-
2
-
-
42249094907
-
Support vector machine solvers
-
Bottou, L.; Chapelle, O.; De Coste, D.; and Weston, J., eds., Cambridge, MA: MIT Press
-
Bottou, L., and Lin, C.-J. 2007. Support vector machine solvers. In Bottou, L.; Chapelle, O.; De Coste, D.; and Weston, J., eds., Large Scale Kernel Machines. Cambridge, MA: MIT Press. 301-320.
-
(2007)
Large Scale Kernel Machines
, pp. 301-320
-
-
Bottou, L.1
Lin, C.-J.2
-
3
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
Breunig, M. M.; Kriegel, H.-R.; Ng, R. T.; and Sander, J. 2000. LOF: Identifying density-based local outliers. ACM SIGMOD Record 29(2):93-104.
-
(2000)
ACM SIGMOD Record
, vol.29
, Issue.2
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.-R.2
Ng, R.T.3
Sander, J.4
-
7
-
-
0014710323
-
On optimum recognition error and reject tradeoff
-
Chow, C. 1970. On optimum recognition error and reject tradeoff. IEEE Trans. Information Theory 16(1):41-46.
-
(1970)
IEEE Trans. Information Theory
, vol.16
, Issue.1
, pp. 41-46
-
-
Chow, C.1
-
8
-
-
33747128180
-
Large scale transductive SVMs
-
Collobert, R.; Sinz, F.; Weston, J.; and Bottou, L. 2006. Large scale transductive SVMs. Journal of Machine Learning Research 7:1687-1712.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1687-1712
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
-
9
-
-
34047174674
-
Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
-
Fei-Fei, L.; Fergus, R.; and Perona, P. 2007. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding 106(1):59-70.
-
(2007)
Computer Vision and Image Understanding
, vol.106
, Issue.1
, pp. 59-70
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
10
-
-
0141921552
-
Online ensemble learning: An empirical study
-
Fern, A., and Givan, R. 2003. Online ensemble learning: An empirical study. Machine Learning 53(1-2):71-109.
-
(2003)
Machine Learning
, vol.53
, Issue.1-2
, pp. 71-109
-
-
Fern, A.1
Givan, R.2
-
11
-
-
33749255397
-
Online multiclass learning by interclass hypothesis sharing
-
Fink, M.; Shalev-Shwartz, S.; Singer, Y.; and Ullman, S. 2006. Online multiclass learning by interclass hypothesis sharing. In Proceedings of the 23rd International Conference on Machine Learning, 313-320.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 313-320
-
-
Fink, M.1
Shalev-Shwartz, S.2
Singer, Y.3
Ullman, S.4
-
12
-
-
7544223741
-
A survey of outlier detection methodologies
-
Hodge, V. J., and Austin, J. 2004. A survey of outlier detection methodologies. Artificial Intelligence Review 22(2):85-126.
-
(2004)
Artificial Intelligence Review
, vol.22
, Issue.2
, pp. 85-126
-
-
Hodge, V.J.1
Austin, J.2
-
13
-
-
84871822277
-
Finding rare classes: Active learning with generative and discriminative models
-
Hospedales, T. M.; Gong, S.; and Xiang, T. 2013. Finding rare classes: Active learning with generative and discriminative models. IEEE Trans. Knowledge and Data Engineering 25(2):374-386.
-
(2013)
IEEE Trans. Knowledge and Data Engineering
, vol.25
, Issue.2
, pp. 374-386
-
-
Hospedales, T.M.1
Gong, S.2
Xiang, T.3
-
19
-
-
58649083899
-
Learn++ nc: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes
-
Muhlbaier, M.; Topalis, A.; and Polikar, R. 2009. Learn++ nc: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes. IEEE Trans. Neural Networks 20(1):152-168.
-
(2009)
IEEE Trans. Neural Networks
, vol.20
, Issue.1
, pp. 152-168
-
-
Muhlbaier, M.1
Topalis, A.2
Polikar, R.3
-
21
-
-
77956507103
-
Evaluation methods in face recognition
-
Li, S. Z., and Jain, A. K., eds., New York: Springer
-
Phillips, P. J.; Grother, P.; and Micheals, R. 2011. Evaluation methods in face recognition. In Li, S. Z., and Jain, A. K., eds., Handbook of Face Recognition. New York: Springer. 329-348.
-
(2011)
Handbook of Face Recognition
, pp. 329-348
-
-
Phillips, P.J.1
Grother, P.2
Micheals, R.3
-
22
-
-
0035521110
-
Learn++: An incremental learning algorithm for supervised neural networks
-
Polikar, R.; Upda, L.; Upda, S.; and Honavar, V. 2001. Learn++: An incremental learning algorithm for supervised neural networks. IEEE Trans. Systems, Man, and Cybernetics, Part C 3] (4)-A97-50&.
-
(2001)
IEEE Trans. Systems, Man, and Cybernetics, Part C
, vol.3
, Issue.4
, pp. A97-A150
-
-
Polikar, R.1
Upda, L.2
Upda, S.3
Honavar, V.4
-
26
-
-
84878136486
-
Toward open set recognition
-
Scheirer, W.; de Rezende Rocha, A.; Sapkota, A.; and Boult, T. 2013. Toward open set recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 35(7):1757-1772.
-
(2013)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.35
, Issue.7
, pp. 1757-1772
-
-
Scheirer, W.1
De Rezende Rocha, A.2
Sapkota, A.3
Boult, T.4
-
27
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
Scholkopf, B.; Piatt, J. C.; Shawe-Taylor, J.; Smola, A. J.; and Williamson, R. C. 2001. Estimating the support of a high-dimensional distribution. Neural Computation 13(7):1443-1471.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Scholkopf, B.1
Piatt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
30
-
-
76749095443
-
Classification methods with reject option based on convex risk minimization
-
Yuan, M., and Wegkamp, M. 2010. Classification methods with reject option based on convex risk minimization. Journal of Machine Learning Research 11:111-130.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 111-130
-
-
Yuan, M.1
Wegkamp, M.2
-
31
-
-
0037686659
-
The concave-convex procedure
-
Yuille, A. L., and Rangarajan, A. 2003. The concave-convex procedure. Neural Computation 15(4):915-936.
-
(2003)
Neural Computation
, vol.15
, Issue.4
, pp. 915-936
-
-
Yuille, A.L.1
Rangarajan, A.2
-
33
-
-
77956708689
-
Semi-supervised learning by disagreement
-
Zhou, Z.-H., and Li, M. 2010. Semi-supervised learning by disagreement. Knowledge and Information Systems 24(3):415-439.
-
(2010)
Knowledge and Information Systems
, vol.24
, Issue.3
, pp. 415-439
-
-
Zhou, Z.-H.1
Li, M.2
|