey of fall detection and daily activity monitoring techniques
    • Jun
    • F. Hijaz, N. Afzal, T. Ahmad, and O. Hasan, "Survey of fall detection and daily activity monitoring techniques," in Int. Conf. Inf. Emerg. Technol., Jun. 2010, pp. 1-6.
    • (2010) Int. Conf. Inf. Emerg. Technol , pp. 1-6
    • Hijaz, F.1    Afzal, N.2    Ahmad, T.3    Hasan, O.4
  • 20
    • 42049095315 scopus 로고    scopus 로고
    • Portable preimpact fall detector with inertial sensors
    • Apr
    • G. Wu and S. Xue, "Portable preimpact fall detector with inertial sensors," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 16, no. 2, pp. 178-183, Apr. 2008.
    • (2008) IEEE Trans. Neural Syst. Rehabil. Eng , vol.16 , Issue.2 , pp. 178-183
    • Wu, G.1    Xue, S.2
  • 21
    • 84870913034 scopus 로고    scopus 로고
    • A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment
    • Nov.
    • M.Yu, A. Rhuma, S. M. Naqvi, L. Wang, and J. Chambers, "A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment," IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 6, pp. 1274-1286, Nov. 2012.
    • (2012) IEEE Trans. Inf. Technol. Biomed , vol.16 , Issue.6 , pp. 1274-1286
    • Yu, M.1    Rhuma, A.2    Naqvi, S.M.3    Wang, L.4    Chambers, J.5
  • 22
    • 34249934082 scopus 로고    scopus 로고
    • Evaluation of a thresholdbased tri-axial accelerometer fall detection algorithm
    • A.K.Bourke, J. V. O. Brien, andG.M.Lyons, "Evaluation of a thresholdbased tri-axial accelerometer fall detection algorithm," Gait Posture, vol. 26, no. 2, pp. 194-199, 2007.
    • (2007) Gait Posture , vol.26 , Issue.2 , pp. 194-199
    • Bourke, A.K.1    Brien, J.V.O.2    Lyons, G.M.3
  • 23
    • 72749119260 scopus 로고    scopus 로고
    • Design of automatic fall detector for elderly based on triaxial accelerometer
    • J. Zheng, G. Zhang, and T. Wu, "Design of automatic fall detector for elderly based on triaxial accelerometer," in Proc. 3rd Int. Conf. Bioinformat. Biomed. Eng., 2009, pp. 1-4.
    • (2009) Proc. 3rd Int. Conf. Bioinformat. Biomed. Eng , pp. 1-4
    • Zheng, J.1    Zhang, G.2    Wu, T.3
  • 25
  • 29
    • 3042640871 scopus 로고    scopus 로고
    • A smart sensor to detect the falls of the elderly
    • A. Sixsmith and N. Johnson, "A smart sensor to detect the falls of the elderly," IEEE Pervasive Comput., vol. 3, no. 2, pp. 42-47, 2004.
    • (2004) IEEE Pervasive Comput , vol.3 , Issue.2 , pp. 42-47
    • Sixsmith, A.1    Johnson, N.2
  • 35
    • 67249098346 scopus 로고    scopus 로고
    • An eigenspacebased approach for human fall detection using integrated time motion image and neural network
    • Oct
    • H. Foroughi, A. Naseri, A. Saberi, and H. S. Yazdi, "An eigenspacebased approach for human fall detection using integrated time motion image and neural network," in Proc. 9th Int. Conf. Signal Process., Oct. 2008, pp. 1499-1503.
    • (2008) Proc. 9th Int. Conf. Signal Process , pp. 1499-1503
    • Foroughi, H.1    Naseri, A.2    Saberi, A.3    Yazdi, H.S.4
  • 37
    • 50349102523 scopus 로고    scopus 로고
    • Context aware inactivity recognition for visual fall detection
    • B. Jansen and R. Deklerck, "Context aware inactivity recognition for visual fall detection," in Proc. Pervasive Health Conf. Workshops, 2006, pp. 1-4.
    • (2006) Proc. Pervasive Health Conf. Workshops , pp. 1-4
    • Jansen, B.1    Deklerck, R.2
  • 39
    • 47349117984 scopus 로고    scopus 로고
    • Smartclassysurv-A smart camera network for distributed tracking and activity recognition and its application to assisted living
    • Sep
    • S. Fleck, R. Loy, C. Vollrath, F.Walter, andW. Strasser, "Smartclassysurv-A smart camera network for distributed tracking and activity recognition and its application to assisted living," in Proc. 1st ACM/IEEE Int. Conf. Distrib. Smart Cameras, Sep. 2007, pp. 211-218.
    • (2007) Proc. 1st ACM/IEEE Int. Conf. Distrib. Smart Cameras , pp. 211-218
    • Fleck, S.1    Loy, R.2    Vollrath, C.3    Walter, F.4    Strasser, W.5
  • 42
    • 0019698606 scopus 로고
    • Determining optical flow
    • B. K. P. Horn and B. G. Schunck, "Determining optical flow," Artif. Intell., vol. 17, no. 13, pp. 185-203, 1981.
    • (1981) Artif. Intell , vol.17 , Issue.13 , pp. 185-203
    • Horn, B.K.P.1    Schunck, B.G.2
  • 43
  • 45
    • 57349160441 scopus 로고    scopus 로고
    • Citric: A low-bandwidth wireless camera network platform
    • P. Chen et al., "Citric: A low-bandwidth wireless camera network platform," in Proc. ACM/IEEE Int. Conf. Distrib. Smart Cameras, 2008, pp. 1-10.
    • (2008) Proc. ACM/IEEE Int. Conf. Distrib. Smart Cameras , pp. 1-10
    • Chen, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.